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reanalysis-based precipitation and
pressure mismatches over Europe

Kaveh Patakchi Yousefi* and Stefan Kollet

Research Centre Jülich, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Jülich, Germany

Physically based numerical weather prediction and climate models provide useful

information for a large number of end users, such as flood forecasters, water

resource managers, and farmers. However, due to model uncertainties arising

from, e.g., initial value andmodel errors, the simulation results do not match the in

situ or remotely sensed observations to arbitrary accuracy. Merging model-based

data with observations yield promising results benefiting simultaneously from the

information content of the model results and observations. Machine learning

(ML) and/or deep learning (DL) methods have been shown to be useful tools in

closing the gap between models and observations due to the capacity in the

representation of the non-linear space–time correlation structure. This study

focused on using UNet encoder–decoder convolutional neural networks (CNNs)

for extracting spatiotemporal features from model simulations for predicting

the actual mismatches (errors) between the simulation results and a reference

data set. Here, the climate simulations over Europe from the Terrestrial Systems

Modeling Platform (TSMP) were used as input to the CNN. The COSMO-REA6

reanalysis data were used as a reference. The proposed merging framework

was applied to mismatches in precipitation and surface pressure representing

more and less chaotic variables, respectively. The merged data show a strong

average improvement in mean error (∼ 47%), correlation coe�cient (∼ 37%), and

root mean square error (∼22%). To highlight the performance of the DL-based

method, the results were compared with the results obtained by a baseline

method, quantile mapping. The proposed DL-based merging methodology can

be used either during the simulation to correct model forecast output online

or in a post-processing step, for downstream impact applications, such as flood

forecasting, water resources management, and agriculture.

KEYWORDS

post-processing, model-observation merging, convolutional neural network, DL-based

merging, bias correction, precipitation post-processing

1. Introduction

Numerical weather prediction and climate models (hereinafter, referred to as

models) play an important role in impact applications related to (real-time) flood

forecasting and warning, water resources monitoring and management, and agriculture.

However, the accuracy of modeled data is limited due to model uncertainties stemming

from initial value and model structural errors (Zhang et al., 2020). Improvement

of model-based data is needed for hydrological and impact studies focusing on the

aforementioned applications and beyond. It has been shown that merging model-

based data with observations (e.g., obtained via satellites and airborne and in situ
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sensors) can have a positive effect on the accuracy of the model-

based data while also accommodating observation and model

uncertainties (Naz et al., 2019; Geer, 2020). However, such

observations are not always accessible at the required time or

location when the model-based data were collected. Furthermore,

models may be projected into the future to provide forecasts,

whereas observations are only available close to real time or

historically. Previous studies have proposed various merging

methods that rely on the historical model- and observation-based

data to tackle this challenge. Such merging methods can be used

as online correction tools for improving the atmospheric variables

obtained by the model.

Many approaches to combine modeled and observational data

have been developed over the years. In statistical-based bias

correction approaches, the historical observed data are regarded

as a reference (ground truth), and the historical model estimates

are shifted or rescaled with a common assumption that the

model observation mismatches represent the model bias. On the

other hand, in delta change approaches, historical observations

are projected, according to the simulated changes in the future

and recent climate (Räisänen and Räty, 2013; Räty et al., 2014).

The difference between these methods lies in the statistics (i.e.,

mean, variance, and distribution) that are matched between the

model and the reference data (Moghim and Bras, 2017). For

example, both bias correction and delta change methods may

include mean, standard deviation, and/or other statistics. Quantile

mapping (QM) is a popular bias correction approach used for

weather and climate model applications that correct for biases over

the entire distribution (Panofsky and Brier, 1968; Déqué, 2007).

QM is based on the assumption of the stationary relationship

between the model data and the reference data, which may not

hold for extreme events for example. Traditional QM does not

correct for discrepancies in the spatial patterns of the model and

reference data during synchronous events. In response to QM’s

limitations, several variations of the method have been developed

(Cannon et al., 2015; Passow and Donner, 2020; Tong et al., 2021;

Holthuijzen et al., 2022; Ibebuchi et al., 2022). Data assimilation

(DA) is another approach that has been developed for years

to merge any type of measurement, including remote sensing

observations, with model estimates. Applying DA, the initial value

problem can be improved which may also lead to better predictions

(i.e., reducing the mismatches between the model estimates and the

observations). The most common limitations in DA methods are

the parameterization and Gaussian error distribution assumptions

which may add uncertainties in the model analysis (Sun et al.,

2019).

In recent years, state-of-the-art data-driven methods, such

as machine learning (ML) and deep learning (DL), have been

used in the merging context. One of the advantages of ML/DL

over the previous methods is its independence of governing

statistical assumptions and limitations (e.g., linearity, Gaussianity,

and dimensionality assumptions) that are present in statistical

methods and DA. The lack of these assumptions allows the ML/DL

network to learn the whole error structure instead of a single

or combination of error statistic(s). Thus, ML/DL may perform

better in learning complex error structures, such as non-linear

space–time correlations, between modeled and observational data.

Nevertheless, ML/DL-driven methods also have limitations. For

example, the weight used for generating a complex relationship

between the input and output of an ML/DL network is a black

box. In addition, it may be difficult to interpret the governing

relationship between the inputs and outputs.

The results obtained by ML/DL networks strongly depend

on the architecture, input–output selection, and the type of

network used. Studies focusing on utilizing multi-layer perceptron

(MLP) networks for generating data-driven linear or non-

linear relationships between the model estimates and measured

observations have yielded promising results. For example, Moghim

and Bras (2017) showed improved performance of a three-

layer feedforward network in improving the accuracy of monthly

precipitation and daily temperature modeled data over linear

regression and CDF matching methods. One of the biggest

limitations of the traditional feedforward networks is associated

with their neuron connection. For example, in MLP networks,

all neurons in one layer are fully connected to the next

layer. This makes it challenging to establish spatially variant

relationships given the information from all pixels. On the other

hand, pixel-by-pixel relationship establishment limits obtaining

spatial information from the neighborhood pixels. One way

to alleviate this problem is that these networks perform

better when information from the neighboring pixels (e.g.,

standard deviation) is added as explanatory input data for

predicting precipitation.

