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The correct quantification of mineral dissolution rates is a critical task for

macroscopic reactive transport modeling. Previous studies showed a substantial

rate variability of about two orders of magnitude, which cannot be explained

by variance of external environmental parameters alone. If the rate cannot be

predicted as a constant parameter, then the critical question is whether it can be

predicted as a stable reproducible probability distribution. Although a large variety

of factors may contribute to the overall variance across the scales, the e�ect of

defect density and defect spatial distribution can be considered as one of the key

variance sources. Here, we tested the reproducibility of probability distributions

for Kossel crystals with a di�erent amount and spatial configurations of lattice

dislocations. We ran several tests on systems with the same configurations and

calculated the probabilities of material flux. Surprisingly, we discovered that

the density of dislocations has minimal impact on the probability distributions.

However, the spatial location of dislocations has a substantial influence on

the rate distributions reproducibility. In cases where multiple etch pits operate

simultaneously, reproducible rate distributions are found regardless of the number

of dislocations. In cases where dislocations formed clusters, one large etch pit

controlled the entire surface, and sets of reproducible probability distributions

were detected. Then, more complex statistical behavior is expected, since

the result is path-dependent. These results have serious consequences for

the implementation of rate distributions in reactive transport models. Further

studies, however, are needed to provide clear guidance on relating surface

morphologies, dislocation distributions, and dissolution rate variance. The role

of material-specific properties, such as crystallographic structure and bonding, in

rate distributions, should be additionally addressed. The role of grain boundaries,

crystal size and crystal habit, including nanoparticulate forms, in rate variance, also

should be addressed for practical applications.
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1. Introduction

The growing demand of modern societies for reliable and
predictable numerical models of critical geochemical processes
can now be fulfilled with computational power. The ideas to
solve important environmental problems, e.g., CO2 sequestration
(Balashov et al., 2013; Daval et al., 2013; Hellmann et al., 2013;
Jun et al., 2013, 2017; Smit, 2016; Arif et al., 2017; Daval, 2018;
Wild et al., 2019; Loganathan et al., 2020; Deng et al., 2022; Shabani
et al., 2022; Urych et al., 2022), water cleaning (Bhattacharyya and
Gupta, 2007; Barry et al., 2021), soil enrichment and remediation
from pollution (Aredes et al., 2012; Björneholm et al., 2016;
Niazi et al., 2023), prediction of oil and gas reservoir behavior
(Browning and Murphy, 2003; Steefel et al., 2015), or the safety
of nuclear waste repositories (Payne et al., 2013; Kalinichev et al.,
2017; Leal et al., 2017; Vinograd et al., 2018; Androniuk and
Kalinichev, 2020; Wieland et al., 2020; Cygan et al., 2021; Claret
et al., 2022; Liu et al., 2022), geothermal resource modeling
(Wilson et al., 2001; Yapparova et al., 2014, 2019, 2023; Whitaker
and Frazer, 2018; Lamy-Chappuis et al., 2022), in silico via
computer simulations seem to be both promising and economically
efficient. Understanding the process-controlling reactions at
mineral surfaces, i.e., dissolution, adsorption, nucleation, and
crystal growth, constitutes a milestone in geochemical process
modeling (Brantley et al., 2008; Lichtner et al., 2018; Xiao et al.,
2018; Poonoosamy et al., 2021; Prill et al., 2021; Deng et al., 2022).
The combination of such models with sophisticated experimental
techniques and complementary field studies propels us into a
new era of multidisciplinary science. Communication between the
communities of geochemists, physicists, chemists, environmental
engineers, and applied mathematicians, to name only a few,
becomes especially important in this perspective.

