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In this study, we develop a machine-learning (ML)-enabled strategy for selecting 
hillslope-scale ecohydrological monitoring sites within snow-dominated 
mountainous watersheds, with a particular focus on snow-soil–plant interactions. 
Data layers rely on spatial data layers from both remote sensing and hydrological 
model simulations. Specifically, a Landsat-based foresummer drought sensitivity 
index is used to define the dependency of the annual peak plant productivity 
on the Palmer drought severity index in the early growing season. Hydrological 
simulations provide the spatiotemporal dynamics of near-surface soil moisture 
and snow depth. In this framework, a regression analysis identifies the key 
hydrological variables relevant to the spatial heterogeneity of drought sensitivity. 
We then apply unsupervised clustering to these key variables, using the Gaussian 
mixture model, to group hillslopes into several zones that have divergent 
relationships regarding soil moisture, snow dynamics, and drought sensitivity. 
Using the datasets collected in the East River Watershed (Crested Butte, Colorado, 
United States), results show that drought sensitivity is significantly correlated with 
model-derived soil moisture and snow-free timing over space and time. The 
relationship is, however, non-linear, such that the correlation decreases above 
a threshold elevation and in a heavy snow year due to large snowpacks, lateral 
flow, and soil storage limitations. Clustering is then able to define the zones that 
have high or low sensitivity to drought, as well as the mid-elevation regions where 
sensitivity is associated with the topographic aspect and net potential radiation. In 
addition, the algorithm identifies the most representative hillslopes with road/trail 
access within each zone for installing monitoring sites. Our method also aims to 
significantly increase the use of ML and model-simulation results to guide critical 
zone and watershed monitoring activities.
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1 Introduction

Watershed monitoring always raises the same practical questions: 
“Where should sensors be placed?” “Which hillslope would be most 
adapted to perform a field experiment or deploy monitoring 
equipment?” or “Given a particular site, how representative is it of the 
watershed?” These are all challenging questions for critical zone and 
watershed sciences (Strachan et  al., 2016). Watersheds consist of 
diverse biotic/abiotic above-/below-ground compartments interacting 
with each other through hydrological, ecological, geomorphological, 
and geochemical processes (Sivapalan, 2006; Wagener et al., 2007).

To answer this type of questions, there have been several studies 
on sensor placement optimization for soil moisture and snow 
distribution in watershed science (Kerkez et al., 2012; Oroza et al., 
2016) and stream flow depths (Zhang et al., 2019). However, they have 
focused on estimating the spatial distributions of a single or two target 
variables. A recent pressing issue has been to observe and quantify 
interacting ecosystem or watershed responses to the disturbances 
resulting from climate change, such as coupled soil–plant responses 
to droughts or wildfires (e.g., Sloat et al., 2015; Mirus et al., 2017; 
Siirila-Woodburn et al., 2021; Newcomer et al., 2023), or to investigate 
those disturbances’ key modulators, such as subsurface conditions, 
which are often difficult to characterize over space and time.

There have been significant advances in quantifying the above/
below-ground watershed compartments over space based on a suite 
of remote sensing datasets, including plant species distributions and 
traits (e.g., Madritch et al., 2014; Falco et al., 2019; Chadwick et al., 
2020; Falco et al., 2020), soil thickness and soil properties (e.g., Patton 
et al., 2018; Yan et al., 2020), and bedrock variability (e.g., Parsekian 
et  al., 2015; Uhlemann et  al., 2022). The co-variability of these 
compartments has been documented based on analyzing multiple 
remote sensing and spatial data layers (e.g., Wainwright et al., 2015; 
Pelletier et  al., 2018; Devadoss et  al., 2020; Hermes et  al., 2020; 
Enguehard et al., 2022; Wainwright et al., 2022a). In addition, dynamic 
properties (such as snow distribution and plant productivity) can 
be estimated across the watershed scale using airborne and satellite 
remote sensing (Painter et al., 2016; Dong et al., 2019).

In parallel, integrated ecohydrological and reactive transport 
models have been successfully implemented to describe and predict 
watershed behaviors from hillslope to continental scales (e.g., Bierkens 
et  al., 2015; Carroll et  al., 2019; Xu et  al., 2022). Coupled three-
dimensional surface water and groundwater flow models have been 
augmented by land models representing plant water uptake and 
evapotranspiration (e.g., Condon and Maxwell, 2015; Maina et al., 
2021). These models can physically predict the water budget and 
export at the watershed scale. In addition, reactive transport models 
have been developed at the watershed scale to quantify geochemical 
processes such as weathering, nutrient cycling, and solute export (e.g., 
Li et al., 2017; Li, 2019; Maavara et al., 2021; Xu et al., 2022). These 
models can predict distributed properties such as soil moisture, water 
table depth, weathering rate, and other properties over space and time.