Convolutional neural networks (CNNs) differ from traditional

MLP networks in that not all neurons are entirely linked to the

preceding layer, and correlations between nearby neurons in the

same layer can contribute more to network training. CNNs are

known as a useful tool for dealing with spatiotemporal variables

such as precipitation due to extracting the local neighborhood

information efficiently and allowing the use of deeper networks

and multispectral channels. These features make CNNs useful

in potentially encoding gridded data, decoding and generating

gridded outputs, also referred to as image-to-image translation.

The abovementioned advantages of CNNs over the other network

architectures are the strongest motivations in recent research

applications of CNNs in bias correction, estimation, downscaling,

and nowcasting of precipitation (Pan et al., 2019; Sadeghi et al.,

2019; Ayzel et al., 2020; Han et al., 2021; Hess and Boers,

2022).

We use CNN for extracting spatiotemporal features frommodel

simulation results. Inspired by recent studies which focus on error

mapping (Sun et al., 2019; Zhang et al., 2020), the CNN network

was trained on the mismatches (errors) between the model data

and reference data representing the observations. We restricted the

input data selection only to the model simulation data and other

variables representing the topographical and temporal features.

CNN can generate predicted mismatches for unseen given model-

based data by learning the relationship between the extracted

features from the input data and themismatch data. This eliminates

the need for reference data in correcting the model simulation

data in the absence of the reference data. The predicted mismatch

information can then be merged with the model to improve its

accuracy, for example, in an online model correction approach,

where precipitation estimates are corrected during runtime. In this
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study, we investigated the applicability of such a DL-based merging

framework for improving two atmospheric variables obtained by

model simulations as follows: precipitation as an example of a

highly chaotic variable and surface pressure as an example of a less

chaotic atmospheric variable.

The manuscript is organized as follows: Section 2 provides

information regarding the study domain, the data, and details about

the proposed DL-basedmergingmethodology. Section 3 shows and

discusses the results regarding the mismatch data, UNet model

performance, and themergedmodel–reanalysis-based data. Section

4 provides the conclusion.

2. Materials and methods

We begin with an introduction to the proposed DL-based

merging framework (2.1). In Section 2.2, we show how this merging

approach is used to improve model simulations of two atmospheric

variables. In Section 2.3, the study area and data are explained,

and in Section 2.4, the DL network setup is explained in detail. In

Section 2.5, we explain the steps used for training and testing the

DL network’s performance and the network criteria.

2.1. A DL-based merging framework

The basic goal of merging a model with observations is to find

the best (e.g., least-squares) model analysis (m̂) of the true state

(x) with respect to the model estimate (m) and the reference (r)

(Reichle, 2008). The error variance of the model and the reference

are σ 2
m and σ 2

r . So, the cost function (J) to be minimized is defined

as follows:

J =
(x−m)2

σ 2
m

+
(x− r)2

σ 2
r

(1)

The minimization of J with respect to x (by solving dJ
dx

= 0)

leads to the following:

m̂ = (σ 2
m − σ 2

r )
−1

.(σ 2
r m− σ 2

mr) (2)

This equation is typically written as follows:

m̂ = (1−W)m+Wr with the weight defined as

W = σ 2
m/(σ 2

m + σ 2
r ) (3)

and can be recast as follows:

m̂ = m−Wδ;where δ = (m− r) (4)

This equation updates m̂ using m and the mismatch (δ)

between m and r. The error weight (W) adjusts the dependence

of model analysis either toward the model estimates or toward the

reference, according to their error variance. In contrast to statistical

DA approaches, it is feasible to establish a merging framework

that is not dependent on any assumptions, such as linearity or

a Gaussianity, using DL, and yet being inspired by the basic

DA framework.

A common practice in bias correction/merging studies is a

direct mapping of the reference (r) data from the model-based

(m) data. Another alternative is mapping the mismatch (δ) or

error. Replacing the direct DL mapping from model-based data

to reference data with mapping from model-based data to model–

reference mismatches lead to two distinct advantages. First, the

DL network’s output may be presumed as a spatiotemporally

post-processor (or correction model). After this post-processor

is generated, it can be determined where, when, and to what

degree this correction model would impact the model output

in operational use. Second, by quantifying the model–reference

mismatches and their correlations in space and time, it is possible

to learn about the underlying model–structural limitations of the

simulated data. This provides the opportunity of using explainable

AI, which is not studied here.

From a broader perspective, we are interested in learning all the

mismatches between model-based data and reference data. So, the

global problem is to define a DL network to learn all the model–

reference mismatches between a set of variables from a model M

and a set of variables from a reference data R given the input I

as follows:

DL (I, w) : I → △, where△ = M − R (5)

Finding the solution to this global problem is challenging

because of limitations that may arise from a lack of computer

power, gaps in the reference data, etc. Therefore, instead of solving

the global problem (i.e., correcting the full model state), a subset

of this problem can be solved for a certain variable and space and

time realm. In Figure 1, we illustrate a schematic presentation of

how this subset problem is solved. Here, mv, rv, and δv are subsets

of M, R, and △ for variable v. The input data consist of mv, δv, and

Xv. Xv contains additional spatiotemporal information, which will

be described in the following.

2.2. Application of the DL-based merging
framework

The proposed DL-based merging framework is applied

to variables from simulation data (TSMP-G2A), produced by

the TSMP terrestrial model (Furusho-Percot et al., 2019) in

conjunction with COSMO-REA6 reanalysis as the reference

data set. While this framework could be applied to any

spatiotemporally continuous variable, this study focuses on

precipitation and pressure, where precipitation is considered

a more complicated variable due to its higher spatiotemporal

variability and chaotic nature. The different types of precipitation

also govern its variability and complexity. In this study, three

types of precipitation are considered as follows: stratiform rainfall,

convective rainfall, and snowfall; these data are available from

the TSMP model. Convective precipitation, for example, lasts

for a shorter time, is more intense, and affects a smaller

region, so it leads to severe flash floods and landslides.
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FIGURE 1

A schematic illustration of how DL network is trained to learn the

mismatch δv using Iv as input data, which consists of the model

output and corresponding mismatch mv , δv , respectively, and

additional input Xv . The figure shows the subset of the global

problem of learning δv for variable v. The goal is to train the weights

Wv of the DLv network to learn δv .

