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Machine learning (ML) models, and Long Short-Term Memory (LSTM) networks in

particular, have demonstrated remarkable performance in streamflow prediction

and are increasingly being used by the hydrological research community.

However, most of these applications do not include uncertainty quantification

(UQ). ML models are data driven and can su�er from large extrapolation errors

when applied to changing climate/environmental conditions. UQ is required

to quantify the influence of data noises on model predictions and avoid

overconfident projections in extrapolation. In this work, we integrate a novel UQ

method, called PI3NN, with LSTM networks for streamflow prediction. PI3NN

calculates Prediction Intervals by training 3 Neural Networks. It can precisely

quantify the predictive uncertainty caused by the data noise and identify out-

of-distribution (OOD) data in a non-stationary condition to avoid overconfident

predictions. We apply the PI3NN-LSTM method in the snow-dominant East River

Watershed in the western US and in the rain-driven Walker Branch Watershed

in the southeastern US. Results indicate that for the prediction data which have

similar features as the training data, PI3NN precisely quantifies the predictive

uncertainty with the desired confidence level; and for the OOD data where the

LSTM network fails to make accurate predictions, PI3NN produces a reasonably

large uncertainty indicating that the results are not trustworthy and should

avoid overconfidence. PI3NN is computationally e�cient, robust in performance,

and generalizable to various network structures and data with no distributional

assumptions. It can be broadly applied in ML-based hydrological simulations for

credible prediction.

KEYWORDS

uncertainty quantification, machine learning, Long Short-Term Memory networks,

streamflow prediction, changing climate and environment conditions

1. Introduction

Accurate prediction of streamflow is critical for short-term flood risk mitigation and

long-term water resources management necessary to advance agricultural and economic

development. Machine learning (ML) models have demonstrated good performance in

streamflow prediction and are being used more often as a tool by the hydrological

Frontiers inWater 01 frontiersin.org

https://www.frontiersin.org/journals/water
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://doi.org/10.3389/frwa.2023.1150126
http://crossmark.crossref.org/dialog/?doi=10.3389/frwa.2023.1150126&domain=pdf&date_stamp=2023-04-21
mailto:lud1@ornl.gov
https://doi.org/10.3389/frwa.2023.1150126
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frwa.2023.1150126/full
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Liu et al. 10.3389/frwa.2023.1150126

community (Rasouli et al., 2012; Shortridge et al., 2016; Kratzert

et al., 2018, 2019; Tongal and Booij, 2018; Feng et al., 2020;

Konapala et al., 2020; Shamshirband et al., 2020; Lu et al., 2021;

Xu and Liang, 2021; Xu et al., 2022). However, most of these

applications generally do not include uncertainty quantification

(UQ) and only produce deterministic predictions. Uncertainty

is inherent in all aspects of hydrological modeling, including

data uncertainty, model structural uncertainty, model parameter

uncertainty, and predictive uncertainty. These uncertainties need

to be characterized and quantified to ensure credible predictions,

improve understanding of data limits and model deficiencies, and

guide additional data collection and further model development

in order to advance model predictability. In traditional, process-

based hydrological modeling, significant efforts have been spent on

uncertainty analysis (Vrugt et al., 2003; Pechlivanidis et al., 2011;

Lu et al., 2012; Zhan et al., 2013; Gan et al., 2014; Clark et al., 2016).

Similar and evenmore extensive UQ efforts are required for theML

simulation given its data-driven nature.

Long Short-Term Memory (LSTM) networks (Hochreiter

and Schmidhuber, 1997), a ML model specifically designed

for time-series prediction, can learn rainfall-runoff dynamic

processes and hydrological system patterns from meteorological

observations and streamflow data sequences. For example, when

simulating daily streamflow, we use the previous several days

of meteorological observations as inputs to predict streamflow

on the current day. The observations contain noises/errors and

this data uncertainty is propagated in the model learning and

consequently affects streamflow predictions (Fang et al., 2020).

Thus, it is important to understand how data quality influences

ML model simulations. Additionally, the data-driven ML model

usually produces reasonable predictions when the data in the

unseen test period have similar features to those in the training

period and can suffer from large extrapolation errors when

the test data differ from the training set (Lakshminarayanan

et al., 2017). In hydrological modeling, available training data

are typically insufficient to accurately represent heterogeneous

hydrological systems and the dynamics in these systems are

often non-stationary due to climate change, land use/land cover

change, extreme events, and environmental disturbances. As a

result, it is likely that the trained ML model will encounter

large extrapolation errors when applied to new geographic regions

and future climate projections. Therefore, it is crucial to identify

whether the model predictions are credible in the application to the

new conditions.

UQ can help address the challenges of assessing the

trustworthiness of ML model predictions affected by data noises

and changing conditions (Amini et al., 2020; Liu et al., 2020). For

the training data, a well-calibrated UQ method can produce an

uncertainty bound that precisely encloses a specified portion of

the data consistent with the desired confidence level to quantify

the prediction’s credibility caused by the data noise (Pearce et al.,

2020). For the unseen test data where the predicted values are not

groundtruthed, the quantified uncertainty can serve as a prediction

error indicator to identify whether the trainedmodel is credible and

how credible it is in the test regime. For example, we can compare

the prediction interval width (PIW) of the test data with that of the

training data. If the PIW of the test data is similar to that of the

training data, it suggests that the test data are likely in-distribution

(InD) and have similar features to the training data. So, the trained

ML model is suitable for the test conditions and the prediction can

be trusted. On the other hand, if the PIW of the test data is much

larger than that of the training set, it suggests that the test data

are out-of-distribution (OOD) and the trained model encounters

something new that has not been learned before. At this time, the

ML model may fail to produce a credible prediction.