The ideas of pioneers such as Vernadsky and Goldschmidt
(Müller, 2014) presented all natural processes on Earth as
perpetual movement of chemical elements between geochemical
reservoirs: the Earth mantle and crust, soils, rivers, watersheds,
swamps, lakes, and oceans. Each reservoir is characterized by
their own predominant thermodynamic and kinetic mechanisms
of material production (nucleation and growth) and destruction
(mechanical decomposition and dissolution). Each location within
the respective reservoir is a complex chemical microcosm powered
by fundamental physical forces operating at different scales,
i.e., gradients in temperature and pressure, gravity, chemical
potentials, and electrostatic interactions. The fundamental laws of
interactions, such as Newtonian equations of kinetic motion, or
Coulomb interactions, alone cannot always capture the complex
chemical machinery of chemical element conversion and transport
from immobile (solids) to mobile (ions in fluids) forms. However,
we note that classical chemical kinetics providing reaction rates
for very simple molecular processes in many practical applications
cannot be considered as a reliable choice for macroscopic modeling
of geochemical processes (Lüttge et al., 2013; Luttge et al., 2019).
A vast variety of molecular reactions taking place at solid-fluid
interfaces of complex solid materials may happen in such systems
(Brantley et al., 2008). Material transport is another factor that
adds complexity to reaction mechanisms at different scales. The
fundamental problem is, thus, how to model geochemical processes

across the scales taking into account the complexity of geochemical
reactions and material transport (Zhu, 2009).

It is necessary to obtain data about a reactive solid-fluid
system at a variety of scales, i.e., from the molecular scale via
molecular modeling (Kubicki, 2016) and spectroscopic techniques
(Hawthorne, 2018), to the reservoir scale via modeling porosity
networks and making massive CT scans (Lichtner et al., 2018). This
comprehensive approach provides knowledge about geochemical
reaction mechanisms, although the process of data collection is
tedious and expensive. The critical issue related to such studies is
transferability of knowledge obtained for each process of interest
at a specific location to other similar processes at other locations.
A remarkable example of geochemical process complexity is an
intrinsic variance of mineral dissolution rates, which cannot be
attributed to the variance of external environmental conditions
(Arvidson et al., 2003; Fischer et al., 2012, 2014; Lüttge et al., 2013;
Luttge et al., 2019). The intrinsic rate variance is reported to be
as large as two orders of magnitude and attributed to variance
of reactive surface site density and reactivity of different surface
features (Arvidson et al., 2003; Fischer et al., 2012; Levenson and
Emmanuel, 2013; Lüttge et al., 2013; Noiriel et al., 2018). The full
description of variance sources is a non-trivial task: thus, molecular
scale controls, such as water exchange frequency at different sites
(Wolthers et al., 2013), different crystallographic face orientations
(Godinho et al., 2012, 2014), different crystal habits (Bouissonnié
et al., 2021), or etch pit morphology evolution (Brantley et al., 1986;
Bandstra and Brantley, 2008; Pollet-Villard et al., 2016).

The underlying work hypothesis is the intrinsic stochasticity
of the dissolution rates. A fundamental problem of practical
importance is how to predict dissolution rates for macroscopic
scale modeling (Li et al., 2006; Balashov et al., 2013, 2015; Lugo-
Méndez et al., 2015; Steefel et al., 2015; Liu et al., 2017; Lichtner
et al., 2018; Erfani et al., 2019; Agrawal et al., 2021; Poonoosamy
et al., 2021; Prill et al., 2021). The fundamental question is thus if
we cannot model geochemical processes in a deterministic way, is a
probabilistic approach the alternative?