Convective precipitation is still the most common type of

precipitation in Europe (Prein et al., 2015). However, due to

models’ limitations in accounting for processes ranging from

the microscale to the synoptic scale, convective precipitation

parameterization is a source of uncertainty in NWP models

(Wahl et al., 2017). On the contrary, stratiform precipitation is

known to occur across larger regions and extended time periods.

Snowfall data from COSMO-REA6 is categorized as stratiform or

convective. In comparison with TSMP-G2A, however, we combine

stratiform and convective snowfall to obtain the equivalent total

snowfall data.

The goal is to train a DL network on mismatches of five target

variables which are surface pressure, δsp,i,t ; total precipitation, δpr,i,t ;

stratiform precipitation, δprg,i,t ; convective precipitation, δprc,i,t ; and

snowfall, δprsn,i,t . All increments represent image data, where t =

{1, 2, . . . , N} and i = {1, 2, . . . , P} are the time and pixel (space)

indices. The actual mismatches (δv,i,t) between the TSMP-G2A

model-based data (mv,i,t) and COSMO-REA6 reference data (rv,i,t)

for the variable v are defined as daily (t) increments between the

model data and reference data as follows:

DL v

(
Iv,i,t , wv

)
: Iv,i, t → δv,i, t , where δv,i, t = mv,i, t − rv,i,t (6)

where DL v is the deep learning model operator designated

for variable v; Iv,i,t represents the input data; wv represents all the

weights and parameters of the DL network; the output values of the

DL network are the model–reference mismatches.

The subsets in Xv,i,t (auxiliary information) including mv,i,t−1

and additional spatial (xi, yi, and zi) and temporal (Dt and Yt)

information result in different Iv,i, t combinations and are used to

train DL v

(
Iv,i, t , wv

)
in an iterative approach. In other words, we

search for the best inputs resulting in the best prediction skill of the

network for each variable.

Once DL v

(
Iv,i,t , wv

)
has been trained, the optimized inputs

Îv,i, t = {mv,i,t , X̂v,i,t} and the fully trained weights in the deep

learning network ŵv may be used to generate predicted mismatches

δ̂v,i,t as follows:

D̂L v

(
Îv,i,t , ŵv

)
: Îv,i,t → δ̂v,i, t (7)

The corrected model-based data m̂v,i, t can, then, be obtained

as follows:

m̂v,i,t = mv,i, t − δ̂v,i,t (8)

This equation closes the gap between the model-based

data and reference data. Notably, rv,i, t cannot be projected

into the future (e.g., rv,i, t+1), whereas the model-based data

can be projected into the future (mv,i,t+1). However, instead

of using rv,i, t+1 for calculating δv,i,t+1, D̂L v

(
Îv,i,t+1, ŵv

)

may be utilized to predict δ̂v,i, t+1 as a model forecast

corrector of mv,i,t+1. Figure 2 is a schematic representation

of the trained DL network used as an (online) model

forecast corrector.

2.3. Quantile mapping as a baseline method

We use empirical non-parametric quantile mapping (QM)

as a baseline method to be compared with the results obtained

by the DL-based method. Empirical QM is based on a transfer

function for fitting the empirical historical model and reference

CDFs (fmv
and fmv

). The assumption in traditional QM is that

the characteristics of fmv
and frv are stationary and do not change

in the future (Cannon et al., 2015). The gamma function is a

commonly used method for deriving empirical CDFs, especially

for precipitation (Piani et al., 2010). However, we opted for a non-

parametric approach to establish transfer functions that do not

require specific assumptions on the distribution of the original

data (i.e., precipitation and surface pressure). Empirical non-

parametric QM has been shown to be effective in bias correction

and can better capture non-linearities in the data (Tong et al.,

2021).

Within the given context, the correctedmodel-based data in the

forecast realm m̂v,i,t would be obtained as follows:

m̂v,i,t = f−1
rv

{fmv

(
mv,i,t

)
} (9)

where v, i, and t represent the variable, space, and time indices.

For quantile–quantile mapping (between f−1
mv

and f−1
rv

), we compare
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FIGURE 2

A schematic example of how the fully trained DL network and

optimized inputs Îv,i,t+1, can be used to predict δ̂v,i,t+1 for correcting

the model forecast Mv,i,t+1 at t+1.

linear, quadratic, and cubic regression and two cubic splines with

different smoothness parameters for each variable. The information

regarding the training, validation, and testing of QM is given

in Section 2.6.

2.4. Study area and data

The proposed methodology is implemented over the

European continent, where TSMP-G2A and COSMO-REA6

data are available. The study area consists of two domains,

the global domain and the focus domain, which follow the

predefined PRUDENCE regions (Christensen and Christensen,

2007). The UNet network is designed, such that it obtains

the input information from the global domain and optimizes

the loss function only over the focus domain. The reason

for optimizing the loss function in the PRUDENCE regions

is to exploit as much input information as possible from

the global domain while avoiding boundary effects in the

UNet network.

The global domain consists of 400 × 400 pixels

cropped from the central part of the EUR-11 domain,

according to the COordinated Regional Downscaling

EXperiment (CORDEX) project (Giorgi et al., 2009; Jacob

et al., 2014). The EUR-11 coordinate system is based

on rotated latitude–longitude gridding with a horizontal

resolution of 0.11 (12.5 km). The choice of a square-shaped

FIGURE 3

Elevation map representing the global and focus domain in this

study. The global domain consists of 400 * 400 pixels from the

EUR-11 domain. The focus domain consists of 8 geographical

regions named as Prudence regions.

study domain was made for convenience (e.g., obtaining

images with even dimensions in max-pooling layers in

UNet architecture).

The PRUDENCE regions are eight different geographical

regions over the European continent represented in Figure 3 as

red boxes (BI, British Isles; IB, Iberian Peninsula; FR, France; ME,

mid-Europe; SC, Scandinavia; AL, Alps; MD, Mediterranean; EA,

Eastern Europe).

The model-based precipitation and pressure data used in

this study are obtained from the daily averaged simulation

data (precipitation and surface pressure) of physically consistent

Terrestrial Systems Modeling Platform (TSMP) over Europe

(Gasper et al., 2014; Shrestha et al., 2014; Kollet et al., 2018). TSMP

is a scale-consistent fully coupled terrestrial model comprising

variables from the subsurface across the land surface to the

top of the atmosphere. TSMP utilizes the external OASIS3

coupler (Valcke, 2013) for coupling the COSMO atmospheric

model (Doms and Baldauf, 2012), CLM land model (Oleson

et al., 2008), and ParFlow subsurface model (Kollet and Maxwell,

2006).

