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In this work we investigate the performance of various lower-fidelity models of

seawater intrusion in coastal aquifer management problems. The variable density

model is considered as the high-fidelity model and a pumping optimization

framework is applied on a hypothetical coastal aquifer system in order to calculate

the optimal pumping rates which are used as a benchmark for the lower-fidelity

approaches. The examined lower-fidelity models could be classified in two

categories: (1) physics-basedmodels, which include several widely used variations

of the sharp-interface approximation and (2) machine learning assisted models,

which aim to improve the e�ciency of the SI approach. The Random Forest

method was utilized to create a spatially adaptive correction factor for the original

sharp-interface model, which improves its accuracy without compromising its

e�ciency as a lower-fidelity model. Both the original sharp-interface andMachine

Learning assisted model are then tested in a single-fidelity optimization method.

The optimal pumping rated which were calculated using the Machine Learning

based SI model su�ciently approximate the solution from the variable density

model. The Machine Learning assisted approximation seems to be a promising

surrogate for the high-fidelity, variable density model and could be utilized in

multi-fidelity groundwater management frameworks.

KEYWORDS

variable density, sharp interface,machine learning, coastal aquifer, pumpingoptimization,

random forests

1. Introduction

Seawater intrusion (SWI) models based on density-dependent approach constitute an

accurate and realistic emulation of the saltwater/freshwater interaction and movement

in coastal aquifers, since they incorporate several components of the physical processes,

such as the dispersion mechanism (Simmons, 2005; Younes et al., 2009, 2022; Dokou

and Karatzas, 2012; Werner et al., 2013; Karatzas and Dokou, 2015; Kourgialas et al.,

2015; Fahs et al., 2022). However, variable density (VD) models are computationally
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demanding and entail considerably long runtimes, as the

mathematical description of the model consists of a coupled partial

differential equation system, which require the implementation

of complex and time-consuming numerical methods (e.g., finite

differences or finite element methods). The long simulation

runtimes, usually lead to an unmanageable overall computational

burden for several real-life applications that require a considerable

number of iterations, such as simulation-optimization problems

and inversemodeling in coastal aquifers, sensitivity and uncertainty

analysis or the development of decision support systems in

coastal water resources systems (Asher et al., 2015). A common

approach to mitigate the excessive computational cost is the

use of approximation models, which aim to simulate the same

physical process considering only few components of the real

physical system (Simpson et al., 2001; Forrester et al., 2008;

Razavi et al., 2012). These low-complexity models—which are often

called surrogate models, metamodels, lower-fidelity (LF) models,

response surfaces etc.—are much quicker compared to the high-

fidelity (HF) models, but they have lower fidelity, i.e., the degree of

the realism of a simulation model (Razavi et al., 2012).

Approximation models are gradually gaining ground in many

aspects of water resources, such as groundwater modeling. A

thorough survey of the surrogate models in water resources is

presented in the work of Razavi et al. (2012) and Asher et al.

(2015). According to Razavi et al. (2012) there are two main

categories of the surrogate models: (i) the statistical or empirical

data-driven models, which emulate the HF model responses, and

(ii) the physically-based surrogates, which are usually a simplified

version of the original HF model.

On the broad category of the data-driven surrogate

models, Machine Learning (ML) algorithms demonstrated

good performance in reproducing the outcomes of HF models.

One of the first to use an ML assisted metamodeling strategy for

SWI was Bhattacharjya et al. (2007), who employed an Artificial

Neural Network (ANN) to predict the concentration at specified

observation locations at different times in a coastal aquifer.

Trichakis et al. (2011) also used ANNs to model the groundwater

levels in a karstified groundwater system. Roy and Datta (2017a)

utilized the fuzzy C-means clustering algorithm to predict the

extent of SWI, while Lal and Datta (2018) employed Support

Vector Machines (SVM) as a ML regressor to predict the salinity

concentration at specified monitoring wells and compared the

results with a genetic programming (GP) based surrogate model.

Kopsiaftis et al. (2019b) investigated several ML algorithms, such

as Gaussian Process Regression (GPR), SVMs, RFs, and ANNs,

regarding their ability to estimate the location of a critical isohaline.

In a number of studies, the data-driven surrogate models

were exploited in groundwater management strategies. For

example, Kourakos and Mantoglou (2009) coupled a simulation-

optimization framework with an ANN model to reduce the

computational burden arising from the VD simulations. In

the same context, Kourakos and Mantoglou (2013) integrated

modular neural networks into a multi-objective management

scheme, whereas Ataie-Ashtiani et al. (2014) developed an

efficient, ANN-based multi-objective system for groundwater

management in freshwater lenses of small islands. Christelis and

Mantoglou (2016b) used cubic radial basis functions (RBFs) in

an adaptive-recursive metamodeling framework which provided

optimal pumping rates which approximated the global optimum.

Christelis et al. (2018) emphasized on the joint use of HF and LF

models to improve the efficiency of a surrogate-based optimization

framework under limited computational budgets and for problems

of different dimensionality.

In some recent studies, researchers investigate the efficiency

of the weighted combination of several surrogate models in the

form of ensemble models. Sreekanth and Datta (2011) proposed an

ensemble model based on the genetic programming algorithm. Roy

and Datta (2017b,c) examined ensemble versions of multivariate

adaptive regression spline and adaptive neuro-fuzzy inference

systems respectively, in coastal aquifer pumping optimization

problems to control the encroachment of SWI. Kopsiaftis et al.

