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Microbial decomposition of organic matter (OM) in river corridors is a major

driver of nutrient and energy cycles in natural ecosystems. Recent advances

in omics technologies enabled high-throughput generation of molecular data

that could be used to inform biogeochemical models. With ultrahigh-resolution

OM data becoming more readily available, in particular, the substrate-explicit

thermodynamic modeling (SXTM) has emerged as a promising approach due

to its ability to predict OM degradation and respiration rates from chemical

formulae of compounds. This model implicitly assumes that all detected organic

compounds are bioavailable, and that aerobic respiration is driven solely by

thermodynamics. Despite promising demonstrations in previous studies, these

assumptions may not be universally valid because OM degradation is a complex

process governed by multiple factors. To identify key drivers of OM respiration,

we performed a comprehensive analysis of diverse river systems using Fourier-

transform ion cyclotron resonance mass spectrometry OM data and associated

respiration measurements collected by the Worldwide Hydrobiogeochemistry

Observation Network for Dynamic River Systems (WHONDRS) consortium. In

support of our argument, we found that the incorporation of all compounds

detected in the samples into the SXTM resulted in a poor correlation between

the predicted and measured respiration rates. The data-model consistency was

significantly improved by the selective use of a small subset (i.e., only about 5%)

of organic compounds identified using an optimization method. Through a

subsequent comparative analysis of the subset of compounds (which we presume

as bioavailable) against the full set of compounds, we identified three major

traits that potentially determine OM bioavailability, including: (1) thermodynamic

favorability of aerobic respiration, (2) the number of C atoms contained in

compounds, and (2) carbon/nitrogen (C/N) ratio. We found that all three factors

serve as “filters” in that the compounds with undesirable properties in any of these

traits are strictly excluded from the bioavailable fraction. This work highlights the

importance of accounting for the complex interplay among multiple key traits to

increase the predictive power of biogeochemical and ecosystem models.
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1. Introduction

Microorganisms play a significant role in maintaining the

elemental balance in natural ecosystems. By degrading complex

organic matter (OM), microbes recycle essential nutrients (e.g.,

carbon, nitrogen, and phosphorus) back into the ecosystem and

release carbon dioxide into the atmosphere (Pomeroy, 1974; Sun

et al., 1997; Findlay and Sinsabaugh, 1999; Benner, 2003; Kellerman

et al., 2015; Hu et al., 2022). Therefore, biogeochemical models

must consider the significant role of microbes in OM degradation,

which is influenced by multiple biotic and abiotic factors, including

chemical traits of substrates, biological traits of microbes, and

extracellular enzymes, as well as their dynamic interactions. All

of these factors play a role in governing OM degradation and

must be accounted for in models to achieve accurate predictions

of microbial respiration rates (Moorhead et al., 2013; Song et al.,

2020). The development of microbial-explicit (Todd-Brown et al.,

2012; Wieder et al., 2015; Allison, 2017; Sulman et al., 2018),

enzyme-explicit (Moorhead et al., 2013; Song et al., 2014, 2017;

Song and Liu, 2015), and substrate-explicit models (Garayburu-

Caruso et al., 2020a,b; Song et al., 2020) demonstrates ongoing

efforts to improve our understanding of complex OM degradation

process in this regard.

With the increasing availability of ultrahigh-resolution OM

data, the substrate-explicit thermodynamic modeling (SXTM)

developed by Song et al. (2020) is particularly valuable due to its

capability of using the chemical formulae of organic compounds

to predict aerobic respiration rates. Notably, the SXTM can handle

complex formulae, including compounds with a high number of

carbon (C) atoms, which constitute the majority of measured

compounds in the ecosystem. In a previous study, the SXTM

predicted the variation in respiration rates between two sites with

distinct vegetation densities by incorporating ultrahigh-resolution

Fourier-transform ion cyclotron resonance mass spectrometry

(FTICR-MS) OM data (Song et al., 2020). Primary assumptions

made in these predictions were that: (1) all detected organic

compounds are bioavailable for aerobic respiration, and (2) the

aerobic respiration of OM is driven by their thermodynamic

favorability. Despite successful demonstrations in previous studies,

these assumptions are not universally valid, and therefore, need

further evaluation.