A probabilistic approach that assumes an ensemble of possible
events with related probabilities of their occurrences is widely
used in physics, physical chemistry, and geosciences. There are
two well-known probabilistic algorithms, the Metropolis Monte
Carlo (Frenkel and Smith, 2002; Binder and Heermann, 2010)
and Kinetic Monte Carlo algorithms (Blum and Lasaga, 1987;
Jansen, 2012; Andersen et al., 2019). The Metropolis Monte Carlo
algorithm is a standard tool of statistical physics that allows
direct statistical sampling over energetic states which have different
occurrence probabilities. In this way important macroscopic
parameters, such as systems’ energy, can be calculated. The Kinetic
Monte Carlo (KMC) algorithm relates reaction rates in a reactive
ensemble with probabilities of their occurrences (Gillespie, 1977;
Gilmer, 1980; Cheng, 1993; Voter, 2007; Hess and Over, 2017).
Estimation of mineral resources employ geostatistics, which relies
on random sampling approaches and implies a careful separation
of a meaningful signal from stochastic noise. The microscopic
complexity of any system is an inherent property that cannot
be ignored, but instead can be used to quantify and predict the
macroscopic behavior if a proper stochastic model of a process and
related statistical sampling approach are established.
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The first question of practical interest is whether there is a
reproducible probability distribution of dissolution rates which
can be directly implemented into macroscopic scale models, e.g.,
reactive transport at the pore scale. Probabilities in many cases can
be approximated by counting and normalizing event frequencies.
In this manuscript we deliver the statistical results of numerical
KMC experiments on a simple Kossel cubic crystal with screw
dislocations, where we counted frequencies of dissolution rate
occurrences. We compared rate distributions and dissolution
surface features, i.e., etch pits, which generate these distributions.
We then arrive at the conclusion regarding statistical behavior of
dissolving surfaces depending on spatial location of dislocations.

2. Methods

We used the standard Kinetic Monte Carlo simulation
algorithm as it was developed originally for Kossel crystals by
Gilmer and Bennema (1972), Gilmer (1976, 1980). A Kossel crystal
has simple cubic lattice structure and atomic units are represented
by cubic blocks (Kossel, 1927; Stranski, 1928). Kossel crystals are
commonly used as a generic Terrace-Ledge-Kink representation of
crystalline solid surfaces (Mutaftschiev, 2001) (Figure 1A). If a bulk
crystal (coordination number, CN = 6) is cut in two halves along
a, b, or c crystallographic axes, atomically flat terrace sites with
five neighbors (number of neighbors N = 5) are formed. Atomic
rows parallel to the other two axes form ledge sites (N = 4) which
are adjacent to the terrace sites and form atomic steps. Removal of
atoms from ledge sites generate kink sites (N = 3) which are self-
reproducing units if removed sequentially from the same atomic
row. In a numerical procedure, filled positions can take value 1 and
unfilled value 0, so the entire crystal can be represented as a 3-D
array of 0/1 values, or, alternatively, as a 2-D array of surface heights
for solid-on-solid models (SOS) where overhangs are excluded. We
used the SOS model in the present study.

The KMC algorithm normalizes probabilities for dissolution
rates for surface sites with different dissolution rates according to
a simple relation (Bortz et al., 1975):

Pi =
ki∑M
i=1 ki

=
Ni exp (−iβϕ)

∑M
i=1 Ni exp (−iβϕ)

, (1)

where M is the total number of possible reactive events, ki is the
reaction rate for dissolution event of an atom with i neighbors
(Figure 1A), Ni is the number of sites with i neighbors, ϕ is a bond
breaking activation energy, β = kT is the Boltzmann parameter,
where k is the Boltzmann constant, T is the temperature. We
used β = 6 in this study, as a parameter providing straight
steps which emerge in the majority of mineral-fluid systems. This
parameter can be used to model dissolution of calcium carbonate
(Kurganskaya and Luttge, 2016), one of the best studied minerals
with regard to its dissolution kinetics (Morse et al., 2007).

The rejection-free algorithm, known as divide-and-conquer
(Meakin and Rosso, 2008) or BKL (Bortz-Kalos-Lebowitz)
algorithm (Bortz et al., 1975) is used in this study as it is indicated in
the right hand side of the Equation (1). According to this algorithm,
a type of reaction is chosen first, then a site where reaction is
performed is chosen at random. The running sums (Voter, 2007;
Meakin and Rosso, 2008) are constructed as sequential sums of

dissolution rates ki, and a random number falling into an interval
(ki; ki+ ki+1) is used to decide upon a reaction type i (Figure 1B).