(2019a) utilized three well established physically-based surrogate

models in groundwater management problems following a tow-

step approach—first they solved a pumping optimization problem

with each model separately, and then with all the possible

combinations. The results indicated that inmost cases the ensemble

model predictions outperformed the individual surrogate models.

Christelis and Mantoglou (2016a, 2019) introduced a variable-

fidelity approach in pumping optimization of coastal aquifers

to leverage the LF model features and specifically the reduced

simulation runtimes.

In this paper we propose a method that combines a physical-

based surrogate model and a data driven model, which—to the

best of our knowledge—has not been used in coastal aquifer

management problems. The core idea of the method lies on the

correction of existing approaches, which, as mentioned before,

are widely-used and of significant usefulness in seawater intrusion

problems. In the following section of the paper, we initially

investigate well-established, physical-based surrogate models of

SWI, regarding their efficiency in coastal aquifer management

problems. The preliminary results indicate that the use of single-

fidelity models may have several limitations in capturing the extent

of SWI for a wide range of coastal aquifer parameter values

(e.g., pumping rates and recharge). To address this problem, the

combined use of models of various fidelities is investigated in

this paper, which could enhance their adaptability in different

aquifer geometries and flow conditions. To this end, a data-driven

model—specifically the Random Forest (RF) method—is utilized to

increase the fidelity of a widely used physically-based SWI model.

It is worth mentioning that the RF algorithms, as implemented in

this study, is univariate and that Bayesian optimization is employed

in the surrogate model, to improve its efficiency. The proposed

correction method is applied on a hypothetical unconfined coastal

aquifer and the calculated SWI extent is compared to the results

of three additional physically-based surrogate models, that is the

original model before the correction and its twomainmodifications

under moderate and intensive pumping.The examined aquifer is a

typical coastal aquifer in arid and semi-arid Mediterranean islands,

which spans an approximate area of 20 km2. The ML assisted LF

model outperformed the examined surrogate models in capturing

the VD SWI extent. To test its usefulness in applications of practical

interest, the proposed LF model is subsequently incorporated

in a pumping optimization framework demonstrating a good

performance, comparable to VD model.
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The remainder of this work is structured as follows: Section 2

analyzes the mathematical formulation of all the examined SWI

models, including the HF model, the previous well-established

LF approximations, and finally the proposed RF assisted model,

whereas Section 3 presents the optimization framework for a

coastal aquifer management problem. Section 4 provides the

experimental results, including the comparison of the proposed

method with previous approached, and the implementation of the

pumping optimization framework. Finally, Section 5 concludes the

paper.

2. Seawater intrusion models and
application aquifer

Several mathematical models of different complexity have

been proposed to describe SWI in coastal aquifers. As already

mentioned in Section 1, in the present study we employ models

of two fidelity options to simulate SWI: (i) a 3D VD model

representing the HF case, and (ii) a 2D SI model as the LF case.

The LF model does not consider the dispersion mechanism—is the

driving force of seawater/freshwater mixing—leading to a model of

reduced complexity. In the following sections we briefly present the

mathematical formulation of all the SWI models.

2.1. Variable density model

VD models are based on the spatial variability of groundwater

density, which ranges from saline water density to freshwater

density. The density changes because of the mixing of freshwater

and seawater, which results in the existence of a transition zone

across the entire coastline. The width and exact position of the zone

depends on the aquifer parameters and the pumping regime. In

the current paper, thermal and viscosity effects are neglected and

the density changes are attributed only to concentration effect. The

mathematical formulation of the VD model has been thoroughly

analyzed in several works (e.g., Frind, 1982; Kolditz et al., 1998;

Younes et al., 2009; Pool and Carrera, 2011; Kourgialas et al., 2015;

Fahs et al., 2022). In this study thesis the notation proposed by (Guo

and Langevin, 2002; Langevin et al., 2008) is followed in order to be

consistent with the SEAWAT numerical code, which is utilized for

the VD simulations.

In general, the flow and solute-transport equations are used to

describe mathematically the VD model. The two equations form a

coupled differential equation system, which could be expressed as

follows

−▽ · (ρq)+ ρsqs = ρSf
∂hf

∂t
+ n

∂ρ

∂C

∂C

∂t
(1)

−▽ · (D · ▽C)−▽ · (vC)−
qs

n
Cs =

∂C

∂t
(2)

where ρ is fluid density, q is the Darcy velocity vector, ρs is the

density of water entering from a source of leaving through a sink,

qs is the volumetric flow rate per unit volume of porous medium

representing sources and sinks, Sf is the specific storage, hf is the

freshwater head, n is the porosity, C is the solute concentration, D

is the hydrodynamic dispersion tensor, v is the fluid velocity vector,

and Cs is the solute concentration of water entering or leaving

through sources and sinks respectively. Since solute reaction is

not considered, fluid density is only a function of the solute

concentration C, according to the following equation

ρ = ρo

(

1+
ǫ

Cs − Co
(C − Co)

)

(3)

in which ρo is the freshwater density, ǫ is the density difference ratio

(Equation 3), Co is reference concentration, and Cs is the maximum

concentration. In this paper, the following values are used for the

parameters of Equation (3): ρo = 1.000 kg/m3, Co = 0 kg/m3, and

Cs = 35 kg/m3.

The density difference ratio is expressed as

ǫ =
ρs − ρf

ρf
(4)

where ρs stands for the maximum seawater density. In this study,

we consider ρs = 1025 kg/m3.