Clearly, not all organic compounds are readily decomposable

by microbes (or bioavailable)—rather, only a small fraction of

compounds in the OM pool may be effectively utilized over a given

time for microbial metabolism (Sun et al., 1997). The bioavailability

of OM is dependent on various factors, including chemical

heterogeneity (Thurman, 1985; Kellerman et al., 2015) that

affects the recalcitrance and thermodynamics, steric hindrances

of OM localized in small pores or protected within soil/mineral

aggregates (Marschner and Kalbitz, 2003; Schmidt et al., 2011;

Lavallee et al., 2020), non-uniform spatiotemporal distributions of

temperature, vegetation, moisture and nutrients (Marschner and

Kalbitz, 2003), fluctuating occurrence and concentration of organic

compounds (Schmidt et al., 2011; Merder et al., 2021), diversity

and dynamics of microbial communities (Giovannoni et al., 1990),

andmultiple biotransformation pathways (Findlay and Sinsabaugh,

1999). The complexity of the controls of OM bioavailability hinders

the mechanistic understanding of how the dynamic interplay

between the governing factors drives OM degradation. Even in

well-controlled lab incubation experiments, the bioavailable

fractions of organic compounds detected in ultrahigh-resolution

molecular datasets are not easily distinguished, which poses a

serious challenge in incorporating the OM data into quantitative

biogeochemical modeling for robust predictions of carbon and

nutrient cycles (D’Andrilli et al., 2015; Hu et al., 2022).

Earlier studies that condense rich and distributed properties

of OM into collective bulk parameters lose critical information

needed to understand the relations between substrate chemistry

andmicrobial activity (Findlay and Sinsabaugh, 1999; Merder et al.,

2021). Some studies partially accounted for the distinction between

bioavailable and non-bioavailable fractions by identifying labile

and recalcitrant compounds (D’Andrilli et al., 2015; Hu et al.,

2022), respectively. However, the bioavailability of OM is often

dictated by several interdependent factors (Marschner and Kalbitz,

2003), therefore, OM degradation is best described by concurrently

accounting for various dimensions of OM characteristics (Hu

et al., 2022). Moreover, to our knowledge, no studies have

attempted to predict the microbial aerobic respiration rates by

distinctly accounting for just the bioavailable fraction of the

detected compounds.

In this work, we propose a computational method combining

the SXTM with an optimization approach that enables identifying

a subset of organic compounds that are potentially bioavailable

under aerobic conditions from a set of measured compounds.

As a case study, we analyzed the high-throughput ultrahigh-

resolution FTICR-MSOMdata from diverse river systems collected

by the Worldwide Hydrobiogeochemistry Observation Network

for Dynamic River Systems [WHONDRS; Stegen and Goldman

(2018), Goldman et al. (2020), Toyoda et al. (2020); https://

whondrs.pnnl.gov] consortium. While our initial estimation of

aerobic respiration rates using the SXTM (Song et al., 2020) that

ignores OM bioavailability resulted in a poor correlation with

measured values, the model prediction was significantly improved

by incorporating a small subset of bioavailable portion identified

using an optimization algorithm. Through a subsequent analysis

of the subset of compounds selected by the model, three primary

chemical traits emerged as potential drivers of OM bioavailability:

thermodynamic favorability of aerobic respiration, the number of

C atoms present in compounds, and the C/N ratio. These findings

suggest that to develop predictive models of biogeochemical and

ecosystem processes, we must shift our focus from searching for

individual key parameters to integrative analysis of multiple factors

and their interactions.

2. Methods

2.1. Thermodynamic estimation of
microbial oxidative degradation of organic
matter

We use the SXTM developed by Song et al. (2020) that enables

converting chemical formulae of detected organic compounds into

stoichiometric and kinetic equations to infer microbial aerobic

respiration kinetics of individual compounds. The model derives

a stoichiometric equation for metabolic reaction by considering the
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energetic coupling between catabolic (energy production through

substrate degradation) and anabolic (energy consumption for cell

synthesis) reactions.

First, catabolic reaction is formulated by balancing a pair of

redox half reactions for an electron donor (i.e., organic compound)

and an electron acceptor (i.e., oxygen) (Rittmann and McCarty,

2001; Kleerebezem and Van Loosdrecht, 2010). Anabolic reaction is

also derived based on the mass and electron balances for the carbon

and nitrogen sources, where the carbon source is the electron

donor for heterotrophic organisms and ammonium is chosen as the

nitrogen source.