The time step between reactive events is calculated as follows
(Voter, 2007):

t = −
ln(r)

∑M
i=1 Ni exp (−iβϕ)

, (2)

where r is a random number. Surface dissolution rates for
rate distribution analysis (n data points per distribution) were
calculated as an inverted time Tn required to dissolve axb surface
sites, where a is the length and b is the width of the simulated
system. In this study a= b= 200 atomic units:

R (Tn) =
1

Tn
, (3)

Tn =

a•b∑

j=1

tj. (4)

Screw dislocations were placed into the crystal model as opened
hollow cores according to the procedure discussed in previous
publications (Meakin and Rosso, 2008; Fischer et al., 2014;
Kurganskaya and Luttge, 2016). The location of screw dislocations
were chosen at random and then simulations were run at the same
dislocation configuration five times in independent runs. We run
simulations on systems with two, three, five, ten, twenty, thirty,
and forty dislocations. An independent test study for dislocations
placed on a regular 5 × 5 grid was performed to assess the role
of dislocation positioning. Surface height maps in this study are
shown as colormaps where each color represents an atomic layer
at a constant height.

Bin size was chosen in the same way in each simulation run,
where the representative rate interval was chosen between (2ab)/k3
and (0.5ab)/k3 and the total number of bins is 50, so the bin
size equals to (0.03ab)/k3. Rate frequencies falling into these bins
were calculated for simulation trajectories equals to 2 • 107 atomic
dissolution events. This binning approach provides ∼ 500 data
points for each rate distribution curve.

3. Results and discussion

3.1. Surface configurations

3.1.1. Interaction of two stepwave sources
Presence of screw dislocations at mineral surfaces normally

result in opening of etch pits if a system of interest is not close
to equilibrium (Lasaga and Blum, 1986; Lasaga, 1998; Lasaga
and Luttge, 2001; Lüttge, 2006). Lasaga and Luttge developed a
model of crystal dissolution based on etch-pit opening process and
formation of concentric step trains, so-called stepwaves (Lasaga
and Luttge, 2001; Lasaga and Lüttge, 2003). The stepwaves are
constantly generated at the outcrops of screw dislocation hollow
cores. Each stepwave travels across the surface and dissolves the
crystal layer-by-layer. The stepwaves can collide into each other
and form curved steps which propagate significantly faster than
the straight rectangular stepswaves (Jordan et al., 2001; Vinson and
Lüttge, 2005). Kinetic Monte Carlo simulations of Kossel crystals
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FIGURE 1

A basic framework for crystal dissolution simulations by the Kinetic Monte Carlo method. (A) Surface of Kossel crystals (bulk coordination number CN

= 6) with surface sites: terrace (N = 5), ledge (N = 4), and kink (N = 3) sites. Each surface site has an associated dissolution probability depending on

its dissolution rate ki. (B) Construction of the running sum for the divide-and-conquer (Meakin and Rosso, 2008) or BKL (Bortz et al., 1975) algorithm.

The sum of rates for all sites is divided into intervals which lengths corresponds to dissolution rates. Sites with higher rates are selected more

frequently than the sites with lower rates.

FIGURE 2

Possible etch pit configurations arising in the same simulated Kossel crystal with fixed positions of two screw dislocations, system size: 200 × 200

atomic units. Labels d1 and d2 indicate locations of the hollow cores. (A) Stepawaves from two dislocations coalesce at some point around a line

connecting dislocation centers. Two etch pits define dynamics of the dissolution process; (B) Stepawaves from two dislocations coalesce close to

the d1 hollow core. The etch pit around d2 starts to dominate process dynamics; (C) Etch pit around d1 completely disappears because its stepwaves

become eradicated by the stepwaves coming from the d2 source. The pit around d2 is the only one pit present on the surface; (D) The same

dynamics as in (C), but the only one present pit is formed around d1 instead of d1 following the same mechanism.