The Darcy flux term q of Equation (1) for constant viscosity and

freshwater properties could be expressed as

qx = −Kfx

(

∂hf

∂x

)

qy = −Kfy

(

∂hf

∂y

)

qz = −Kfz

(

∂hf

∂z
+
ρ − ρf

ρ

)

(5)

where qx, qy, and qz are the components of the specific discharge in

the principal directions, Kfx, Kfy, and Kfz are the components of the

freshwater hydraulic conductivity in the same directions and ρf is

the freshwater density.

Equations (1)–(5) are the mathematical representation of VD

approach of seawater intrusion. The well-established SEAWAT

code is used to solve numerically the above equation set. SEAWAT

is a modular finite-difference computer code created by USGS,

which couples MODFLOW and MT3DMS, in order to solve

iteratively the fluid flow and solute transport equations (Guo and

Langevin, 2002).

2.2. Sharp interface model

The SI model employed in the present work is based on

the single flow potential formulation proposed by Strack (1976).

The Strack’s approach considers three basic assumptions: (1)

the Dupuit-Forchheimer approximation, (2) Ghyben-Herzberg

approximation, and (3) Hydrostatic conditions in the saltwater

zone. For steady state conditions, the incorporation of the three

assumptions result in a simplified one-fluid, 2D SWI model, which,

for the general case of irregular-shaped aquifers with spatially

variable parameters (e.g., hydraulic conductivity and recharge),

could be solved numerically using a groundwater flow code
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(Mantoglou et al., 2004). The differential equations used to calculate

the flow potential in an unconfined coastal aquifer has the following

form

∂

∂x

(

K
∂φ

∂x

)

+
∂

∂y

(

K
∂φ

∂y

)

+ N − Q(x, y) = 0 (6)

where K = K(x, y) is the hydraulic conductivity of the aquifer,

which is usually considered as a function of the spatial coordinates

(x, y), N is the aquifer recharge, and Q(x, y) represents the

distributed well pumping rates. The flow potential φτ at the location

of the toe in an unconfined aquifer is calculated from the following

equations (Mantoglou, 2003).

φτ =
(1+ ǫ)ǫ

2
d2 (7)

where d denotes the thickness of the aquifer from the horizontal

bottom to the sea level. From the flow potential value field we are

able to calculate the exact location of the sharp interface toe, which

is of considerable interest in coastal aquifer management problems.

2.3. Sharp interface model modifications

The SI model proposed by Strack (1976) and adopted in

several studies (e.g., Werner et al., 2012; Ketabchi and Ataie-

Ashtiani, 2015) have been widely used to simulate SWI in coastal

aquifers or pumping optimization problems in coastal aquifers

(e.g., Mantoglou, 2003; Mantoglou et al., 2004). However, it has

been observed in several previous studies (e.g., Dausman et al.,

2010; Koussis et al., 2015; Kopsiaftis et al., 2019a) that for a specific

set of pumping rates the SI model tends to overestimate the extent

of the seawater wedge compared to the variable density approach,

which is considered as a reference result for the estimation of

seawater intrusion. Llopis-Albert and Pulido-Velazquez (2014)

further examined the efficiency of the Ghyben-Herzberg based SI

model in producing comparable results with the VD model, within

a range in the values of critical hydrogeological parameters and

defined several limitations in the validity of the SI model.

In order to eliminate the discrepancy between the two models,

several correction methods have been recently proposed (e.g., Pool

and Carrera, 2011; Koussis et al., 2012, 2015; Lu et al., 2016;Werner,

2017; Koussis and Mazi, 2018; Christelis et al., 2019), which aim to

incorporate the effect of the dispersionmechanism and improve the

accuracy of the SI approach. Pool and Carrera (2011) were the first

to suggest a novel formula to extend Strack’s equations to the case

of the mixing zone. In particular, they proposed an multiplication

factor for the saltwater-freshwater density ratio, which is expressed

as an empirical equation of specific physical parameters of the

aquifer. The multiplication factor has the following form

ǫ∗ = ǫ

[

1−
(aT

d

)1/6
]

(8)

where ǫ∗ is the modified buoyancy factor or saltwater-freshwater

density ratio and aT is transverse dispersivity. This specific

correction factor has been widely used in a number of studies (e.g.,

Lu et al., 2012; Christelis and Mantoglou, 2013; Lu and Werner,

2013; Lu and Luo, 2014; Koussis et al., 2015). Lu and Werner

(2013) proposed a modification of the (Pool and Carrera, 2011)

correction factor. Specifically, they performed a significant number

of variable density simulations and suggested that the 1/6 exponent

of Equation (8) should be replaced with 1/4. In amore recent study,

Christelis and Mantoglou (2016a) observed that in highly pumped

aquifers, the value of the density ratio that allows the SI to resemble

the salinity spatial distribution depends not only on the aquifer

physical parameters included in Equation (8), but also on the well

pumping rates. In order to incorporate this effect, they suggested

a dynamic adjustment of the density ratio during the pumping

optimization process. In this case, the correction is based on the

modification of the density ratio in an intermediate optimization

step, which minimizes the discrepancy between the VD and SI

models. Kopsiaftis et al. (2019a) compared the SWI extent based

on five models: (i) the VD model, (ii) the Strack SI model, (iii)

the Pool and Carrera (2011) correction, (iv) the Lu and Werner

(2013), and (v) several combinations of the above SI models, in

the form of ensemble SI model prediction. In the same study, the

authors used all the examined models in a pumping optimization

model and concluded that the ensemble solutions provide

promising results. The ensemble SI prediction could be expressed

as follows

Ŷens =

P
∑

i=1

wiYi (9)

where Ŷens is the ensemble prediction of the toe, P is the number

of the individual SI models, wi is the weight corresponding to Yi

toe prediction of the i-th SI model. In the present work, three SI

models are examined for the ensemble prediction of the toe: (1)

the original Strack SI model Strack (1976), (2) the modified Strack

model proposed by Pool and Carrera (2011), and (3) the modified

Strack model proposed by Lu andWerner (2013). The contribution

of the three SI models is considered equal, thus the weights are

w1 = w2 = w3 = 1/3 and the Ŷens is calculated as the average

value of the individual SI model predictions.