TSMP-G2A data provided by Furusho-Percot et al. (2019)

offer an opportunity for studying feedback of states and fluxes of

the water and energy cycle between the top of the atmosphere

and down to groundwater. The ERA-Interim reanalysis was

used as the boundary condition in the development of the

TSMP-G2A simulations in 1979–2018. In the 1979–1989 spin-

up period, groundwater–land surface subsystem was simulated

with ParFlow-CLM using atmospheric forcing derived from ERA-

Interim. The model was run transiently from January 1989 to

August 2018 to allow the feedback process to evolve freely, and
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no data assimilation of any type of observation was included

(Furusho-Percot et al., 2019). This “big” dataset is also potentially

useful for developing/experimenting with the data-driven method

because of its high volume (e.g., long time series and high

resolution) and variety (e.g., fully interactive states and fluxes).

For example, Ma et al. (2020, 2021) used TSMP-G2A to extract

long-term memory correlations using deep learning to predict

groundwater table depth anomalies, using precipitation and soil

moisture information.

The spatial resolution and the domain of TSMP-G2A data

match the EUR-11 CORDEX definition (rotated grid, 0.11).

Data consist of physically driven atmospheric, land, surface, and

subsurface information. This dataset is applied to this study due to

its consistency with the reference data in terms of domain, gridding,

and variable availability. Daily precipitation and surface pressure

data for the years 1995–2017 are used from the TSMP-G2A data.

Atmospheric reanalysis data are gridded, spatiotemporal data

of long-term estimates of climate variables. Reanalysis data are

generated by using an NWP model and DA, which keeps

the model-based data as close to the observations as possible

while maintaining physical consistency. The reanalysis-based

precipitation and surface pressure data in this study were obtained

from the COSMO-REA6 atmospheric reanalysis product (Hu and

Franzke, 2020), provided by the Hans Ertel Centre for Weather

Research of the German Weather Service. The domain of this

dataset matches the EURO-11 coordinate systems with a spatial

resolution of 0.055 from 1995 to 2017. To ensure consistency

in the comparison and calculation of mismatches between the

model-based and reference data, the spatial resolution of the

COSMO-REA6 was upscaled to 0.11 via simple averaging. There

is no single precipitation dataset that is reliable for all regions

and time scales. While reanalysis datasets generally show larger

discrepancies compared to other datasets on a global scale (Sun

et al., 2018), COSMO-REA6 captures precipitation patterns and

intensity better than the global reanalysis ERA-Interim and the

observational gridded dataset E-OBS in regions with low station

density, especially in complex terrain (Kaiser-Weiss et al., 2019).

Here, we used the COSMO-REA6 reanalysis data as an example

reference data because it is continuous in space and time and

compatible with TSMP-G2A in terms of domain, grid, and

variable availability.

2.5. DL network setup

In the DL framework, we utilized a convolutional neural

network (CNN). In contrast to other artificial neural networks,

CNNs can efficiently utilize the complete information in space

and time from the spatiotemporally correlated precipitation and

pressure data sets, constituting an important feature of CNNs

(Sadeghi et al., 2019). Thus, CNN is expected to be able to

differentiate between different precipitation types considering the

distinct correlation structure at individual and surrounding pixels.

A type of encoder–decoder CNN architecture, namely, UNet

CNN by Ronneberger et al. (2015), was adapted and used in

this study (Figure 4). While UNet has been proposed initially

for biomedical image segmentation, several studies have recently

modified and successfully used UNet for various applications in

geosciences. UNet consists of down-sampling steps followed by

symmetric up-sampling. The down-sampling steps capture the

image context, and the up-sampling step is for precise localization

of the features. Several hyperparameter settings were applied

and tested in a trial-and-error manner (not shown). The final

hyperparameter settings used are shown in Table 1.

The UNet has two important properties: translation invariance

and receptive field. The former property means that the network

can recognize patterns in an image regardless of their location

or pattern within the image. This is achieved using pooling

layers. The receptive field property means that the network’s

prediction at a target location is fully determined by the input

variables in a certain neighborhood, called the receptive field. Both

properties are desirable as they counteract overfitting, but they

also represent constraints (Tesch et al., 2023). For example, in this

context, translation invariance can cause the network to overlook

features that are not invariant to translation, and the receptive

field can limit the network’s ability in capturing dependencies

between distant regions. To address this, we included orography

information to provide context to the network regarding the

orographic features of the pixels in the receptive field and the

study area. This can help compensate for the limitations of these

properties and result in improved performance for tasks that

require spatiotemporal information.

The UNet structure is well known for its good performance

in extracting features in analyzing spatial information (or images).

However, the structure itself does not explicitly facilitate the

extraction of temporal features unless it is fused with another

structure (e.g., LSTM), to learn long-term temporal dependencies

(Shi et al., 2015; Azad et al., 2019). As suggested in the literature,

it is possible to leverage temporal information in the UNet model

by considering various temporal lags (e.g., t − 1, t − 2) of input

data (Sun et al., 2019; Teimouri et al., 2019; Bastos et al., 2021)

or adding calendar information to UNet-shaped networks (Bastos

et al., 2021).

We trained and tested various DL networks given various

combinations of input data, Iv,i,t . In these combinations, we

considered a 1-day lag of model-based data and calendar variables

as well as orography. Orography includes time-independent images

providing information about the longitude, latitude, and altitude

of each corresponding pixel. Calendar data provide information

about the Julian year and the day of the year of the input

data given at time t. Each combination of Iv,i,t is unique

because of different Xv, i, t sets. A list of training experiments

and different combinations of input information is presented

in Table 2.

2.6. Training and validating the prediction
tasks

For all tasks shown in Table 2, the data from 1995 to 2009

(5,475 days) were used for training the network, while the data from

2010 to 2014 (1,825 days) were used for validation. The data from

2015 to 2017 (1,095 days) were applied for independent testing.
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FIGURE 4

UNet model structure used in this study. Number of input layers in the model corresponds to the number of input members (Lv,i,t = |Iv,i,t| − 1), IFN,

Initial filter numbers, Conv, Convolutional layer, Max Pool, Max pooling layer, Deconv, Transposed convolution layer.