with multiple screw dislocations demonstrated that the peak-and-
valley surface morphology stems from interaction between the etch
pits and the stepwaves they emit (Meakin and Rosso, 2008). Curved
steps are in general more reactive in comparison to the straight
steps. The contribution of curved steps into the overall dissolution
rate, as well as variance in their reactive properties were usually not
discussed. In general, two diagonally opposite curved steps form
when two straight steps emanating from different sources d1 and
d2 collide at any point on a d1-d2 line if we assume square-shaped
stepvawes (Figure 2). If the stepwaves are rectangular, which may
accidentally happen, they may collide at any point within a square
which diagonal is d1-d2 line.

The location at which curved steps form is never precisely
defined because each stepwave velocity varies stochastically locally.
As a result, each new couple of circular steps may form at a new
location. Depending upon this location, reactivity of these steps
varies due to the different densities of kink sites they bear. This
variance contributes to the overall dissolution rate variance. If
two stepwaves meet closer to d1 dislocation, the upper etch pit
dominates the surface (Figure 2A), while if they meet closer to d2
dislocation, the lower pit will dominate the surface (Figure 2B). In
the cases when the stepwaves from one of the sources slow down,
they can be overridden by the stepwaves from another source.

As a result, one of the sources becomes inactive and only one of
the etch pits is functioning (Figures 2C, D). If screw dislocations
are long enough, these two situations can randomly reverse
to I and II. Overall, the system fluctuates between all possible
configurations I–IV thus giving temporal rate variance. The system
shown on Figure 2 evolves in time from the configuration I to the
configuration IV via configurations II and III.

3.1.2. Interaction of scattered stepwave sources
The interaction between multiple stepwave sources is analogs

to the interaction of the two stepwave sources presented above.
The only difference is that the possible number of etch pits and
possible surface morphologies vary to a greater extent. Thus, for a
system with ten sources (Figure 3) any number of etch pits between
one and ten may form: five major pits (Figure 3A), three major
pits (Figure 3E), two major pits (Figures 3B, F), and one major pit
(Figures 3C, D). The system gradually evolves from configuration I
to configuration VI, but other sequences may randomly occur.

The mechanism for different configurations emergence is the
same as for the system with two dislocations competition between
the arrival times for stepwaves coming from different sources
at the same location. In general, the number of pits is usually
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FIGURE 3

Di�erent etch pit configurations arising in the same simulated Kossel crystal with fixed positions of ten randomly placed screw dislocations, system

size: 200 × 200 atomic units. Labels di indicate locations of the hollow cores. (A) Five etch pits control the dissolution process; (B) Two major etch

pits control the process; (C) One major etch pit with a few suppresed pits controls the process; (D) The cluster of d1-d4-d5 dislocations form one

dominating pit; (E) Three etch pits merging into one larger pit control the dissolution process; (F) Two interacting etch pits control the process.

smaller than the number of dislocations. The number of etch
pits forming depends on the geometrical arrangements of the
dislocation sources. Thus, closely spaced dislocations have more
chances to form a dominating pit because the arrival time for the
stepwaves for their mutual collision is shorter than the arrival times
for the more distance sources. The game seems to be defined in the
very beginning (Figures 3A–D): three major reactivity zones—(1)
d1-d4-d5, (2) d2-d3-d6-d7, and (3) d8-d9-d10—are initiated at the
very beginning based on relative distances between the dislocations
(Figure 3A). Then the third zone (d8-d9-d10) run out of the game
because the stepwaves emanating from it get wiped out by themajor
stepwaves coming from the other two zones (Figure 3B). Finally,
the first zone (d1-d4-d5) wins the game because it produces faster
traveling major stepwaves which wipe out the second zone (d2-
d3-d6-d7) (Figure 3C). One dominating pit occupies the surface
(Figure 3D). This situation seems to be final, but it spontaneously
reverses to formation of a new zone (d1-d2-d3-d4-d5) which
competes with a zone formed by d8 solely (Figure 3E). In the
next step these two zones completely disappear with the two new
competing zones to be established: d1-d4-d5 and d8-d9-d10. As we
can see from this example, coalescence of etch pits into a one major
etch pit is in principle reversible into a multiple etch pit regime, but
it is not possible to predict exactly which of the screw dislocations
will become new major stepwave sources.