The final metabolic reaction is obtained by combining catabolic

and anabolic reactions using the parameter λi [defined in Eq. (1)]

such that the energy is balanced. We evaluate thermodynamic

favorability of aerobic respiration of organic compounds based on

λi, which denotes the number of times the catabolic reaction of ith

compound needs to proceed to provide the energy required for the

synthesis of a unit C-mole of biomass (CMB) (Hoijnen et al., 1992;

Song et al., 2020):

λi =
1Gi,ana + 1Gi,dis
(

−1Gi,cat

) (1)

Given the definition, smaller λ denotes greater thermodynamic

favorability, and as a result, λ is inversely associated with

the microbial aerobic respiration rates in theory. In Eq. (1),

Gi,cat and Gi,ana are the Gibbs free energies of catabolic and

anabolic reactions, respectively, which are computed using the

stoichiometric coefficients of the respective reactions:

1Gr,i =
∑

k

yri,k 1G0
k (2)

Here, yr
i,k

is the stoichiometric coefficient of k-th component

in the reaction, 1G0
k
is the Gibbs energy of formation of the

respective component, and the subscript and superscript r denotes

the reaction, i.e., r = [cat, ana]. Following this, the remaining

unknowns in Eq (1), i.e., the dissipation energy, 1Gi,dis, and λi,

are estimated using the thermodynamic electron equivalents model

(TEEM) (Mccarty, 2007). Lastly, the stoichiometric coefficient for

the overall metabolic reaction is given as follows:

yi = λiy
cat
i + yanai (3)

where ycati , yanai , and yi are the vectors containing stoichiometric

coefficients for various chemical species involved in the catabolic,

anabolic, and the overall metabolic reactions, respectively.

Then, the model formulates the microbial growth kinetics for

oxidative degradation of OM based on thermodynamic theory by

linking the stoichiometry coefficients of organic carbon and O2 in

the metabolic reaction (Quéméner and Bouchez, 2014):

rO2 ,i = yO2 ,iµi; µi = µmax exp

(

−
∣

∣yOC,i
∣

∣

Vh [OCi]

)

exp

(

−
∣

∣yO2 ,i

∣

∣

Vh [O2]

)

(4)

Here, rO2 ,i (mol-O2/CMB.h) is the specific respiration rate

of ith compound defined per CMB, yO2 ,i and yOC,i are the

stoichiometric coefficients of O2 and organic carbon (normalized

per CMB), µi and µmax (1/h) are the actual and maximum specific

growth rate of microbiome, Vh is the harvest volume (volume of

the environment surrounding microbes in which they can access

substrates for harvesting energy), whereas [OCi] and [O2] are

the respective substrate volumetric molar concentrations. As the

Vh and the concentrations of individual organic compounds are

unknown from qualitative OM data, we can take them collectively

as tuning parameters to represent different levels of substrate

limitations. If the supply of organic carbon is limited with excessive

O2 supply, the concentration of organic carbon becomes the rate-

limiting factor, indicating a C-limited microbial reaction, while

the opposite is also true. Likewise, when the supply of C and O2

are both restricted, the microbial reaction is both C- and O2-

limited. We can enforce various levels of C and O2 limitation in

estimating aerobic respiration rates by tuning the parameters [i.e.,

Vh [OCi] and Vh [O2]] in Eq. (4). For example, microbial growth

and respiration rates will not be limited by substrate concentrations

when Vh [OCi] and Vh [O2] tend to large values, where µi ≈ µmax,

and vice versa. Therefore, we tested a range of values for the

parameters and systematically chose a set of values to estimate the

respiration rates under C-limited, O2-limited and both C- and O2-

limited conditions (see Supplementary Figure S1). Additionally, we

assume a unity value for µmax which is also unknown, resulting in

r
′

O2 ,i
defined as the respiration rate normalized per unit maximum

specific growth rate of microbiome (mol-O2/CMB):

r
′

O2 ,i
= yO2 ,i(µi/µ

max) (5)

= yO2 ,i exp

(

−
∣

∣yOC,i
∣

∣

Vh [OCi]

)

exp

(

−
∣

∣yO2 ,i

∣

∣

Vh [O2]

)

The use of the same value of µmax implicitly assumes that

the microbial growth kinetics does not vary significantly across

samples. The formulation in Eq. (5) is used to represent the model

respiration rates throughout the rest of this work, but we drop the

prime notation from r
′

O2 ,i
for brevity. A more detailed derivation of

the aerobic respiration kinetics and thermodynamic favorability is

given in Song et al. (2020).

2.2. Estimation of overall aerobic
respiration and thermodynamic favorability
in samples containing organic matter

We can represent the overall oxidative respiration rate in a

given sample by taking an average of the model-estimated rates of

all detected organic compounds in the sample. However, not all

detected compounds may be actively involved in biogeochemical

transformations given the variable bioavailability of compounds.