TABLE 1 Hyperparameter settings of the proposed UNet.

Parameter Batch size Learning rate Max pooling
kernel size

Convolution
kernel size

Activation
functions

IFNb

Setting 2 0.001 2 3 LeakyRelua 32

aAll layers except the output layer use LeakyRelu activation function; linear activation function was used for the output layer.
bInitial Filter Number (IFN) represents the number of filters used in the first convolution layer.

For network training, the data were normalized using the batch

normalization function before every double-convolutional layer.

For training DL v, all pixel information from the global region

consisting of 400×400 pixels was provided to the network as image

data in Lv,i,t layers. To avoid the boundary effects from boundary

pixels, the loss function of the network was set to minimize Mean

Squared Error (MSE) between δ̂v,i,t and δv,i,t only over the focus

region. In each epoch, errors representing the focus region were

calculated for training and validation data.

The loss function is defined as the Mean Squared Error (MSE)

of the data during the training period in the focus region as follows:

MSEv, T =
1

NFNT

NT∑

t=1

NF∑

i=1

(δ̂v,i,t−δv,i,t)
2 (10)

where MSEv,P represents the loss for variable

v during the training period; NF represents the

number of pixels corresponding to the focus region;

NT represents the number of days in the training

period; and δ̂v,i,t and δv,i,t represent the predicted and

measured mismatches.

The same error was calculated for the validation period

as follows:

MSEv, V =
1

NFNV

NV∑

t=1

NF∑

i=1

(δ̂v,i,t−δv,i,t)
2 (11)

where MSEv, V represents the loss for variable v during

the validation period and NV represents the number of

validation days.
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TABLE 2 Prediction tasks with di�erent combinations of input data.

Variable Task Input data Target

pr A1 Ipr,i,t =
{
mpr,i,t , δpr,i,t

}
δpr,i,t

A2 Ipr,i,t =
{
mpr,i, t , mpr,i, t−1 , δpr,i,t

}

A3 Ipr,i,t =
{
mpr,i, t , mpr, i,t−1 , δpr,i,t , Dt , Yt

}

A4 Ipr,i,t =
{
mpr, i,t , mpr, i,t−1 , δpr,i,t , Dt , Yt , xi , yi , zi

}

A5 Ipr,i,t =
{
mpr,i, t , mpr, i,t−1 , δpr,i,t , xi , yi , zi

}

prg B1 Iprg,i,t =
{
mprg,i,t , δprg, i,t

}
δprg,i,t

B2 Iprg,i,t =
{
mprg,i, t , mprg,i,t−1 , δprg,i,t , Dt , Yt , xi , yi , zi

}

prc C1 Iprc,i,t =
{
mprc,i,t , δprc,i,t

}
δprc,i,t

C2 Iprc,i,t =
{
mprc,i,t−1 , mprc, i,t , δprc,i,t , Dt

, Yt , xi , yi , zi
}

prsn D1 Iprsn,i,t =
{
mprsn,i,t , δprsn,i,t

}
δprsn,i,t

D2 Iprsn,i,t =
{
mprsn,i,t−1 ,mprsn,i,t , δprsn,i,t , Dt , Yt , xi , yi , zi

}

sp E1 Isp,i,t =
{
msp,i,t , δsp,i,t

}
δsp,i,t

E2 Isp,i,t =
{
msp,i,t , msp,i,t−1 , δsp,i,t

}

E3 Isp,i,t =
{
msp,i,t , msp,i,t−1 , δsp,i,t , Dt , Yt

}

E4 Isp,i,t =
{
msp,i,t , msp,i,t−1 , δsp,i,t , Dt , Yt , xi , yi , zi

}

E5 Isp,i,t =
{
msp,i,t , msp,i,t−1 , δsp,i,t , xi , yi , zi

}

D, day of the year; I, input, m, model-based data; pr, total precipitation; prc, convective precipitation; prg, stratiform precipitation; prsn, snowfall; sp, surface pressure; Y , year; x, longitude; y,

latitude; z, altitude; δ, mismatch.

In the keras and Tensorflow open-source packages in Python,

which were utilized in this study, the Adam optimizer with a

learning rate of 0.001 was used to minimize the loss function.

The training was stopped if there were no further reductions

in the MSEv, V for eight consecutive epochs (patience =8). The

trained weights of the network during the epoch with the smallest

MSEv, V were stored for comparison with other trained networks

with varying input information (Table 2). The best combination of

input data for predicting mismatches for five variables presented

in Table 2 was selected according to an average of training and

validation MSE as follows:

AVv =
1

2
(MSEv, T +MSEv, V ) (12)

For each variable, the input data in the task with the least AVv

were chosen as the best input data.

We followed the same procedure for training, validation, and

testing the baseline method. To match the quantiles using Equation

9, we generate the quantiles of the model data and reference data

(f−1
rv

and f−1
mv

), based on the training data (i.e., historical data), and

use the validation data to identify the best regression method as

a transfer function. The testing data are then used to correct the

model-based data using the best transfer function and compared

with the best DL-based method.

After choosing the best input data for each variable, the

weights of the best input data (or task) were used to predict

δ̂v,i,t for pr and sp. The corrected model-based data (m̂v,i,t) were

calculated according to Equation 8. We used the mean error

(ME), Pearson correlation coefficient (COR), and root mean

squared error (RMSE) metrics to compare δ̂v,i,t with δv,i,t and

m̂v,i,t with rv,i,t . In the following, we explain how these error

metrics are calculated for the former, which also applies to

the latter.

Mean error (ME) is used for showing the average bias as follows:

MEv,i =

N∑

t=1

δ̂v,i,t − δv,i,t

N
(13)

where MEv,i is a map showing ME for each pixel in the focus

region and variable v and N is the total number of days from 1

January 1995 to 31 December 2017.

Pearson correlation coefficient (COR) is used as a measure of

the linear relationship between δ̂v,i,t and δv,i,t . COR is determined

according to the following equation:

CORv,i =

∑N
i=1 (δ̂v,i,t −

¯̂
δv,i) (δv,i,t − δ̄v, i)√∑N

i=1 (δ̂v,i,t −
¯̂
δv,i)

2
√∑N

i=1 (δv,i,t − δ̄v, i)
2
; (14)

where
¯̂
δv,i and δ̄v, i represent temporal averages of δ̂v,i,t

and δv,i,t .