3.1.3. Interaction of clustered stepwave sources
The systems with ten or more screw dislocations showed

a distinctly different behavior (Figure 4): the dissolution
process started as normal from formation of multiple
pits around screw dislocation hollow cores (Figure 4A).
The major pit on the right started to take over the
entire surface due to larger local density of dislocations
(Figures 4A, B).

The process of major right pit dominance continued,
where other sources formed short-living tiny pits on
terraces emanating from the major pit’s source (Figure 4C).
The system is stacked in this one major pit configuration
(Figures 4D, F). The width and the density of the straight
step trains varied over time thus contributing to the overall
rate variance.

3.2. Rate distributions

Dissolution rate frequencies showed quite stable reproducible
distributions between the runs for systems with the number of
dislocations ranging from two to five (Figures 5A, B). Systems with
ten dislocations typically exhibited stable distributions (Figure 5C),
but some systems can occasionally exhibit a deviant distribution
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FIGURE 4

Di�erent etch pit configurations arising in the same simulated Kossel crystal with fixed positions of thirty randomly placed screw dislocations, system

size: 200 × 200 atomic units. The configurations are shown as time sequence corresponding to n*105 iteration steps; (A) n = 2; (B) n = 4; (C) n = 10;

(D) n = 12; (E) n = 106; (F) n = 188.

in a new run (Figure 5D). The systems with twenty dislocations
(Figures 5E, F) showed multiple sets of stable distributions
depending on a dislocation configuration: the configuration set
1 produced three distinct distributions in five simulation runs
(Figure 5E), while the configuration set 2 produced two distinct
distributions in five runs (Figure 5F). The same behavior is
observed for the systems with thirty dislocations (Figure 5G), while
the system with forty dislocations exhibited stable distributions
again (Figure 5H).

The comparison of rate variance amongst systems with
different dislocation configurations (Figure 6) showed that
dislocation density has a very non-trivial influence on rate
distributions. Roughly, there are two types of dislocation
configurations which result in different behavior of rate
distributions: (1) “low” density where multiple etch pits operate
simultaneously on the surface. Rate distributions are stable,
reproducible, and there is no or very weak dependence of rate
values from the number/density of dislocations. This result is
counterintuitive because it may seem that higher dislocation
density should result in higher dissolution rates due to greater
extent of pitting. We observed this regime for the systems with
two, three, five, and ten (set 1) dislocations; (2) “high” density

(from 20 to 40 dislocations) where etch pit clustering effect results
in formation of a one dominating kinetic feature and the rest of
dislocations do not develop into independent pits. In this case
rate distributions may significantly vary from run to run, thus
introducing an overall variance about half of order of magnitude.
As we can see from this result, the enhanced dissolution at larger
density of dislocations does not stem from larger number of
pits, as it may seem intuitively. Instead, a surface dominating pit
from a dislocation cluster defines rate distributions which show a
fluctuating behavior. The overall fluctuations in rate distributions
and difference in average or modal rate values largely depend on
relative distances between the dislocations as etch pit sources,
instead of dislocation density as a number of defects per unit area.