Despite the availability of spatial data layers, there have been few 
studies developing a systematic framework to optimize observation 
locations (including sensor/well locations) or to choose particular 
hillslopes/catchments to maximize the efficacy of critical zone 
experiments. In particular, there is a need to take advantage of 
landscape heterogeneity to identify key controls, capture distinct 
ecohydro-biogeochemical regimes, and/or test particular hypotheses 

with sites are properly distributed (e.g., Sloat et al., 2015; Sanders-
DeMott et al., 2018). At the same time, a number of restrictions have 
to be considered, such as protected areas (e.g., private property and 
wilderness designated), road accessibility, disturbances to recreation, 
and others.

This study aims to develop an effective strategy for guiding the 
selection of observation/experiment locations by combining remote-
sensing data layers and model simulation results. In particular, 
we  explore how best to locate multiple observation sites across a 
watershed to investigate underlying mechanisms that dictate the 
sensitivity or vulnerability of ecosystems to climate disturbances such 
as droughts. The ecosystem and plant responses can be  directly 
observed by satellite images such as the year-to-year variability of the 
Normalized Difference Vegetation Index (NDVI; e.g., Knowles et al., 
2017, 2018; Dong et al., 2019; Wainwright et al., 2020). The underlying 
processes, such as soil moisture and groundwater table dynamics, 
cannot be observed over space, but we may be able to take advantage 
of model simulations.

We employ a two-step process: (1) regression analysis of satellite-
derived ecosystem sensitivity as a function of model-derived 
hydrological state variables (soil moisture, water table elevation, snow 
depths, snowmelt timing, and melt rate) to identify key variables for 
the sensitivity and (2) cluster analysis based on these variables to 
identify regions that have divergent responses. This work leverages 
zonation studies by Wainwright et al. (2022a) and Maina et al. (2021). 
We consider the hillslope as a unit since the critical zone or watershed 
science studies are often based on the hillslope-scale observations/
experiments, which capture the hydrological connectivity from the 
ridge to the valley.

Here, we study the East River and adjoining three watersheds near 
Crested Butte, Colorado, United States (Hubbard et al., 2018) as a 
demonstration site for the approach combining remote sensing and 
hydrological model data products to identify distinct hillslope zones 
that exhibit divergent eco-hydrological characteristics. With regard to 
the ecosystem response, we  consider the heterogeneity of the 
foresummer drought sensitivity based on the Landsat NDVI 
developed by Wainwright et  al. (2020). This drought sensitivity 
represents the plant productivity responses to early snowmelt and 
subsequent drought conditions in the early growing season. In 
addition, we  use the hydrological state variables, including soil 
moisture and snow depth, computed by a hydrological model (Carroll 
et al., 2022b). The snow-soil–plant interactions have been studied by 
ground-based monitoring (e.g., Sloat et al., 2015; Sanders-DeMott 
et al., 2018) and a combination of ground-based and remote-sensing 
data (e.g., Devadoss et  al., 2020; Hermes et  al., 2020). We  aim to 
improve our understanding of these interactions—particularly their 
spatiotemporal variability.

2 Site and datasets

2.1 Study domain

The domain includes four catchments, including the East River, 
Washington Gulch, Slate River, and Coal Creek. The elevation ranges 
from 2,800 to 4,000 m (Figure 1A). Within the four watersheds, the 
three life zones are defined based on the elevation as the montane 
(2,400–3,000 m; 33%), subalpine (3,000–3,500 m; 52%), and alpine 
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zones (>3,500 m; 15%). In the USGS National Land Cover Database 
(NLCD 2011) map (Figure 1B), the key land-cover types are rocky 
outcrop (12%), evergreen forest (29%), deciduous forest (18%), 
grassland (30%), and woody wetland (6%). Geology within the 
domain is complex, including Paleozoic and Mesozoic sedimentary 
rocks (Mancos Shale, Dakota Sandstone) and tertiary igneous 
laccoliths (Uhlemann et al., 2022). Within the domain, igneous rocks 
can be mostly seen in the higher elevation zones, while the lower 
elevation zone is dominated by shale.