2.4. Multi-fidelity approach of seawater
intrusion

In this work an implicit correction of the Strack (1976) SI

model is investigated using the position of a specific isohaline,

which represents the extent of SWI based on the variable density

approach. In the multi-fidelity (MF) related literature, the proposed

correction is denoted as additive correction (e.g., Alexandrov and

Lewis, 2001; Zhou et al., 2016; Giselle Fernandez-Godino et al.,

2019) and, in general, it could be described as an additive shift of

the low-fidelity response yLF(x) to yield the high-fidelity response

yHF(x). The correction has the following general mathematical

form Giselle Fernandez-Godino et al. (2019).

ŷMF(x) = ŷLF(x)+ δ̂(x) (10)

where ŷMF(x) is the MF surrogate model, δ̂(x) is the

surrogate constructed to model the discrepancy between

the yHF(x) and yLF(x) at data point where we have model
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FIGURE 1

Conceptual model of the examined unconfined coastal aquifer, presenting the size of the aquifer, the boundary conditions, the location of the wells

and an indicative location of the critical 0.1 kg/m3 isohaline.

computations for both the HF and LF models. For the

groundwater application examined in the present work,

the input vector x corresponds to the vector Q of the

pumping rates.

In this study, RF method was utilized as the discrepancy

function δ̂(x). RF algorithm is an ensemble learning technique for

solving both classification and regression problems. RFs can be

used to predict continuous target variable based on a set of input

features. Each decision tree in the forest is built using a random

subset of the available features, and the final output is obtained by

averaging the predictions of all the trees. This results in a more

stable and accurate model than using a single decision tree, as it

reduces the risk of overfitting and the impact of noisy or irrelevant

features. Ho (1998) was the first to embed a random subspace

method in decision forest. Breiman (2001) further extended the

algorithm and introduced the term “Random Forests”. RFs have

been widely used in several components of the water resources

field under different context. For example, Papacharalampous et al.

(2018, 2019) aimed at forecasting several hydrological processes

and parameters (e.g., temperature and precipitation time-sires)

and they compared the outcomes with stochastic methods. A

popular implementation of RF refers to the predictive modeling

of several groundwater pollution sources, which is crucial in

areas with significant agricultural or urban growth, especially in

arid and semi-arid climates (e.g., Wheeler et al., 2015; Canion

et al., 2019; Knoll et al., 2019; Messier et al., 2019; Ouedraogo

et al., 2019; Lahjouj et al., 2020; Pham et al., 2021; He et al.,

2022). Other noteworthy applications of RF are the prediction

of groundwater levels (e.g., Wang et al., 2018; Saha et al., 2022),

assessment of drought impact on groundwater potential (Masroor

et al., 2021), classification of surface-groundwater interaction (Yang

et al., 2019), identification of potential sites for groundwater

artificial recharge (Norouzi and Shahmohammadi-Kalalagh, 2019;

Naghibi et al., 2020), investigation of the spatial and temporal

variations of soil salinity (Fathizad et al., 2020) and modeling

of the shallow water table at high spatial resolution to calculate

the risk for groundwater-induced flood events (Koch et al.,

2019).

It should be noted that in the present work, in order to

capture the complex relation between the well pumping rates

and the proposed additive correction factor, the 0.1 kg /m3

isohaline and the corresponding SI toe are divided in several

segments and a RF model is trained for the edge points of

each segment. Thus, the proposed correction demonstrated

good adaptive capabilities, which are further analyzed in

Section 4.3.

3. Pumping optimization framework

In general, the objective of the groundwater management

problem in the areas adjacent to the sea is the maximization

of freshwater extraction while meeting several environmental

criteria, which usually include the control of hydraulic head or

the extent of SWI. In the present paper, we adopt a simulation-

optimization approach to solve the groundwater management

problem in coastal aquifers. The decision variables are the

well pumping rates Qi, i = 1, 2, . . . , n, where n is the total

number of wells. This approach is applied on both the VD

and the SI models. However, the formulation slightly differs

in the two SWI models, since each one of them has different

output.

In the case of the VD model, the optimization problem has

the following mathematical form (Kourakos and Mantoglou,

2013; Christelis and Mantoglou, 2016a; Christelis et al.,

2019).

Frontiers inWater 05 frontiersin.org

https://doi.org/10.3389/frwa.2023.1195029
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Kopsiaftis et al. 10.3389/frwa.2023.1195029

TABLE 1 Parameter values of the variable density model.