To better represent microbial processes, we only consider a subset

of compounds that are presumably bioavailable:

r̄O2 ,j =
1

nj

∑

i∈IBj

rO2 ,ij (6)
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Here, rO2 ,ij is the normalized respiration rate of ith compound

detected in jth sample, r̄O2 ,j is the overall respiration rate in

jth sample, and nj is the total number of compounds detected

in jth sample. In the summation, we only account for the set

of bioavailable compounds (i ∈ IBj ), which means that non-

bioavailable compounds are presumed not respired (assigned

zero rates) in the sample. Similarly, we can compute the

overall thermodynamic favorability of aerobic respiration in jth

sample as:

λ̄j =
1

nBj

∑

i∈IBj

λi (7)

Here, as we cannot assign zero values to λ by definition,

we exclude non-bioavailable compounds from the average

calculation by using nBj which is the total number of

bioavailable compounds in jth sample. To this end, we

employ a model optimization pipeline to identify a subset of

bioavailable compounds (detailed in the following section)

that can adequately represent the overall microbial activity

in samples.

2.3. Model optimization pipeline for
identification of bioavailable organic matter

In this work, we examine FTICR-MS and measured aerobic

respiration data collected from various river corridors as part of

the WHONDRS Summer 2019 Sampling Campaign (Figure 1A).

The FTICR-MS assigns chemical formula to detected organic

compounds, and the respiration rates are measured by determining

the rate of oxygen depletion (i.e., mg-O2/L.h) in batch experiments

conducted under aerobic conditions over the span of about 2 h

(Goldman et al., 2020).

The experimental setting and measurement led to the

thermodynamic model formulation as described in Section 2.1

that quantifies the aerobic respiration rate by taking oxygen as

the terminal electron acceptor. Using the model, we estimate the

aerobic respiration rates (i.e., O2 consumption rate) for detected

compounds from all samples (Figure 1B) and consolidate the

rates to form a composite distribution (Figure 1C). Note that

distinct composite distributions can be collated for different cases

of assumed substrate limitations (see Supplementary Figure S2).

As the sample-specific maximum microbial growth rate is

unknown, we present the model respiration rate per unit

maximum specific growth rate of the microbiome with the

unit mol-O2/CMB (Section 2.1). Although the predicted rates

are in different units than measured data (and therefore no

direct comparison of their absolute values would be possible),

it is still an adequate proxy of microbial activity that can

be directly correlated with the measured absolute volumetric

respiration rates.

Subsequently, we optimize a lognormal distribution

function by calibrating the mean (µ) and standard

deviation (σ ) within the domain of the respective composite

distribution to maximize the correlation between the model

respiration rates and measured (experimental) rates of

each sample (Figure 1D), by minimizing the sum of squares

of residuals:

FIGURE 1

Modeling workflow depicting our optimization pipeline to identify bioavailable OM. Ultrahigh-resolution OM data is used to estimate the oxidative

respiration kinetics of individual organic compounds based on thermodynamic theory (A). The model-estimated respiration rates of detected

compounds (blue) from all samples (B) are consolidated into a composite distribution (C). A lognormal distribution function is optimized (within the

domain of the composite distribution) such that it maximizes the correlation of model respiration rates with experimentally measured rates of each

sample (D). A set of unique compounds that are potentially bioavailable (orange) is identified by randomly sampling the optimized distribution

function (E). The overall respiration in each sample is computed by taking an average of model respiration rates of only bioavailable compounds

detected in the respective sample. Compounds that are not detected in the sample are omitted from the calculation, whereas detected compounds

that are not chosen as bioavailable are assigned zero respiration rates.
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argmin
bioav. OCs

∑

j

{
∣

∣

∣
r
exp
O2 ,j

∣

∣

∣
−
∣

∣r̄O2 ,j

∣

∣

}2
(8)

Here, r
exp
O2 ,j

is the measured respiration rates in samples,

and the overall model respiration rate (r̄O2 ,j) only accounts

for the bioavailable compounds detected in respective samples

following Eq. (6). We used “fmincon” on MATLAB
R©

R2022a

to perform the optimization. Throughout this work, it shall be

understood that we presume the compounds chosen by our

model optimization as bioavailable. To identify unique bioavailable

compounds, we randomly sample the lognormal distribution

function in each iteration of the optimizer and locate the

closest resembling compound (in terms of model respiration

rates of individual compounds) from the composite distribution

(Figure 1E). We enforce sampling without replacement, i.e., if

a compound is selected more than once, we pick the next

closely resembling compound from the composite distribution.

The number of compounds picked from the distribution would

affect the performance of the optimizer and the correlation between

model outcome and measured data. In this work, the sampling size

is fixed at 5% of the size of the composite distribution (the rationale

for this choice is discussed in Section 3.2).