Historically, snow precipitation starts in October to November, 
and the first bare-ground date ranges from May to June. Carroll et al. 
(2019) analyzed the peak snow distribution in April 2016, based on 
the NASA Airborne Snow Observatory and found that the snow depth 
is heterogeneous, ranging from 0 to 2.36 m depending on the 
elevation, topographic aspect, and plant-cover type. At the Butte Snow 
Telemetry (SNOTEL) station (Figure 1), the historical averages of 
peak snow-water-equivalent and first bare-ground dates are 400.5 mm 
and 21 May, respectively.

2.2 Spatial data layers

We used the same airborne LiDAR data as Wainwright et al. 
(2022a) (collected in July 2018) for the Digital Elevation Map 
(DEM). We primarily used the DEM-derived metrics (i.e., elevation 
and aspect), since the other spatial data layers are correlated with 
DEM. For example, Wainwright et al. (2022a) and Uhlemann et al. 
(2022) found that geology is correlated with elevation, such that the 
high-elevation bedrock is either granitic or less fractured compared 
to lower elevations. In addition, the plant types are correlated with 
elevation and aspects, which are orthogonal to each other. 
Furthermore, the foresummer drought sensitivity map was created 
based on the Landsat NDVI images between 1992 and 2010 
(Wainwright et al., 2020). We first extracted the annual peak NDVI 
each year and then defined the foresummer drought sensitivity as 
the slope of peak NDVI as a linear function of the June Palmer 

Drought Severity Index (PDSI). The slope represented the change 
in peak NDVI given the change in June PDSI. In other words, the 
foresummer drought sensitivity represents the changes in peak 
NDVI as a function of climate variability. The resolution of the data 
layers is 30 m.

In parallel, we used the time series of near-surface soil moisture 
and snow depths obtained as the data layer output of the USGS 
GSFLOW hydrological model simulation. A detailed description of 
these data layers, including the model calibration procedure, is 
available in Carroll et al. (2019, 2022a,b). GSFLOW solves coupled 
equations from the USGS Precipitation-Runoff Modeling System and 
the Newton formulation of the USGS 3D Modular Groundwater Flow 
model. The model is solved by the finite difference method with a grid 
resolution of 100 m. Landfire (2015) was used to derive the parameters 
of dominant cover type, summer and winter cover density, canopy 
interception characteristics for snow and rain, and transmission 
coefficients for shortwave solar radiation. From the time series, 
we computed the average soil moisture during the growing season 
(April to July), maximum snow depth, and maximum-snow and 
snow-free timing (the day of the water year) at each pixel. The grid 
resolution is 100 m. Although there were other variables available 
from the GSFLOW simulation (such as rate of soil moisture decline 
and water table depths), they were not used since we did not find any 
correlations with the foresummer drought sensitivity in the 
initial analysis.

3 Methodology

The proposed framework employs a two-step approach: (1) the 
regression analysis of the ecosystem sensitivity as a function of model-
derived hydrological state variables, and (2) the clustering analysis to 
group the hillslopes with particular ecosystem functions. The spatial 
data layers are first spatially aggregated into hillslope-scale metrics. In 
Step 1, we also aim to improve our understanding of snow-soil–plant 
interactions over space and time.

FIGURE 1

Study domain and four watersheds with (A) elevation and (B) land cover map (USGS NLCD 2011). The red box is the SNOTEL site, the dashed black 
lines represent trails, and the white lines represent streams and rivers.
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3.1 Step 1: regression analysis

3.1.1 Hillslope delineation and features
We used the same hillslope boundaries used in Wainwright et al. 

(2022a). The hillslopes were delineated based on the DEM using 
Topotoolbox (Schwanghart and Kuln, 2010; Schwanghart and Dirk, 
2014). An algorithm was developed to compute the flow accumulation 
area for each pixel and define stream segments given the fixed 
threshold flow accumulation. The algorithm then identifies one 
headwater hillslope at the end of first-order stream segments and two 
lateral hillslopes at both sides of stream-segment pixels. Once the 
hillslopes were defined, we computed the average of all the spatial 
layers within each hillslope. These hillslope features are defined for 
each hillslope to capture the characteristics or spatial patterns of snow, 
soil, and plant signatures of each hillslope.