Parameter Value

Kfx 15m /d

Kfy 15m /d

Kfz 1.5m /d

Longitudinal dispersivity (aL) 25m

Transverse dispersivity (aT ) 2.5m

Vertical dispersivity (aV ) 0.25m

Recharge 5.479× 10−5 m/d

Lateral inflow 600m3 /d

Density ratio 0.025

Seawater density 1025 kg /m3

Freshwater density 1000 kg /m3

Number of rows 60

Number of columns 140

Number of layers 5

Finite difference cell size (dx× dy) 50m× 50m



































min −

n
∑

i=1

Qi

s.t. x
Ci
i (Q1, . . . ,Qn) ≤ xwi, ∀i = 1, . . . , n

hi(Q1, . . . ,Qn) ≥ 0, ∀i = 1, . . . , n

Qmin ≤ Qi ≤ Qmax, i = 1, . . . , n

(11)

where x
Ci
i (Q1, . . . ,Qn) represents the distance of a critical

isohaline—which is a function of the pumping rates and

corresponds to a concentration value equal to Ci—from the

coastline at the bottom of the aquifer. Here, the 0.1 kg/m3 isohaline

was selected as representative for SWI extent. According to the

first constraint, SWI should not exceed the location of the i-th

well denoted by xwi. Likewise, the hydraulic head in the i-th well

should not drop below the sea level. Finally, Qmin and Qmax defines

the minimum and maximum allowed pumping rates for each well,

respectively.

In the case of SI model, the extent of SWI is defined by the

location of the equipotential line φτ which corresponds to the

intersection of the SI with the bottom of the aquifer (toe of the

SWI wedge). The value φτ of the toe is calculated by Equation (7)

and its location is specified as a contour line of the potential

flow field, which results from the solution of Equation (6). The

mathematical expression of the optimization framework is similar

to the one in Equation (11), with their main difference being

that x
Ci
i (Q1, . . . ,Qn) is substituted with x

φτ
i (Q1, . . . ,Qn), which

represents the distance of the toe from the coastline and it is

a function of the well pumping rates and the hydraulic head

hi(Q1, . . . ,Qn) with φi(Q1, . . . ,Qn), which denotes potential flow

at the well locations. Similarly to the VD case, the constraints in

the SI optimization framework prevent the toe from reaching the

well locations and ensure that the potential flow remains above the

sea level.

To solve the above optimization problems, we employed

the evolutionary annealing-simplex (EAS) algorithm Efstratiadis

and Koutsoyiannis (2002), a heuristic optimization algorithm

that proved to be quite efficient in coastal aquifer management

(Kourakos and Mantoglou, 2009; Christelis and Mantoglou, 2016b;

Christelis and Hughes, 2018; Kopsiaftis et al., 2019a). To apply the

EAS algorithm, the constraints in Equation (11) were incorporated

in the objective function in the form of penalty terms (Christelis

et al., 2018).

minf (Q) =



























−

n
∑

i=1

Qi, if ∀j;
(

gj (Q) ≤ 0
)

, j = 1, . . . , 2n

Mg

2n
∑

i=1

[

max
(

gj, 0
)]2

, if ∃ j; gj (Q) > 0, j = 1, . . . , 2n

(12)

where Mg is the number of constraint function violations, Q is

the vector of the decision variables and gj (Q) is a term that

contains all the constraints of Equation (11). It should be noted that

Equation (12) applies for both the VD and the SI model.

4. Experimental results

4.1. Experiment setup

The SWI models described in Sections 2.1–2.3, as well as

the optimization frameworks of Section 2.1 are applied on

a hypothetical unconfined aquifer of a simplified rectangular

shape. The horizontal dimensions of the examined aquifer are

L × W = 7.000m × 3.000m and the base of the aquifer

is considered horizontal and is located at a depth of −25m

below sea level. Along the coastline, a hydrostatic boundary

condition is set with a constant salinity concentration of

35 kg /m3. Also, a specified flux is applied along the entire inland

boundary, while the remaining boundaries—lateral and aquifer

bottom—are considered impermeable. The aquifer is considered

to be homogeneous and anisotropic with regard to the hydraulic

conductivity and is pumped through ten fully penetrating wells.

Finally, a uniform recharge replenishes the aquifer along its

upper boundary. It should be noted that for both the recharge

and the well pumping rates we used constant average values

throughout the entire 50-year simulation period. Figure 1 is a

conceptual representation of the coastal aquifer model, while

Table 1 includes all the model’s parameters. Each VD simulation

requires approximately 75 s in a i7-4770 CPU of 3.7GHz, 16GB

RAM to complete. The duration of the corresponding SI simulation

is in the order of 0.3 s. The significant difference in computational

time between the two SWI models highlights the benefit of the SI

approach and its usefulness in applications which require a large

number of simulations, such as a simulation-optimization method

in groundwater management problems.
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FIGURE 2

Top view of the bottom layer of the aquifer depicting the advancement of SWI for the VD model and the four variations of the SI model based on the

same sets of pumping rates. (A) Results comparison based on a low total pumping scenario. (B) Results comparison based on a high total pumping

scenario.

FIGURE 3

Optimal density ratio in relation to the total pumping rates for the 5,000 pumping rate scenarios. Each color corresponds to a point located at

di�erent part of the aquifer.
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FIGURE 4

Relative position of the 0.1 kg/m3 isohaline and the SI toe based on the Strack model. The arrows indicate the correction for each one of the points

of the SI toe. A RF model is developed and trained for each one of the SI toe points.

FIGURE 5

Overall concept of the proposed RF method for the correction of the Strack’s based SI toe.