3.3. The influence of surface feature
organization on rate distribution

As we can see from the data on Figures 5, 6, the efficiency
of material removal by a couple of pits is almost identical to
the efficiency of tens of pits operating simultaneously. Similar
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FIGURE 5

Frequencies of dissolution rates calculated as inverted time steps required to dissolve one atomic layer (1/1t) in Kinetic Monte Carlo simulations of

Kossel crystal dissolution. Each simulation was run five times for the same configuration of screw dislocations. System size in each simulation is 200

× 200 atomic units. (A) 2 dislocations; (B) 5 dislocations; (C) 10 dislocations, configuration set 1; (D) 10 dislocations, configuration set 2; (E) 20

dislocations, configuration set 1; (F) 20 dislocations, configuration set 1; (G) 30 dislocations; (H) 40 dislocations.
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FIGURE 6

Compilation of synthetic rate probability distributions for systems with di�erent numbers of screw dislocations, KMC simulations of Kossel crystals,

the system size is 200 × 200 atomic units.

efficiency, however, is valid only for “steady-state” systems where all
stepwaves from different sources came into contact with each other.
The reason of similar efficiency is simple: the cumulative amount
of kink sites is quantitatively similar for a large number of “small”
curved steps and a few “large” curved steps formed as a result of
straight step interaction (see Figures 2, 3) operating simultaneously
on the surface. This number of sources, however, largely controls
local rate variance. The global rate variance is controlled by the
amount of material flux coming from the entire surface. Therefore,
smaller number of dislocations is overcompensated by the larger
reactive features. This situation changes when one large structure,
such as etch pit, controls the entire surface. In each new run the etch
pit sets itself at one of possible probability distributions. A possible
explanation is the existence of long-range correlations between
propagation of the atomic step trains. The observed convergence
of rate distributions at substantially large dislocation density as
it is shown on Figure 5H indicates that this density is capable
of breaking these long-range correlations. As a result, the system
returns to a unimodal distribution regime.

To make sure that this result is not a random artifact,
we ran an independent test on a system with 25 dislocations
placed on a regular grid and compared it with a system with 20
randomly placed dislocations (Figure 7). The system with regularly
spaced dislocations generated reproducible rate distributions as
systems with smaller number of dislocations shown above. A
large variety of possible etch pit configurations were formed
(Figure 7A1), but the probability distributions were stable between
the runs (Figure 7A2). On contrast, the system with 20 randomly
placed dislocations formed a process-dominating pit (Figure 7B1)
with three distinct probability distributions appeared in five
independent runs (Figure 7B2). This result indicates ultimate
importance of screw dislocation positioning: clustered dislocations

have great chances to become a dominant etch pit formation center,
while the other dislocations will be not active as step sources.

3.4. Comparison to experimental data

Direct comparison between data sets shown in the present
study and experimentally measured rate distributions is difficult
because our system is simple and idealistic. In general, crystal
lattice, molecular structure of mineral-water interface, chemical
composition of reacting fluid, and other details, may influence
onto the results. Most experimental studies for rate distributions
were done for calcite (calcium carbonate) crystals, which have
anisotropy in step velocities affecting etch pit morphology and
statistics for atomic step interactions. The rate spectra collected
for single crystals in many cases have mixed sources of variance:
dislocations and grain edges. Grain edges dissolve crystal according
to a different mechanism: they generate rough steps with enhanced
reactivity. Reactivity of these steps is similar to reactivity of circular
rough steps discussed in Section 3.1. The source is different, and
their statistical behavior also can be different. The contribution
to the overall rate distributions from this source is significant
because these features are large and very reactive. Another issue
is the absence of reproducibility control for systems with identical
locations of dislocations. Despite these issues, some aspects relevant
to this study can be discussed.

The first aspect is stability of measured rate distributions over
time for single crystals where dissolution is controlled by etch
pits (Brand et al., 2017; Bibi et al., 2018; Noiriel et al., 2018;
Guren et al., 2023). On contrast, calcite with micritic or poly-grain
structures showed distributions changing in time (Bollermann and
Fischer, 2020; Guren et al., 2023). Limited time of experiments

Frontiers inWater 08 frontiersin.org

https://doi.org/10.3389/frwa.2023.1225837
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Kurganskaya and Luttge 10.3389/frwa.2023.1225837