3. Results

3.1. Model-data correlation is significantly
improved by selectively incorporating a
subset of bioavailable organic matter

As alluded to in Section 2.1, we used the parameters Vh [OCi]

and Vh [O2] of the SXTM to estimate the aerobic respiration

kinetics under varying substrate limitations—C-limited, O2-

limited, and both C- and O2-limited conditions. As expected, the

correlations between the model and measured respiration rates are

negative and poor when we assumed that all detected compounds

in respective samples were being respired during laboratory

experiments (Figure 2, top in blue), regardless of substrate

limitations. To ensure that our selection of parameter values

had no bearing on causing the observed negative correlations,

we thoroughly examined various values for the parameters that

correspond to low, moderate, and severe limitations of C and

O2 in Supplementary Figure S3, confirming that the negative

correlations persist in all the examined cases. Conversely, when

we only account for the chosen bioavailable compounds, the

correlations are vastly improved and positive (Figure 2, bottom

in orange). Moreover, the positive correlation considering only

FIGURE 2

Correlations of model oxidative respiration rates against experimental respiration rates under (A) C-limited, (B) O2-limited, and (C) both C- and

O2-limited conditions. The top panels (blue) show the correlations when assuming that all detected compounds in respective samples are respired,

and the bottom panels (orange) show the results when only the chosen bioavailable compounds detected in respective samples are respired. The

size of markers denotes the number of compounds detected (blue) and the number of chosen bioavailable compounds detected (orange) in

respective samples.
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the bioavailable compounds is the highest when C is limited

and lowest when O2 is limited, consistent with the common

understanding that natural ecosystems are more limited by C

than O2. Therefore, for the remainder of this work, we have

specifically focused on analyzing the results under C-limited

condition due to its relevance to the natural ecosystems. The

results support our initial argument that OM in the ecosystem

has variable bioavailability, where only a subset of compounds

is being respired and contributes to the measured respiration

rates. We explain the choice of bioavailable compounds in the

following section.

3.2. Sampling optimized lognormal
distribution to identify bioavailable organic
matter

While the optimized lognormal distribution (see Section 2.3)

gives an overview of the individual aerobic respiration rates of

bioavailable compounds, we still must identify actual compounds

that make up the distribution through random sampling to

compute the overall respiration rates in samples. While the number

of compounds that make up the optimized distribution (i.e.,

bioavailable fraction) depends on various environmental factors,

the OM data from FTICR-MS does not allow to directly account

for those sample-specific factors in determining the fraction.

Therefore, we employed a statistical approach to estimate the

value, that is, the sampling population size should be aptly

chosen to ensure the sampled population fits the distribution

adequately, whilst also maximizing the correlation between the

model and measured respiration rates. A disproportionately

large or small sampling population size may cause the sampled

population to extend beyond (due to excessive sampling without

replacement to identify unique compounds) or inadequately fill

the optimized distribution, respectively. To gauge the fitness of

sampling population sizes, we use a scaled metric, ρ

(1+1O,S)
,

where ρ is the Pearson coefficient for correlation between model

and measured respiration rates, and 1O,S is the deviation (sum

of squares of residuals) between the optimized distribution

and sampled population. The scaled metric is penalized when

the correlation between the model and measured respiration

rates is poor and/or when the sampled population does not

sufficiently match the optimized distribution. Based on this

metric, we observe a steady improvement in correlation and

the distribution fit up to a population size of 5% (see

Supplementary Figure S4A). However, beyond this point up until

25% population size, the metric exhibits inconsistent measures

due to random sampling (although a linear fit would display

a nearly flat plateau at this region), and a steady decline is

observed at larger population sizes. Consequently, we conclude

that a 5% sampling population size is optimal for selecting

bioavailable compounds from the composite distribution. This

conclusion is supported by the consistent value of the metric and

the absence of any significant additional advantage in sampling

more compounds.

Without any ad hoc constraints to the optimization routine, the

model respiration rates of the chosen bioavailable compounds are

narrowly distributed (i.e., a proper subset) and with a lower mean

than the composite distribution (see Supplementary Figure S4B).

Therefore, the outcome again supports our conjecture that only

a portion of the detected compounds is bioavailable, and any

further inclusion of compounds will hurt the correlation with

measured respiration rates. However, it should be clarified that

the lower mean of respiration rates of bioavailable compounds

should not be construed as an unfavorable choice for the

microbiome, as the estimated thermodynamic-based kinetics

are only realized when the compounds are ideally consumed,

while there are many factors that affect the consumption

(recalcitrance, steric hindrance, metabolic constraints, etc.).