4.2. Comparison of seawater intrusion
models

As already mentioned in Section 4.1, there is a clear advantage

to utilizing the SI model rather than the VDmodel for groundwater

management applications, due to its computational efficiency. In

the present study, we further examine the correction of the SI

model discussed in Section 2.3 by searching for any potential

spatial dependencies of the density ratio, which would lead not to a

unique correction factor for the entire flow field—as in previous

studies—but to a locally adapted modification of the SI toe. To

this end, we create a large dataset of 5, 000 pumping scenarios

using the Latin Hypercube Sampling (LHS) statistical method. The

pumping scenarios are applied on both the VD and SI models

and subsequently the locations of the 0.1 kg /m3 isohaline and the

SI toe are extracted from the concentration results and the flow

potential field, respectively. Figures 2A, B depict the advancement

of SWI for the VD model and the four variations of the SI

model which include: (i) the original Strack model, (ii) the Pool

and Carrera (2011) correction, (iii) the Lu and Werner (2013)

correction, and (iv) the ensemble SI model described in Section 2.3.

The results indicates that for low pumping rates the model

proposed by Strack (Strack, 1976) outperforms the other SI models.

However, in high pumping rate scenarios—which is of practical
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TABLE 2 Value ranges of optimized hyperparameters of RF and indicative

optimized values for one of the 60 points of the SI toe.

Parameter
name

Value range or parameter
options

Optimized
values

Method Bootstrap aggregation (bagging)

or least-squares boosting

Least-squares

boosting

Number of

learning cycles

10− 500 62

Learning rate 10−3 − 1 0.2281

Minimum leaf

size

1− 1, 998 1,891

interest for groundwater management problems—the Strack model

overestimates the extend of SWI, while the Lu and Luo (2014)

models seems to capture more accurately the benchmark VD

solution. The ensemble model toe closer resembles the shape of the

0.1 kg /m3 isohaline, though shifted several hundred meters inland.

Overall, the results demonstrate a considerable dependency of the

SI models’ efficiency on the total pumping rates, confirming the

findings of previous studies (e.g., Christelis andMantoglou, 2016a).

In order to define possible spatial dependencies of the

correction factor both the 0.1 kg /m3 isohaline and the SI toe based

on Strack’s model were divided in an equal number of segments

and the correction of the latter was examined at the endpoints of

each segment. In the hypothetical aquifer of the present study we

selected a dense segmentation of the lines to achieve a relatively

comprehensive and complete analysis. In particular, following

the finite different discretization of the numerical models, we

divided both lines into 59 segments. For each one of the segments’

endpoints and for each pumping scenario we calculated an optimal

density ratio that minimizes the distance between the two points.

This problem is equivalent to calculating the potential flow value

at each point of the 0.1 kg /m3 isohaline through an interpolation

method, and then solve Equation (7) for ǫ. Figure 3 presents the

optimal values for the 5, 000 pumping scenarios, for three segments

of the a the critical isohaline, representing both the northern and

the southern part of the aquifer, as well as the middle area. The

figure leads to the following two key conclusions

• The optimal values of the correction factor has a strong

dependence on the pumping rates. In particular, the optimal

values tend to reduce as the total pumping rates increase.

• The optimal correction factor follows the same pattern in all

the segments of the compared lines. However, its mean value

and range differs indicating a spatial variability, which should

be further investigated.

4.3. Sharp interface correction based on
random forests

The findings and observations of Section 4.2 suggest that the

correction factor proposed in earlier studies for the Strack SI model

(e.g., Pool and Carrera, 2011; Lu and Werner, 2013), enhance

the determination of the toe position considerably, aligning with

the benchmark VD approach. However, it has certain limitations

and its overall precision is contingent on the pumping regime.

Furthermore, applying a uniform correction factor across the entire

flow field does not have the capability to adapt to the specific

conditions of distinct areas within the aquifer, which—for the case

of homogeneous aquifer, like the hypothetical aquifer examined in

the present study—are mostly related to the relative position of the

wells and the applied pumping rates.

Following the line segmentation approach of Section 4.2, a

total number of 60 points is selected from both the 0.1 kg /m3 and

the SI toe based on Strack model, as depicted in Figure 4. The

arrows in the figure denote the intended correction for indicative

points of the line. In order to investigate a spatially variable

correction factor, we utilize a ML method, and particularly the RF

algorithm described in Section 2.3. The training sample consists of

4, 000 variable sets, representing the 80% of the total sample. Each

variable set has 11 parameters, namely the pumping rates of the

10 extraction wells and the initial position of the examined point

relative to the coastline. The output set consists of a single variable,

that is the distance of the examined SI toe point from its relative

point lying on the 0.1 kg /m3 isohaline. Figure 5 schematically

presents the overall concept of the proposed method in contrast

to a typical approach in coastal aquifer managements problems.

Regarding the RF based correction of the SI, the following points

should be mentioned

• A multiple input/single output version of the RF algorithm

was implemented in the present study. Thus, one RF model

was developed and trained for each one of the points of the SI

toe.

• Contrary to previous studies, we adopted a direct correction

of the location of the SI toe and not an indirect correction

through the modification of the density ratio. Modeling

the distance of the examined line points seems to provide

a relatively smooth corrected line, while the density

ratio solution tends to overestimate or underestimate the

displacement of the toe points, as small changes in the

parameter value lead to a non-proportional correction.

In our experiments, we used a k-fold cross-validation technique

to mitigate possible overfitting and achieve a more robust

evaluation of the RF models’ generalization ability. The train

dataset is divided into k = 5 subsets (folds) of equal size. The

RF hyperparameters were optimized using Bayesian optimization

over these 5k-fold cross-validation sets. Table 2 summarizes the

optimizable variables and the corresponding value ranges. The

number of splits falls within the range of 1 to 3995.