FIGURE 7

The influence of surface organization on rate distributions, KMC simulations of Kossel crystals with screw dislocations, the system size is 200 × 200

atomic units. Regular grid of 25 dislocations, (A1) surface map, (A2) rate distributions for five independent runs. Randomly spaced 20 dislocations,

(B1) surface map, (B2) rate distributions for five independent runs.

and scale/resolution limitations do not allow us to ensure the
eternal stability of rate distributions for those systems. Important
information can be obtained by comparison of modal values for
rate distributions obtained in different laboratories using different
samples and analytical techniques at different scales for single
crystals with etch pits. Thus, the values 0.1–0.2× 10−6 mol m−2s−1

were obtained by Brand et al. (2017) and Bibi et al. (2018) for pH 7,
and values 5–8× 10−6 mol m−2s−1 by Noiriel et al. (2018), Noiriel
et al. (2020), and Guren et al. (2023) for pH 4. The values for pH
4 are expected to be higher because carbonate dissolve faster in
acidic water. The samples they used also contained macrofeatures,
e.g., macrosteps and crevices, obtained from mechanical cleaving
of single crystals. Their probability distributions for pitted surfaces
appear to be quite reproducible as well, taking into account possible
differences in microfeature reactivity.

The second aspect is occurrence of surface morphologies with
process-controlling pits formed around dislocation clusters and
with competing etch pits of similar sizes (as two contrasting
cases on the Figure 7). Both cases are common on dissolving
surfaces especially for calcite which bonding topology is the
same as for Kossel crystal. Formation of large pits around pit’s
clusters is commonly observed, e.g., in studies by Callagon
et al. (2014), Noiriel et al. (2020), and Guren et al. (2023),
as well as etch pit morphologies controlled by many pits, e.g.,
in Arvidson et al. (2003), Fischer et al. (2012), and Brand
et al. (2017). If these two contrasting cases indeed result in
different, but reproducible rate distributions in one case, and
a finite set of reproducible distributions in the other, the issue
of defect density and location becomes indeed solvable in the
statistical sense.
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4. Conclusions

The reproducibility of dissolution rates is the fundamental
problem of practical importance for applications involving reactive
transport modeling. Intrinsic rate variance issues in macroscopic
models can be addressed by using probabilistic approaches in cases
when statistical behavior of rates is well-known. Reproducibility
and robustness of rate probability distributions in this scope
becomes a fundamentally important question, where the influence
of dislocation density need to be clarified. As we established in this
study, at least for simple Kossel crystals, the numbers or density
of dislocations has little relevance to probability distributions.
Instead, their spatial locations, or geometric arrangements, have
critical influence on overall reactive system dynamics and rate
reproducibility. In this study we addressed rate variance generated
by different surface morphologies stemming from various etch
pit geometric superpositions. We discovered that in cases when
multiple etch pits controls surface reactivity, a stable probability
distribution can be expected. In cases when dislocations form
clusters, formation of one giant macro-pit is expected. In these
cases several possible stable distributions can be observed due
to the possible existence of long-range correlations in movement
of atomic step trains. This result has a remarkable implication
for understanding rate variance issues and for quantitative
predictions of dissolution rates for modeling of geochemical
processes. In particular, long-term behavior of etch pit clusters
of various geometric arrangements should be better understood,
as well as possible rate distributions they generate for time
trajectories of different length. The good news is that despite
inherent randomness, the surface dynamics follows some clear
trends predictable to some extent in the statistical sense. The
issues of local rate variability vs. global temporal variance of
material flux should be investigated in more detail. The role of
mineral crystallographic structure and bonding in determining
etch pit interactions and corresponding rate distributions should
be carefully evaluated, as well as the influence of “extrinsic”
parameters saturation state, pH, transport, leached layers on
silicates, etc., on the kinematics of atomic steps and etch
pits. Grain boundaries, crystal size, and crystal habit, including
nanoparticulate forms, constitute another important source of
rate variance relevant to practical applications. The dominant
sources of rate variance should be determined before practical
implementations of rate distributions.
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