3.1.2 Random forest regression
We used the random forest (RF) method to connect hydrological 

features with drought sensitivity, following Wainwright et al. (2020). 
RF is an ML method developed by Breiman (2001) to estimate 
responses based on mixed numerical and categorical predictors and 
to identify important predictors for target variables (Hastie et  al., 
2009). RF is an extension of decision-tree methods, originally 
generating many regression trees from bootstrapped subsampled data 
and then averaging over all the trees. Although Wainwright et al. 
(2020) used the regression of drought sensitivity as a function of 
statistical watershed variables such as topography, landcover, and 
geology, this study investigates the relationship between drought 
sensitivity and hydrological variables computed by the 
hydrological model.

RF also provides an important ranking of explanatory variables by 
internally subsetting a dataset into training and testing sets and 
computing the increase in the mean squared errors (MSE) of 
prediction after permuting each predictor (i.e., randomly assigning 
the predictor values from the data values). We used the statistical 
software R’s randomForest package.1 The number of trees was equal to 
800, which was enough to achieve convergence. Other parameters 
were the default values; the number of candidate variables at each split 
was the number of variables divided by three, and the minimum size 
of terminal nodes was five. Predictive performance is evaluated by 
randomly selecting 10% of the hillslopes as the training set at each 
iteration and averaging the coefficients of determination over 
multiple iterations.

3.2 Step 2: clustering analysis and hillslope 
selection

3.2.1 Gaussian mixture model
To define zonation and select a representative hillslope in each 

zone, we extended the approach by Oroza et al. (2016), who applied 
the Gaussian Mixture Model (GMM). GMM is a clustering approach 
that defines the clusters or zones in the multivariable space in order to 
capture the co-variability among hillslope features. Clustering 

1 cran.r-project.org/web/packages/rpart/index.html

collapses multidimensional co-varied properties into one-dimensional 
classes, which can be interpreted as locations (i.e., the pixel or hillslope 
index). A GMM assumes that a feature space (e.g., the combined 
features) is a product of a finite number of latent (unobserved) 
components (i.e., measurements). Each cluster represents the distinct 
co-varied features in the feature space using a multivariate normal 
distribution: N(x|μi, Σi), where μi and Σi are the mean and covariance 
of the i-th cluster, respectively. This is the parametric expression for 
each component of the mixture. Once the clusters are defined, 
we  select a hillslope at or close to the cluster center as a 
representative hillslope.

We use the Mclust package in R, which incorporates the 
expectation maximization (EM) algorithm for the GMM (McLachlan 
and Peel, 2004; Pedregosa et al., 2011). EM is an iterative process in 
which the algorithm identifies the most likely parameter estimates for 
a mixture of multivariate normal distributions to represent the data. 
Within this algorithm, we  use a spherical covariance function to 
update the model weights, covariance, and means with each iteration. 
Once the maximization step no longer increases the log-likelihood, 
the process terminates, and the optimized monitoring locations have 
been found. Within Mclust, the number of clusters is determined to 
maximize the Bayesian Information Criterion (BIC). We then perform 
a nearest neighbor search through the full feature space to find the 
representative hillslope that most closely matches the features of each 
mean estimate.

3.2.2 Site accessibility
We computed the accessibility of each hillslope based on a road/

trail map. The accessibility of each hillslope is given a binary category 
(1 where a trail exists to access the top or bottom of each hillslope, or 
0 where there is no trail).

3.2.3 Representative analysis of hillslopes
We performed a principal component analysis (PCA) of the key 

data layers and evaluated how the hillslope zones can capture the 
overall variability of the co-varied parameter space. PCA is an 
unsupervised learning method to quantify and visualize the variability 
and correlations among multidimensional variables. The goal of the 
PCA is to transform the initial variables into a new set of variables that 
explain the variation in the data. These new variables, which are called 
principal components, represent a linear combination of the original 
variables. PCA is used to reduce the dimensionality of multivariate 
data to 2 or 3 principal components that can be used to visualize the 
dataset graphically with minimal loss of information.