Thus, the bioavailability of OM cannot be fully described by

respiration kinetics alone and requires the consideration of

interdependencies with other factors as well (see Sections 3.3

and 3.4). Lastly, the chosen bioavailable compounds make

up between 5 and 6% of detected compounds in individual

samples (see Supplementary Figure S4C), which means that there

are no samples with none or purely bioavailable compounds

(under- or over-represented, respectively) that can introduce

computational artifacts to the analysis. Previous studies have

similarly reported a slight variability in bioavailable fractions

between diverse environments/samples (Sondergaard and

Middelboe, 1995).

3.3. Thermodynamic favorability of aerobic
respiration is not the sole driver of the
bioavailability of organic matter

A systematic evaluation of factors governing the bioavailability

of OM has been lacking, but we can now assess potential factors

with the identification of a subset of bioavailable compounds

in this work. The higher mean of λ (thermodynamically less

favorable), and lower mean of carbon use efficiency (CUE, see

Supplementary material for derivation) of chosen bioavailable

compounds (Figure 3) are opposite to our expectation from

a purely thermodynamic perspective. Moreover, compounds

with a lower number of C (and concomitantly, lower C/N

and molecular weights) are seemingly more bioavailable than

others. Conversely, the bioavailability is not distinguished based

on the spatial distribution or occupancy (ranging between 0

and 1 for when the compound is not detected in any sample

or detected in all samples, respectively) of compounds across

the samples. Hence, it is apparent that oxidative respiration of

OM may not be solely driven by thermodynamics, but rather

possibly influenced by multiple interdependent factors (Marschner

and Kalbitz, 2003). As alluded to in the preceding section, the

estimated thermodynamic properties of organic compounds

are expected outcomes if the compounds are ideally consumed.

However, there are many other factors that can equally dictate

the consumption of the compounds. The trends in Figure 3

motivate interpretations considering the interdependencies

between various key properties of OM, which we explore in the

following section.
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FIGURE 3

Comparison of various properties of chosen bioavailable

compounds (orange) against detected compounds from all samples

(blue) under C-limited condition. The di�erences in the PDFs

between the two sets of compounds across all properties are

statistically significant (p≪ 0.05). MW, molecular weight; CUE,

carbon use e�ciency.

3.4. C/N ratio, number of C atoms, and
thermodynamic favorability of aerobic
respiration jointly determine the
bioavailability of organic matter

We established in the preceding section that the bioavailability

of OM is presumably driven by multiple interdependent

factors. All pairwise associations between relevant properties

of OM are displayed in Supplementary Figure S5. Here, we

highlight the correlations of the threshold element ratio (TER)

vs. the C/N ratio and the number of C vs. λ that showed

meaningful interrelations as possible factors governing the

bioavailability of OM. TER is the balanced requirement of

C/N ratio for the growth and maintenance of microbiome

(Sterner and Elser, 2003; Soong et al., 2020), evaluated

based on the carbon and nitrogen use efficiencies as well as

assumed biomass composition (see Supplementary material

for mathematical derivations). Microbiomes are limited by

both C and N when the growth substrate C/N ratio matches

the TER, whereas a mismatch results in disproportionate

utilization of C and N in the environment (C/N >

FIGURE 4

Distribution of (A) threshold element ratio (TER) against C/N ratio,

and (B) number of C against λ, of chosen bioavailable compounds

(orange) compared against compounds collectively detected in all

samples (blue) under C-limited condition. The diagonal dashed line

in (A) represents the region that corresponds to C/N = TER, whereas

the dashed lines in (B) represent the cuto� thresholds of properties

for bioavailable OM. Compounds that stray away from the diagonal

line, and the compounds in the regions marked as I and II that are

not chosen as bioavailable despite falling within the cuto� limits for

high λ and number of C, are examined further in Figures 5, 6,

respectively.

TER → C surplus, N deficit; C/N < TER → C deficit,

N surplus).

The chosen bioavailable compounds are mainly composed of

compounds in the vicinity of C/N ≈ TER (Figure 4A), that is,

the bioavailability of OM is driven by the need to satisfy the

balanced C and N requirements of the microbiome to fuel growth

and maintenance through efficient utilization of energy sources.