Root mean squared error (RMSE) is used as a measure

for determining the average distance between δ̂v,i,t and δv,i,t

as follows:

RMSEv,i =

√∑N
i=1 (δ̂v,i,t − δv,i,t) 2

N
(15)
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FIGURE 5

Seasonal maps of m̄sp (A, E, I, M), r̄sp (B, F, J, N), and δ̄sp (C, G, K, O), and the probability distribution of δ̄sp (D, H, L, P).

3. Results and discussion

First, in Section 3.1, we compare the spatiotemporal

distributions of mv, rv, and δv that are the model and reference

data and their mismatches, respectively. In Section 3.2, we show the

evaluation results of various networks trained with different input

data and provide the best input data combination for predicting δv.

In addition, we compare the actual and predicted mismatches, δv

and δ̂v, obtained by the best-identified networks. Finally, in Section

3.3, we compare the reference data with the merged data from the

correction of the original model results.

3.1. Spatiotemporal distribution of the
mismatches

Figures 5, 6 present the spatial distribution of long-term

seasonal averages of the model and reference data and their

mismatches for surface pressure (m̄sp, r̄sp, and δ̄sp, Figure 5) and

total precipitation (m̄pr , r̄pr , and δ̄pr , Figure 6). The overbars

indicate the averages calculated for each pixel based on daily values

from 1995 to 2017 for DJF (December, January, and February,

Figures 6A–D), MAM (March, April, and May, Figures 6E–H),

JJA (June, July, and August, Figures 6I–L), and SON (September,

October, and November, Figures 6M–P). The averages δ̄v are

illustrated as seasonal maps and probability density distributions.

According to Figures 5, 6, there is an overall underestimation

of m̄sp during MAM season, overestimation during JJA and SON

seasons, and overestimation of m̄pr during all seasons. A significant

amount of this positive mismatch in total precipitation during

all seasons is attributed with stratiform rainfall. Moreover, there

is an underestimation of convective rainfall during JJA and SON

seasons. In addition, topographical effects can be observed in

both variables with strong positive or negative mismatches in

higher altitudes.

The same figures for precipitation components (i.e.,

stratiform rainfall, convective rainfall, and snowfall) are

provided in Supplementary material S1. Inspecting the different

precipitation components, there is a clear positive bias, where

m̄prg accounts for a substantial amount of the overestimation

(Supplementary Figure 1). On the other hand, m̄prc appears

to underestimate convective rainfall occurrence in Europe

throughout JJA and SON months (Supplementary Figure 2).

Moreover, there is a general overestimation of m̄prsn during DJF

months (Supplementary Figure 3).
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FIGURE 6

Same as Figure 5, but for pr.

3.2. Evaluation of the training and
validation results

Table 3 represents the training and validation results of

the different DL tasks presented in Table 2. According to

Table 3, including spatiotemporal information as input layers

(e.g., orography and calendar) yields an improvement (i.e.,

reduction in AVv ) compared against tasks with no additional

input data. The improvement percentages range from 1.2%

to 14% depending on the type of precipitation. For example,

the prediction of δprsn has the greatest improvement of 14%

when all the additional input data are included. We believe

that this is due to the fact that snowfall mismatch prediction

is more influenced by spatiotemporal seasonality. In general,

the improvement in total precipitation is 3.9%. We tested

the performance of the network by adding more model-

based data from earlier time steps (i.e., t − 2, t − 3),

which did not further improve the results (not shown here).

The results obtained in Table 3 helped us understand the

effectiveness of introducing spatiotemporal information for

different types of precipitation. However, the following results

in the manuscript pertain solely to total precipitation and

surface pressure.

We evaluated in detail the total precipitation (A4) and

surface pressure (E4) from Table 3. The predicted mismatch

data (δ̂sp and δ̂pr) obtained by these two tasks were used

for model-based data correction. The trained network

weights in these tasks were used to generate δ̂sp and δ̂pr

for both training-validation and testing periods. In an

ensuing step, the results are evaluated against the measured

mismatches (δsp and δpr).

For the baseline method, we evaluated the validation results

using the RMSE of various methods for fitting the quantile–

quantile datapoints between TSMP-G2A and COSMO-REA6.

Figure 7 is a comparison of the precipitation. According

to the validation results, cubic regression (Figure 7D) has

the best fit between the model-based and reference data

quantiles. We used the same principle for surface pressure

(Supplementary Figure 4) and cubic spline with a smoothing

factor of s = 5 which had the best validation result. The

two mentioned methods were used to generate TSMP-

QM (corrected TSMP-G2A using QM) for precipitation and

surface pressure.

Figure 8 shows the UNet skill in mismatch prediction for

pr and sp over four seasons. The left column (Figures 8A–D,

I–L) in these figures illustrates the probability density, and the
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TABLE 3 Errors for DL tasks labeled according to various input datasets defined in Table 2.

Variable Task MSEv, T MSEv, V AVv Improvement (%)

pr (mm/day) A1 5.11 5.72 5.42 -

A2 4.85 5.61 5.23 3.5

A3 4.91 5.67 5.29 2.4

A4∗ 4.87 5.54 5.21 3.9

A5 5.00 5.63 5.32 1.8

prg (mm/day) B1 3.22 3.55 3.39 -

B2∗ 3.09 3.34 3.22 5

prc (mm/day) C1 0.72 0.93 0.83 -

C2∗ 0.77 0.86 0.82 1.2

prsn (mm/day) D1 0.38 0.48 0.43 -

D2∗ 0.35 0.38 0.37 14

ps (kPa/day) E1 0.064 0.065 0.065 -

E2 0.064 0.062 0.063 3.1

E3 0.060 0.059 0.060 7.7

E4∗ 0.055 0.063 0.059 9.2

E5 0.056 0.061 0.059 9.2

∗shows the best input combination (or task) for each variable.