4 Results

4.1 Step 1: regression analysis results

The domain includes 125 hillslopes (Figure 2), 84 of which are 
accessible through roads and trails. The hillslope-average elevation 
ranges from 2,727 to 3,829 m (Figure 2A). Average soil moisture is 
higher in the higher elevations as well as in the north-facing hillslopes 
(Figure  2C). The snow depth increases with elevation and is 
particularly high in the northwestern region. Drought sensitivity 
(Figure  2E) is higher in the lower elevations and south-facing 
hillslopes in the East River watershed.
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The correlation among the hillslope features was discussed in 
Wainwright et  al. (2020) and Maina et  al. (2021), although here 
we added additional features such as soil moisture and snow-free 
timing (Figures 3, 4). In addition to the average year 2006, we added 
the difference between 1995 (extreme wet water year) and 2012 
(extreme dry water year) to represent the year-to-year variability. The 
average growing-season soil moisture is correlated with the elevation 
and snow-free timing except for 1995. The correlations are consistent 
with the observations from the maps (Figure  2), such that soil 
moisture increases with elevation and snow-free timing. The 
correlation coefficient is higher in the dry year (2012), while the lowest 
is in the wet year (1995). The dependency is non-linear, such that soil 
moisture does not increase above the threshold elevation (3,000–
3,200 m) and snow-free timing (200–220 days). Soil moisture in 2006 
was non-linearly correlated with elevation, with soil moisture 
increasing up to 3,300 m but no further. The drought sensitivity 
(Figure  4) is most closely correlated with the difference in soil 
moisture between the wet year (1995) and dry year (2012). The 
correlation is positive across the space, meaning that the larger soil-
moisture variability hillslopes have higher sensitivity. Although other 
metrics are correlated with drought sensitivity, the correlations 
are lower.

The RF regression for the foresummer drought sensitivity shows 
predictive performance with a coefficient of determination (R-square) 

of 0.65 (value of p of 0.01). The importance ranking (see Table 1) is 
measured by the percentage of the mean-squared error difference 
when each feature is dropped. Radiation, elevation, and soil moisture 
differences are among the strongest predictors of foresummer drought 
sensitivity. Then, snow-free timing in the average year (2006) and its 
difference between the extreme years follow in the ranking. The snow 
depth-related features are relatively weak predictors.

4.2 Step 2: clustering analysis results

The GMM clustering identified the optimal number of clusters as 
five. The relationship among the predictors is shown in the PCA 
bi-plot (Figure 5A). The first two components explain 80% of the 
variability. The first PC has high loadings from the soil moisture 
difference between 2012 and 1995, as well as elevation. The second 
component has the net potential radiation and maximum snow 
timing. Drought sensitivity is between the first and second 
components, representing the positive correlations, particularly with 
the soil moisture difference and radiation.

The identified zones capture the co-varied heterogeneity along 
these two PCs and these features. Zone 5 represents the region 
with the lowest elevation and the largest soil moisture variability 
(ΔVWC). Zone 4 is around the center of the PC1-PC2 space, and 

FIGURE 2

Spatial distributions of hillslope features: (A) elevation, (B) annual net potential radiation, (C) growing-season-average soil moisture in 2006, (D) max 
snow depth in 2006, (E) snow-free timing in 2006, and (F) drought sensitivity. The black lines are the hillslope boundaries.
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the middle region of these features. Zones 1–3 are in the higher 
elevation region with lower soil moisture variability; however, 
they are differentiated by the radiation and maximum snow-
timing, which are both related to the sensitivity. Zone 1 represents 
north-facing hillslopes with late maximum snow timing. The 
hillslopes with road/trail access cover the range of these features, 

although the high-elevation hillslopes are not accessible. The stars 
indicate the representative and accessible hillslopes in the 
five zones.

In Figure  5B, the zones are distributed according to the 
features relevant to drought sensitivity. Zone 1 represents the least 
sensitive region with high elevation, late maximum snow timing, 

FIGURE 3

Correlation between the average growing-season soil moisture (volumetric water content, VWC) with elevation (the upper row) and snow-free timing 
(the lower row) in three distinct years. The correlation coefficient (R) is added above each plot, while * represents that the correlation is statistically 
significant, with a value of p of 0.01.

FIGURE 4

Foresummer drought sensitivity as a function of (A) elevation and the difference between wet (1995) and dry (2012) years in (B) soil moisture (ΔVWC) 
and (C) snow-free timing (Δtsnowfree). The correlation coefficient (R) is added above each plot, while * represents that the correlation is statistically 
significant with a value of p of 0.01.
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and north-facing hillslopes. Zone 2 and 3 are hillslopes with low 
sensitivity, although Zone 2 is generally north-facing and has 
higher net potential radiation than Zone 3. Zone 4 is in the 
intermediate zone, while Zone 5 is the highest sensitivity zone. The 
area coverage of each zone in the domain is 17.0% for Zone 1, 8.0% 
for Zone 2, 11.9% for Zone 3, 54.5% for Zone 4, and 8.6% for Zone 
5. Although Zone 4 has the largest spatial coverage, its features are 
concentrated in Figure 5A, suggesting that the hillslopes in Zone 
4 are similar to each other with respect to these features. Within 
each zone, the most representative hillslope with site access is 
selected. The selected hillslopes for Zones 1–3 are all in the 
northeastern region, which is due to the fact that Zones 1–3 
represent higher elevation regions and trail access is limited in the 
northwestern regions.