However, there are some chosen bioavailable compounds with

relatively higher C/N than the TER. When examined in detail,

compound of a relatively low to moderate number of C and

molecular weight (MW) were also included in the bioavailable

OM pool (Figures 5B, C, respectively), but the effect of λ is

not substantial in this context (Figure 5A). Nevertheless, the

significance of λ should not be discounted, as we observe a clear-cut

exclusion of thermodynamically unfavorable compounds (high λ)

from the bioavailable OM pool (Figure 4B). Likewise, compounds

with a large number of C (potentially recalcitrant compounds) are

also strictly excluded from the bioavailable OM pool despite high

thermodynamic favorability. This suggests that thermodynamics

and the number of C atoms have clear quantitative cutoffs,

where the compounds beyond the cutoffs appear to be unavailable

for microbial aerobic respiration. Conversely, bioavailability is

mainly determined by the TER requirement among compounds

that have few C atoms and low λ. The effect of the TER

requirement on the bioavailability of OM is more apparent in

Figure 6, where we further examine the compounds not chosen

as bioavailable despite falling within the cutoff limits for high

λ and number of C (compounds in the regions marked as I

and II in Figure 4B). The compounds from group I are not

chosen as bioavailable as their C/N ratios largely deviate from

TER distribution, whereas the chosen bioavailable compounds

show more comparable distributions, especially the median values

(Figure 6). Although compounds from group II also have relatively

comparable C/N and TER distributions, they are compounds with

a higher number of C for about the same level of λ as chosen
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FIGURE 5

Distributions of threshold element ratio (TER) against C/N ratio with heatmaps of (A) λ, (B) number of C, and (C) molecular weight (MW), of chosen

bioavailable compounds (top) compared with detected compounds from all samples (bottom) under C-limited condition. The diagonal dashed lines

represent the region that corresponds to C/N = TER. Here, we show how thermodynamic and molecular properties (in addition to the TER

requirement, cf. Figure 4A) dictate the choice of bioavailable compounds.

FIGURE 6

Distributions of C/N ratio and threshold element ratio (TER) of the

chosen bioavailable compounds compared against compounds

from groups I and II of non-bioavailable compounds in the marked

regions in Figure 4B.

compounds, which is less desirable than compounds with an

equally minimal number of C and λ (cf. Figures 4B, 6).

4. Discussion

Identifying bioavailable fractions is challenging given the

heterogeneous and highly complex mixture of organic compounds

in aquatic systems. Applying thermodynamic theory alone through

SXTM (Song et al., 2020) to the detected metabolite data failed

to adequately represent the aerobic respiration rates measured by

laboratory experiments. This is because the thermodynamic model

estimates the potential aerobic reactivity of organic compounds

while the actual utilization of compounds in the environment is also

dependent on many other factors.

In this study, we investigate the impact of incorporating the

variable bioavailability of OM, among other potential factors,

on enhancing the model prediction and representation of OM

degradation. Using an optimization approach, we identified

a subset of compounds that vastly improved the prediction

of aerobic respiration rates. By analyzing the chosen subset

of compounds that is presumably bioavailable during the

respiration rate measurements under aerobic conditions, we

showed that enhanced thermodynamics and respiration kinetics

alone does not necessarily guarantee the respiration of OM. Hence,

interdependencies with additional chemical traits and metabolic

elements should also be considered. Particularly, we showed that

the C/N ratio, number of C, and thermodynamic favorability

all jointly influence OM bioavailability, but we may see one

or more of these predicting factors dictate OM decomposition

depending on the details of a given OM assemblage. Compounds

with an exceedingly high number of C atoms or a very low

thermodynamic favorability are omitted from the bioavailable

fraction altogether. From the pool of compounds that satisfy the

criteria imposed by the number of C atom and thermodynamic

favorability, those with a C/N ratio that matches the TER are

preferentially bioavailable.
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While many studies have previously explored the controls

of microbial utilization of OM (Sun et al., 1997; Benner, 2003;

Schmidt et al., 2011; D’Andrilli et al., 2015; Hu et al., 2022),

we have identified the potential controlling factors of OM

bioavailability through an unbiased approach without assuming

any bioavailability-promoting OM properties a priori. Consistent

with our findings, previous studies have clearly shown that only

fractions of the OM present in natural aquatic systems support

microbial metabolism and suggest the significance of chemical

traits such as C and N contents on OM bioavailability (Sun et al.,

1997; Benner, 2003; D’Andrilli et al., 2015). Findlay and Sinsabaugh

(1999) and Benner (2003) agree that C/N ratio is a good indicator

of bioavailability given that microbes are generally more nitrogen-

rich relative to OM. For example, compounds with high C/N is

not easily respired without external sources of inorganic nutrient

N to compensate for the N deficit (Cotner and Heath, 1990;

Kroer, 1993), which makes N-rich compounds more bioavailable

(Benner, 2003). Agreeably, high C/N compounds are not chosen as

bioavailable in our work, but rather compounds that are balanced

with respect to their C/N ratio (i.e., C/N ≈ TER), which are

also co-incidentally N-rich, make up the bioavailable fraction.