FIGURE 7

Comparison of quantile-quantile transfer functions for QM using the validation data for precipitation (v = pr). RMSE-V is calculated for validation data

between frv−1 and fmv−1 fitted using various methods (B–F) against the raw dataset (A).

right column (Figures 8E–H, M–P) represents the scatter plots

of the seasonal averages of measured (δ̄v) and predicted (
¯̂
δv)

mismatches. According to the scatter plots, UNet’s performance

in predicting negative
¯̂
δpr is limited. During the DJF and MAM

months,
¯̂
δpr vs. δ̄pr distributions match reasonably well. During

JJA and SON months, however, with increasing convective
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FIGURE 8

Probability distribution (A–D) for pr, (I–L) for sp and scatter plots (E–H) for pr, (M–P) for sp for seasonal averages of predicted vs. measured

mismatches (
¯̂
δv vs. δ̄v).

rainfall (see Supplementary Figures 2J, N), the discrepancy

in the distribution of predicted vs. measured mismatches is

more pronounced.

Figures 9, 10 show the seasonally averaged spatial distribution

of RMSE and COR between
¯̂
δv and δ̄v. According to Figure 9,

¯̂
δsp has the highest RMSE and COR during MAM months

(Figures 9C, D) and the lowest RMSE and COR during JJA

and SON months (Figures 9E–H), respectively. Unlike sp, the

orography plays a significant role in the UNet prediction skill

for pr. For example, from Figure 10, the majority of the highest

RMSE values correspond to the Scandinavian highlands and

Alps. Additionally, there is a shift in the higher RMSE and

lower COR values toward the south of central and northern

Europe from JJA to SON months, which is attributed to the

prevalence of convective precipitation in these regions during

these seasons.

UNet CNN was shown to capture precipitation and surface

pressure mismatch information over the focus region with an

average correlation coefficient of 0.65 and 0.63, respectively.

Therefore, it appears that UNet can predict the mismatches

leading to a general reduction in bias and improving model

accuracy. Nonetheless, the mismatch distributions depicted are

temporally averaged, and extreme events were not explored

independently. Thus, further research is required to evaluate

the applicability of the framework for the correction of

extreme events.

3.3. Evaluation of the testing results

Here, we focus only on the testing data (2015–2017), which

have not been used either to determine the weights in the UNet

or to generate the empirical quantiles and transfer functions

in QM. We compare the performances of original model-based

data (TSMP-G2A) against TSMP-QM (model-based data corrected

using QM) and TSMP-UNET (model-based data corrected using

UNet). Table 4 contains statistics related to precipitation (pr)

and surface pressure (sp) for the aforementioned data. The table

displays ME, COR, and RMSE and the overall spatiotemporal

average value obtained from COSMO-REA (shown with AV) over

various seasons.

Table 4 suggests that TSMP-UNET outperforms TSMP-QM in

terms of RMSE and COR in precipitation and surface pressure.

While TSMP-QM performs better than TSMP-UNET in closing the

ME gap during JJA and SON months for precipitation and during

JJA months for surface pressure, other metrics favor TSMP-UNET.

Gap reduction in ME compromises other error metrics (i.e., COR
and RMSE), which is a well-known tradeoff in bias correction. The

compromise is reflected more in QM than UNet for precipitation
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FIGURE 9

Spatio-temporal distribution of RMSE (A, C, E, G) and COR (B, D, F, H) of surface pressure δ̂sp against δsp.

and corresponds with the findings of previous studies that have

compared traditional bias correction methods over DL (Hess and

Boers, 2022). The uncertainty in summertime precipitation (e.g.,

convective rainfall) makes it more challenging for both methods

to reduce the average error and the dispersion of the error. This

is reflected in worse RMSE values of TSMP-QM precipitation and

no changes in RMSE of TSMP-QM surface pressure.

3.4. Evaluation of TSMP-UNET

After generating the corrected model-based data (m̂v,i,t ,

Equation 8), TSMP-G2A and TSMP-Unet were compared with

COSMO-REA6. Figures 11, 12 show the spatial distribution

of various error statistics (ME, ESD, RMSE, and COR) for

TSMP-G2A (Figures 11A–C, 12A–C), m̂v,i,t (Figures 11D–

F, 12D–F), and the relative percentage of improvement

against the original model-based data (Figures 11G–I,

12G–I).

Figures 11, 12 show that the application of the predicted

mismatches strongly improves the estimates of precipitation and

surface pressure resulting in a decrease in ME and RSME and

an increase in COR almost in all regions. Interestingly, there

are locations where the merger impacts the ME negatively

(Figures 11G, 12G). In addition, there are areas where UNet

predictions have a small effect on reducing RMSE in precipitation

compared to surface pressure (Figure 11H). In these cases,

the complex and chaotic nature of convective and orographic

precipitation adds a strong random component to the model and

reference data, in which UNet is apparently not able to capture in

the training.

In Figures 13, 14, the monthly time series of regional averages

of TSMP-G2A, COSMO-REA6, and m̂v,i,tare shown for the

PRUDENCE focus regions. In both figures, the years between

1995 and 2010 correspond to training, between 2010 and 2015

correspond to validation, and between 2015 and 2017 correspond

to testing. In general, m̂v,i,tshows a good agreement with COSMO-

REA6, which is generally consistent in all training, validation,

and testing periods. However, a limitation is over-correction or

under-correction effects that can be observed in the peaks in the

time series (Figure 14B). However, the merged product’s daily and

monthly aggregated results show an improvement compared to the

original model results. On average, for pr and sp, m̂v,i,t is improved

significantly (47% reduction inME, 37% increase in daily COR, and

22% reduction in RMSE). The added utility of this approach is not

only limited to one model compartment. In addition, the benefits

obtained by an online correction of atmospheric variables (m̂v,i,t) in

an integrated terrestrial modeling platform, such as TSMP, will also
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FIGURE 10

Same as Figure 8, but for pr.

yield improvements in the states of other terrestrial compartments

of the model (e.g., surface/subsurface variables).

4. Conclusion

In this study, we applied a previously proposed method

to atmospheric variables based on the rationale to arrive at

a correction method for online hydrologic/impact simulations

in earth system modeling. A DL network, UNet CNN, was

designed to learn mismatches between a set of model and

reference data by using the model-based data as the main

input and varying additional input data including topographical

and temporal information. According to the proposed DL-based

merging methodology, the predicted mismatch data obtained by

the best UNet network were used to correct the model-based

data. To investigate the improvements in the original model-

based data, we compared the corrected data (TSMP-UNET) and

original model-based data (TSMP-G2A) with the reanalysis-based

data (COSMO-REA6). Assuming COSMO-REA6 represents the

“ground truth” data, it is possible to utilize the network weights

learned by the DL network in conjunction with the physically based

model information from TSMP to arrive at an improved forecast of

precipitation, surface pressure, or potentially any atmospheric and

hydrologic variable, in general, which needs to be demonstrated in

future studies.