For the evaluation of the RF models performance we use as

metrics the mean absolute error (MAE), the root mean squared

error (RMSE), and the R-squared (R2), which are defined as follows:

MAE =

N
∑

i=1

∣

∣yi − ŷi
∣

∣

N
(13a)

RMSE =

√

√

√

√

√

N
∑

i=1

(

yi − ŷi
)2

N
(13b)
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TABLE 3 Performance evaluation of the proposed method for half of the examined points.

Point ID MAE train set RMSE train set R2 train set MAE test set RMSE test set R2 test set

1 3.20± 2.46 4.53± 3.87 0.9997 7.24± 1.37 15.78± 2.34 0.9976

2 3.35± 1.18 4.99± 2.04 0.9997 5.27± 1.20 11.20± 2.77 0.9988

3 4.54± 3.04 6.27± 4.62 0.9994 7.20± 2.95 13.69± 5.26 0.9980

4 2.94± 1.16 3.95± 1.75 0.9998 5.81± 0.53 12.54± 1.29 0.9985

5 5.95± 3.49 8.30± 5.09 0.9991 8.23± 4.00 14.67± 7.25 0.9976

6 3.55± 2.09 5.06± 3.59 0.9996 6.88± 1.44 12.57± 2.40 0.9985

7 4.65± 2.80 6.29± 3.98 0.9995 7.09± 2.84 12.36± 4.51 0.9985

8 4.85± 2.23 6.85± 3.28 0.9995 7.31± 1.89 12.15± 3.06 0.9986

9 3.45± 1.49 4.81± 2.25 0.9998 5.94± 0.90 10.10± 1.36 0.9992

10 4.76± 1.97 6.45± 2.82 0.9996 8.66± 4.67 18.57± 15.95 0.9955

11 3.07± 1.10 5.34± 3.66 0.9968 5.41± 0.67 11.68± 1.46 0.9990

12 6.67± 2.52 10.72± 3.48 0.9977 8.41± 2.88 14.67± 5.19 0.9984

13 3.58± 1.16 5.88± 2.89 0.9997 5.50± 1.07 10.65± 1.74 0.9993

14 3.14± 1.59 4.40± 2.50 0.9998 5.83± 0.98 13.51± 3.05 0.9988

15 4.55± 1.65 6.22± 2.17 0.9997 7.07± 1.54 13.81± 4.28 0.9988

16 3.19± 1.00 8.86± 9.71 0.9990 4.64± 0.82 10.65± 3.47 0.9993

17 2.36± 1.11 3.28± 1.69 0.9999 4.86± 0.69 10.06± 2.76 0.9994

18 2.79± 1.59 3.74± 2.11 0.9999 4.59± 1.63 10.05± 2.21 0.9994

19 4.63± 2.81 6.54± 4.14 0.9996 6.84± 2.84 12.86± 4.19 0.9989

20 4.62± 2.27 6.53± 3.70 0.9996 6.91± 2.03 12.41± 3.85 0.9990

21 3.52± 1.57 5.24± 2.87 0.9998 5.11± 1.45 11.46± 4.99 0.9991

22 1.81± 0.51 2.51± 0.99 1.0000 4.22± 0.78 8.93± 1.98 0.9995

23 3.16± 1.69 4.31± 2.34 0.9998 5.07± 2.11 9.66± 3.66 0.9993

24 3.29± 1.58 4.52± 2.16 0.9998 5.62± 1.60 10.50± 2.40 0.9992

25 3.44± 1.02 6.96± 5.52 0.9994 6.77± 1.61 12.89± 3.30 0.9988

26 3.23± 1.10 4.25± 1.47 0.9999 6.40± 1.71 12.62± 3.48 0.9988

27 4.75± 1.86 6.76± 2.80 0.9996 7.55± 1.66 13.30± 2.69 0.9987

28 4.51± 2.37 6.37± 3.70 0.9996 8.26± 1.78 14.57± 3.01 0.9984

29 4.93± 1.43 8.07± 3.76 0.9994 8.85± 1.37 15.40± 2.73 0.9982

30 5.90± 1.63 9.34± 3.00 0.9993 9.45± 1.55 15.10± 2.06 0.9983

Average 3.78± 1.83 6.46± 3.92 0.9994 6.25± 1.78 11.99± 3.58 0.9988

The units of MAE and RMSE are m. The mean values at the end of the table refer to all 60 points.

R2 = 1−

N
∑

i=1

(

yi − ŷi
)2

N
∑

i=1

(

yi − ȳi
)2

(13c)

where N is the number of variable sets in the train or test dataset,

yi represents the true values of the modeled parameter, ŷi stands

for the estimated values and ȳi is the mean value of the parameter.

These metrics are applied in both training and test sets.

In order to ensure the accuracy and robustness of the final RF

models, the entire training and validation process was repeated five

times for all the examined points of the SI toe. The performance

metrics were computed for each one of the five output values

datasets. The repetition of the process allowed the approximate

quantification of the uncertainty of the proposed method. The

uncertainty is provided as the standard deviation of the metrics

(e.g., MAE) over the five repetitions. In particular, the calculations

for the MAE are based on the following formula:

SD =

√

√

√

√

√

r
∑

i=1

(

MAEi −MAE
)2

r
(14)
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Table 3 contains the values of the statistical measurements used

to evaluate the performance of the proposed method, namely the

mean absolute error (MAE), the root mean square error (RMSE)

and the R2. For the MAE we also provide the corresponding

standard deviation. It should be noted that the values listed in the

table are the averages over the five repetitions of the calculation

process for half of the 60 points selected from the SI toe. Given

the magnitude of the examined parameter and the size of the

finite difference cell, the MAE and RMSE values are considered

satisfactory. At the bottom of the table, we also provide the

average values of all the metrics over the entire set of points.