5 Discussion

In this study, we  extended the approach by Wainwright et  al. 
(2022a) and Maina et al. (2021) to include both key observed data 
from remote sensing on plant productivity (i.e., foresummer drought 
sensitivity) and model-computed hydrological variables (soil moisture 
and snow depth). We used the same clustering approach to compress 
multidimensional data and identify zones that capture co-varied 
properties. This approach enables us to explore the effect of water 
limitation on plant productivity as well as snow-soil–plant interactions 
over space and time. In addition, we added an extra step to identify 
the most representative and accessible hillslopes for future sampling 
to enable a model-experimental (ModEx) design [Department of 
Energy (DOE), 2023].

The results show that soil moisture variability is the best predictor 
of foresummer drought sensitivity. This is consistent with the current 
understanding of the water limitation on plant productivity in this 
region (Sloat et al., 2015). At the same time, this fact also adds more 
confidence to the model results. Although soil moisture and snow 
thickness are known to be  highly heterogeneously impacted by 
microtopography (Falco et al., 2019; Devadoss et al., 2020), the model 
results capture the general trend and variability of soil moisture across 
the watershed. However, the floodplain area in the Slate watershed 
shows a surprising discrepancy, in the sense that while the soil 
moisture and elevation are both low, the sensitivity is not quite as high 
as in other regions with similar soil moisture values. Since its upstream 
hillslopes tend to have significant snow accumulation at high 
elevations, it would be possible that this low-elevation region benefited 
more from stream and/or subsurface water from the upper watersheds. 
This discrepancy suggests the need for further investigation into this 
region and potentially some model refinements.

The predictive performance of foresummer drought sensitivity is 
higher with hydrological variables (e.g., ΔVWC) compared to the 
static explanatory variables (such as elevation, geology, and other 

TABLE 1 Parameter importance ranking from the random forest analysis; 
the features influencing the spatial heterogeneity of foresummer drought 
sensitivity.

%MSE

Radiation 19.2

Diff. VWC 19.0

Elevation 16.8

Snow-free timing in 2006 13.9

Diff. snow-free timing 13.6

Diff. max-snow timing 12.4

Av. VWC in 2006 11.2

Max-snow timing in 2006 9.8

Max snow depth in 2006 8.4

Diff. max snow depth 7.4

The importance measure is the percent increase in the mean-squared error when each 
feature is removed.

FIGURE 5

(A) PCA biplot with the first and second components (PC1 and PC2), and (B) the zonation map with five zones. In panel (A), the arrows represent the 
loading of each feature, while the circles represent the score of each data point. The circles represent all the hillslopes, while the filled circles are the 
ones with trail/road access. In (B), the five different colors represent different zones. In panels (A,B), the stars represent the most representative 
hillslopes in each zone with road/trail access.
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parameters used in Wainwright et al., 2020). This is potentially a result 
of the non-linearity among soil moisture, snowmelt timing, and 
elevation. The model-derived soil moisture physically aggregates 
multiple parameters and effects, such as elevation, aspects, and 
hydrological gradient, into a single variable that is more effective in 
describing the water limitation on plant productivity. Although the 
obtained zonation map is quite similar to the one based only on the 
remote sensing data in Wainwright et al. (2022a,b), there are some 
differences. This zonation map based on both remote sensing and 
modeling results has more zones at higher elevations (Zones 1–3). 
This is attributed to the non-linearity, such that the snow-free timing 
is more heterogeneous than other variables influenced by radiation at 
similar elevations. This also suggests that, while currently the elevation 
and elevation-based life zones (such as montane, subalpine, and 
alpine) are often used to represent the distinct ecosystem zones, 
model-based metrics can be used to further refine these distinct zones.