Comparing TSMP-UNET and TSMP-G2A with COSMO-

REA6 data shows significant improvements in the original model-

based data across most grid cells in the focus domain. The

mean error (ME), root mean square error (RMSE), and Pearson

correlation coefficient (COR) values of TSMP-UNET data have

improved substantially. However, it is worth noting that in some

oceanic regions, applying predicted mismatches from UNet leads

to a deterioration of ME values, as shown in Figure 12G. This

may be due to differences in precipitation characteristics over land

and ocean caused by differences in the assimilation of prognostic

variables in COSMO-REA6. Similar problems occur for convective

precipitation mainly in SON and JJA months. Although UNet can

reduce both error dispersion and mean error across all seasons,

it may worsen mean error during SON and JJA months. This

can be due to the translation invariance property of the UNet.

The inclusion of spatiotemporal information in the inputs has

improved UNet’s performance, but convective rainfall remains

highly variable and independent of the provided spatiotemporal

information, making it difficult to improve UNet’s performance

in comparison to snowfall. While training separate UNet models

for land and ocean may be a viable solution, a single network

that can suppress all error metrics over all regions and seasons is

currently not feasible for precipitation. Despite these challenges, the

DL-based merging framework has shown potential for improving

atmospheric variables beyond the two examples studied.
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TABLE 4 Testing evaluation results given for TSMP-G2A, TSMP-QM, and TSMP-UNET data over various seasons for pr and sp.

Variable Statistics Seasons TSMP-G2A TSMP-QM TSMP-UNET

pr ME (mm/day) DJF 0.71 0.63 −0.14

MAM 0.86 0.78 0.02

JJA 0.14 0.08 −0.33

SON −0.19 −0.27 −0.76

COR DJF 0.50 0.49 0.58

MAM 0.30 0.30 0.40

JJA 0.20 0.20 0.28

SON 0.33 0.32 0.40

RMSE (mm/day) DJF 5.22 5.48 4.11

MAM 5.72 6.00 4.21

JJA 5.97 6.22 4.81

SON 6.25 6.42 5.58

AV (mm/day) DJF 2.22 2.22 2.22

MAM 1.78 1.78 1.78

JJA 1.72 1.72 1.72

SON 2.30 2.30 2.30

sp ME (kPa/day) DJF 0.01 −0.04 0.01

MAM −0.21 −0.24 −0.07

JJA 0.10 0.05 0.06

SON 0.27 0.20 0.18

COR DJF 0.86 0.86 0.98

MAM 0.85 0.85 0.98

JJA 0.86 0.85 0.98

SON 0.86 0.85 0.98

RMSE (kPa/day) DJF 2.21 2.21 0.79

MAM 2.21 2.22 0.80

JJA 2.10 2.10 0.69

SON 2.17 2.17 0.78

AV (kPa/day) DJF 98.81 98.81 98.81

MAM 98.77 98.77 98.77

JJA 98.79 98.79 98.79

SON 98.91 98.91 98.91

Deep learning of mismatches from a more chaotic variable,

such as precipitation, appears to be more challenging than a less

chaotic variable, such as surface pressure. Precipitation is non-

Gaussian, right-skewed, and highly variable over space and time

as well as in intensity and duration. One of the challenges in

dealing with precipitation is in detecting the negative mismatches

(Figures 7G, H). Negative mismatches occur when there is no

or less amount of precipitation in the model-based data, while

there is an arbitrary amount of precipitation in the reference

data. Models often lack sensitivity in triggering precipitation.

Therefore, it can be challenging for the neural network to learn

negative mismatches since the model-based data are the main

input data used for predicting the mismatches. One area of

improvement can be the use of ensemble model data (i.e., using

various simulation data out of the same model or different

models) so that the information provided by each model as

input data in the DL network can compensate for failure or

lack of information in the input data. However, when comparing

the correlation coefficient obtained by predicted mismatches for

these two variables, the correlation coefficient results are similar
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FIGURE 11

Maps of average Mean Error (ME), Root Mean Squared Error (RMSE), and Correlation Coe�cient (COR) calculated for TSMP-G2A (A-C), and

TSMP-UNET (D-F) against COSMO-REA6, and the percentage of improvement (G-I) for sp.

(roughly 0.65). This might be an indication of the lack of

temporal information extracted in the UNet architecture used in

this study. Furthermore, introducing calendar information as an

additional variable improved the network’s performance slightly

(2.4% reduction in loss function for precipitation and 7.7% for

surface pressure). This suggests that a DL network (e.g., ConvLSTM

or 3D Conv) that better uses the temporal information would

have the ability to learn the mismatches with a higher prediction

skill. The main advantage gained by utilizing reanalysis data as

the reference data is the spatiotemporal continuity, which is useful

in quantifying the mismatch structure at every point in time and

space. However, the accuracy of the reanalysis data is limited and
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FIGURE 12

The same as Figure 11, but for pr.

often is validated against the available observed data due to their

higher accuracy and consistency in representing the ground truth.

Utilizing observations as reference data can provide more accurate

and consistent “ground truth” information for the DL network to

learn from. However, observations have other limitations such as

sparse spatial coverage, incomplete temporal coverage, and data

processing errors. Both reanalysis and observation data have their

own advantages and limitations, and their usage in the DL network

depends on the specific research questions and the availability and

quality of the data.

By using the DL-based merging as a post-processor to

correct the atmospheric simulations, the accuracy of the land
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FIGURE 13

Time-series of monthly average surface pressure (sp) for TSMP-G2A, COSMO-REA6, and TSMP-UNET data over di�erent regions (A–H).

surface model can be improved. Additionally, comparing the

simulation data from the land surface model with in situ

measurements can indirectly validate the effectiveness of the

DL-based merging technique. This approach can potentially lead

to more accurate predictions of water resources, crop yields,

and other environmental variables, which can have significant

implications for decision-making in areas such as agriculture, water

management, and disaster preparedness.
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FIGURE 14

Time-series of monthly average total precipitation (pr) for TSMP-G2A, COSMO-REA6, and TSMP-UNET data over di�erent regions (A–H).
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