Regarding the high values of the R2, the use of the cross-validation

approach and the repetition of the process minimize the possibility

of overfitting and ensure the model’s generalization ability. The

proposed methodology significantly improves the location of the

SI toe, with respect to the 0.1 kg /m3 isohaline.

4.4. Pumping optimization results

In order to test the usefulness of the proposed LF model

in pumping optimization problems, we apply the optimization

framework described in Section 3 on the unconfined hypothetical

aquifer. For consistency, we solved the optimization problem

not only for the HF model, but also for the original Strack

model. The parameters of the EAS optimization algorithm are

listed in Table 4 and their values are set based on the work of

Efstratiadis and Koutsoyiannis (2002), Tsoukalas et al. (2016) and

Christelis and Mantoglou (2019). The optimization is terminated

if at least one of the following criteria is met: (i) the convergence

criterion ε reaches its preset value, and (ii) the number of

TABLE 4 Parameter values of the EAS optimization algorithm.

Parameter name Parameter value

Initial population npop 8n

Annealing schedule

control parameters

λp 0.95

ψ 2

Mutation probability mp 0.1

Convergence criterion ε 0.1

Maximum objective function

evaluations

nmax 100npop

Note that n is the number of pumping wells.

objective function evaluations exceeds the maximum number

nmax.

Table 5 contains the optimal pumping rates for the examined

HF and LF models. As expected, the Strack’s SI model provides a

relatively low estimation of the total pumping rates, which does

not exceed 75% of the VD optimal results. Using the proposed

correction of the SI significantly improved the results, allowing

the extraction of a freshwater amount that corresponds to 95% of

the VD estimation. Furthermore, it is worth mentioning that the

evaluation of the optimal pumping rates with the VD optimization

framework confirms that it is a feasible solution, since none of the

constraint functions was violated. Figure 6 shows the 0.1 kg /m3

isohaline corresponding to the optimal pumping rates for the two

examined SI models. The RF-based correction of the Strack SI

model provides a solution which approaches the benchmark VD

solution, without violating the constraint set.

5. Conclusions

Due to the low computational budget and the relatively

easy implementation the SI models are considered a promising

surrogate model for the more accurate, but computationally

expensive VD model. For this reason, the SI model have been

extensively investigated in a number of previous studies. Most

of them focus on improving the Strack SI models by modifying

the density ratio. The present work aims to provide a ML based

correction of the original Strack SI model. In a first step, the

Strack model and three modifications were examined in several

pumping levels. From the corresponding SWI extent it was

evident that the behavior is significantly influenced by the total

amount of the freshwater extraction, thus imposing limitations

in their ability to function as effective substitutes for the VD

model. This observation required further investigation, and to

this end we calculated an optimal density ratio that minimizes

the discrepancy between the SI toe and the 0.1 kg /m3 isohaline.

Despite the fact that the optimized density ratio corrected the

location of the SI toe, it failed to encapsulate possible local

conditions in the flow field (e.g., interaction between neighboring

pumping wells).

The above findings highlighted the need to search for a

regionally adapted correction factor, and to achieve this goal, the

SI toe was divided in several segments, which were examined

individually with respect to the density ratio. A considerable

number of simulations were performed using both the VD and

the SI approach and based on the results a secondary inverse

problem setup was implemented to calculate the optimal values

TABLE 5 Optimal pumping rates for the HF (VD) model and the two LF models: (i) the original Strack SI model, and (ii) the corrected SI model using the

RF (RF-SI).

SWI model
Well pumping rates (m /d)

Total pumping
1 2 3 4 5 6 7 8 9 10

VD 0.58 0 181.13 58.55 53.37 72.75 122.86 207.61 295.13 272.82 1564.78

Strack SI 0.06 15.41 81.59 1.60 259.17 73.48 1.52 462.80 270.63 5.17 1171.44

RF-SI 16.24 79.89 130.84 178.58 246.24 251.40 59.95 104.90 209.57 193.42 1471.03
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FIGURE 6

Projection of the 0.1 kg/m3 isohaline at the bottom of the aquifer, which correspond to the VD evaluation of the optimal pumping rates for two SI

models: (i) the original Strack model and (ii) the corrected SI model based on RF. The VD optimal solution is also included for comparison purposes.

of the correction factor. The outcome confirmed the spatial

variability of the examined parameter, in terms of the magnitude

and value range. In order to model the regional dependency of

the correction factor, the RF algorithm was utilized for each one

of the individual points of the Strack SI toe. In particular, instead

of using the density ratio as a correction factor, the point to

point distance between the SI toe and the 0.1 kg /m3 isohaline

was selected as the output of the ML method. Based on the

RF evaluation metrics—specifically, the MAE and RMSE results

for both the train and test data sets—, the proposed correction

demonstrates a good performance, with a mean accuracy in the

order of 5− 10m.

Subsequently, the proposed correction factor was incorporated

in a coastal aquifer optimization framework. The estimated

optimal pumping rates provided feasible solutions, which

approximated the benchmark VD optimal results within a

5% margin. To the best of our knowledge, this is the first

study that examines in detail the spatial variability of the

SI correction and implements the correction in a coastal

aquifer pumping optimization problem. Overall, the proposed

method is yielding promising results and could be used as an

accurate and robust LF model in coastal aquifer management

problems. Future research will focus on further scrutinizing the

effectiveness of the proposedmethod in different aquifer setups and

real applications.
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