Additionally, the combination of satellite observation data and 
modeling results may provide alternative hypotheses for snow-soil–
plant interactions. The snow-soil–plant interactions under climate 
change have been extensively studied in the recent decade (e.g., 
Schmidt and Lipson, 2004; Brooks et al., 2011; Sanders-DeMott et al., 
2018). Different mechanisms and processes are considered, such as 
increased soil warming (Melillo et  al., 2011), microbial or 
biogeochemical impacts (Schmidt and Lipson, 2004; Brooks et al., 
2011), and the decrease in snowpack reducing insulation and 
increasing freezing-induced root damage (Sanders-DeMott et  al., 
2018). In our study domain, as mentioned above, plant productivity 
is considered to be  limited by water availability, such that early 
snowmelt leads to early soil drying and creates drought conditions 
before the summer monsoon (Sloat et al., 2015; Dafflon et al., 2023). 
Although this study confirms this hypothesis, it also suggests a 
non-linear interaction across space and time and the presence of 
threshold values.

In our results, soil moisture is correlated with snow-free timing, 
but the relationship is non-linear. In the high-elevation north-facing 
region, as well as in the big snow year, the soil moisture does not 
depend on snow-free timing because soil moisture becomes saturated 
due to the deep snowpack, limited soil storage, and the lateral transfer 
of water from high alpine regions to upper subalpine zones (Carroll 
et al., 2019). In dry years and low-elevation regions, the correlation is 
more significant, suggesting these conditions and/or locations are soil 
moisture-limited. Based on these results, we may hypothesize that 
these regions, which are currently resilient to year-to-year climate 
variability, may become more sensitive to the variability in the future 
as the temperature increases and snow depth decreases at higher 
elevations. Since such non-linearity is difficult to detect through 
sparse measurements, spatially continuous modeling results are likely 
the most effective way to identify non-linearity and threshold processes.

We would note that, in this study, we  did not consider the 
antecedent conditions from the previous year. We assumed that it 
could be limited in this system because, due to snow and thin soils in 
the montane-alpine region, the soil becomes fully saturated after 
snowmelt every year. Such a soil storage limitation has been reported 
in other regions (Hahm et al., 2019), and its impact on plant dynamics 
would be interesting to investigate in subsequent studies.

Our approach also identifies the different zones—i.e., the hillslope 
groups—that potentially have divergent snow-soil–plant interactions. 
In addition to the low- and high-sensitivity regions, clustering 

identified the intermediate- to higher-elevation regions where the 
topographic aspects are considered to play key controls. As global 
warming continues, snow-free timing is expected to decrease, but may 
or may not do so below the threshold in these regions since the 
topography is not likely to change in the same time frame as climate. 
In this future scenario, the steep hillslopes and the large variability of 
aspects and potential radiations would increase the spatial 
heterogeneity of drought sensitivities.

This type of monitoring design methodology is expected to 
be  increasingly important as sensor and telecommunication 
technologies improve and a wide variety of fixed/permanent sensors 
are available (e.g., Hubbard et al., 2018). The U.S. Geological Survey’s 
Next Generation Water Observing System, for example, plans to have 
distributed sensors and observational sites for soil moisture, snow-
water-equivalent, and others (US Geological Survey, 2023). In 
addition, sporadic ground-based surveys such as snow course 
measurements are still important to cover a larger space between fixed 
sensors and to create site-specific relationships with remote sensing 
data (Dressler et al., 2006). In particular, our approach is promising to 
guide the optimal deployment of wireless sensor networks (e.g., Oroza 
et  al., 2016; Wielandt et  al., 2023), in which the value of sensing 
various properties of interest might need to be balanced by the site 
accessibility, sensor resolution and accuracy, power requirement, 
wireless connectivity, total data cost, and complementarity to remote 
sensing products and other datasets.

Finally, this study shows the power of combining remote 
sensing data and modeling results to locate key observation 
locations and generate hypotheses that can be  applied to other 
processes. Although plant productivity and trait data are 
increasingly available over time and space, subsurface properties are 
largely considered to be a “black box” (Sevanto et al., 2020). The 
modeling results are particularly powerful in this regard, providing 
subsurface state variables such as soil moisture. In addition, our 
method can determine the most representative hillslope in each 
zone that has road/trail access, which facilitates the selection of 
experiment/monitoring sites. The consideration of road/trail access 
could be easily extended to incorporate additional objectives in the 
site selection process. Now that ML approaches are widely available 
and more people are trained to use ML for extracting critical 
patterns in spatial data layers, model-guided monitoring design and 
hypothesis generation can be more readily employed in critical zone 
and watershed sciences.
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