Further, high MW (i.e., associated with a high number of C) is

linked to recalcitrant compounds (D’Andrilli et al., 2015) that

especially make up the less or non-bioavailable fractions of OM

pools (Hu et al., 2022), which is also coherent with our results

where compounds with a high number of C are excluded from the

bioavailable fraction.

The compounds that are not chosen by our model as

bioavailable OM should not be necessarily interpreted as not

involved in the biochemical transformations. The dynamics of

non-bioavailable OM may be considerably low where their

decomposition will be heavily influenced by stochastic elements

(e.g., spatial and seasonal fluctuations) such that the deterministic

effects of bioavailability become diluted and insignificant (Hu et al.,

2022). It is also worth noting that the experimental respiration rates

of samples that were used to characterize the OM bioavailability in

this study were measured during the initial stages of incubations

over the span of about 2 h, during which O2 may serve as the main

terminal electron acceptor as reflected in the model formulation.

The time scale of the incubation experiment is also deemed

acceptable given that the reactivity of OM is most apparent in

the early stages of decomposition, where the compounds are most

susceptible to degradation (Benner, 2003).

Besides aerobic respiration kinetics, the overall thermodynamic

favorability of a sample is also often used as an indicator of

biogeochemical transformations. Typically, we would expect a

negative correlation between λ and respiration rates solely based on

thermodynamic theory, but we find that the correlations with the

measured respiration rates are positive regardless of accounting for

all detected compounds or only the chosen bioavailable compounds

in respective samples, across various levels of substrate limitations

(see Supplementary Figure S6). This finding is expected as we have

previously established that OM aerobic respiration is not solely

driven by thermodynamics, but rather influenced by multiple

interdependent factors (see Sections 3.3 and 3.4). An equally

reasonable explanation for this observation is that the metabolic

diversity (i.e., compositional differences in microbial communities

and the amount of microbial biomass) across different samples

would impose variable kinetics of degradation of OM as steered

by the dominant biological functionalities. Microbes are known

to possess high substrate specificity (Hu et al., 2022) as the ability

to degrade various organic compounds is not equally distributed

among microbial taxa (Martinez et al., 1996). Therefore, microbial

and OM compositions will both affect and be affected by each

other (Findlay and Sinsabaugh, 1999; Marschner and Kalbitz,

2003). Spatially diverse datasets, such as the one used in this

work, have a higher likelihood of containing biologically diverse

samples collected from various locations and environments. As a

result, we may not observe adequate correlations with measured

respiration when we pool all the samples together. Conversely, we

may see improved correlations if we classify the samples based

on biological similarities. For instance, a previous study (Song

et al., 2020) showed better correlations between λ and measured

microbial activity as the work involved data from localized regions,

which presumably encompass microbiomes that are biologically

more similar.

Related to the issues above, we have assumed that the

microbiomes in all samples share biological similarities [i.e.,

microbiome growth kinetics defined by µmax in Eq. (5) are

consistent across all samples] due to data limitations in this work,

which may not be true in general contexts. Therefore, how and

to what degree the correlations between model and measured

respiration rates could be improved by accounting for the variation

of microbial community composition and growth kinetics would

be an important issue to investigate in the future, which requires

additional data analysis and significant model extension. While

we attributed molecular reactivity driven by chemical traits as the

major factors governing the decomposition of OM, the results

also hinted at the influence of metabolic factors (i.e., microbial

requirements for C and N). Therefore, future studies should

also focus on the inclusion of microbiome-explicit biochemical

transformation pathways (Hu et al., 2022) in analyzing OM

degradation. This can be accomplished by tracing organic carbon

transformations in FTICR-MS data (Stegen et al., 2018) or through

the incorporation of additional biological data (metagenome,

metatranscriptome). Further, some compounds (whichmay be part

of bioavailable OM) may have inadvertently gone undetected in

OM data due to the variations in production and transformation

rates (Hu et al., 2022), but they too can be recovered by

identifying active biochemical transformation pathways from

additional biological data. To this end, our approach here can

be easily extended to account for sample-specific microbiome

characteristics to assess the effect on OM bioavailability, as well

as to identify contextual microbiome-metabolite interactions when

analyzed jointly with auxiliary multi-omics data.
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