Despite its importance, UQ for ML model predictions

is challenging and the development of a high-quality and

computationally efficient UQ method, which produces precise

InD uncertainty and identifies OOD samples, is even more

challenging. Some UQ-for-ML methods have been applied in

hydrological modeling, including Bayesian neural networks (Lu

et al., 2019), Gaussian processes (Zhu et al., 2020; Klotz et al.,

2022), Monte Carlo dropout (Fang et al., 2020; Lu et al.,

2021) and other dropout or ensemble-based approaches such as

ensembles with variance analysis (Song et al., 2020), ensemble

at inference (Althoff et al., 2021), and ensembles with random

weights drop-off (Abbaszadeh Shahri et al., 2022). The Bayesian

neural networks are computationally expensive and impractical for

large-scale, deep-learning models (Gal and Ghahramani, 2016a).

The Gaussian process involves Gaussian assumptions on data

noises and may overestimate the uncertainty for non-Gaussian

data due to the Gaussian distribution’s symmetry (Zhang et al.,

2021). Monte Carlo dropout involves ensemble simulations and

its calculated uncertainty depends on the hyperparameter of

dropout rate (Gal and Ghahramani, 2016b). The ensemble-based

methods also require large ensemble model runs to achieve

an accurate uncertainty estimation (Lakshminarayanan et al.,

2017). Additionally, all of these methods lack the capability of

identifying the OOD samples from the new conditions and tend to

underestimate uncertainty (i.e., produce overconfident predictions)

in the extrapolation regime (Amini et al., 2020; Loquercio et al.,

2020; Liu et al., 2022).

To overcome the limitations of previous UQ approaches for

ML, we recently developed a novel UQ method called PI3NN

(Liu et al., 2022), which calculates prediction intervals based on

three independent neural networks (NNs). The first NN calculates

the mean prediction, and the following two NNs produce the

upper and lower bounds of the interval. After the three NNs’

training, given a certain confidence level, PI3NNuses a root-finding

algorithm to precisely determine the uncertainty bound that covers

the desired portion of the data consistent with the confidence

level. Additionally, PI3NN applies an initialization scheme for

the parameters of its two interval networks which leads to a

wider uncertainty for predictions outside of the training data, thus

providing a clear indication of an OOD application. PI3NN has

several merits. First, it uses prediction intervals (PIs) to quantify

uncertainty and does not require distributional assumptions on

data noises (Pearce et al., 2018; Salem et al., 2020; Simhayev et al.,

2020). Second, PI3NN is computationally efficient compared to

alternative methods of UQ for ML, e.g., it requires the training

of just two additional networks to estimate the uncertainty bound

and a low-cost root finding step to precisely determine the

corresponding interval. Third, PI3NN does not introduce extra

hyperparameters beyond the standard NN training, which enables
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a robust prediction performance and mitigates tedious parameter

tuning.

PI3NN was originally developed for multilayer perceptron

(MLP) networks and was applied to simple regression problems

in Liu et al. (2022). Here we continue the development of

PI3NN to accommodate the more complex network structures

of deep learning models and make it suitable for a wide range

of ML-based hydrological applications. Take the deep learning

model of LSTM for example, different from the simple MLP

networks which include only dense layers, the LSTM network

includes recurrent layers to extract temporal information from

the input sequences and the dense layers at the end to learn the

input-output relationship for predictions. This complex structure

of LSTM disables the direct application of the original PI3NN.

To address these limitations, in this effort we propose a network

decomposition strategy. Specifically, we first separate the recurrent

layers and the subsequent dense layers of the LSTM network

as two sets of networks. For the first recurrent network, we

extract the temporal features which are saved in the hidden

state variables as the outputs of this network and then use these

hidden state variables as a new set of inputs for the second

dense network. Next, we perform PI3NN on this second dense

network and treat it as a MLP problem. In implementation,

we still use three NNs training, the first network is a standard

LSTM for prediction, and the following two are relatively simple

MLP networks to calculate prediction intervals for UQ. This

network decomposition strategy not only maintains all the merits

of the PI3NN as mentioned above, but also enables it to

be generally and efficiently applied to complex deep learning

networks.

Here we integrate PI3NN with LSTM networks and apply the

proposed PI3NN-LSTMmodels for streamflow prediction and UQ

in diverse catchments, including two sub-watersheds of the snow-

dominant East River Watershed (ERW) in the western United

States (US) and the rain-driven Walker BranchWatershed (WBW)

in the southeastern US. We investigate the method’s predictability

of streamflow under different hydroclimatological conditions from

three aspects: prediction accuracy, quality and robustness of

predictive uncertainty, and the OOD identification capability under

a changing climate. This paper is organized as follows. In Section

2, we describe the UQ method used for ML-based robust time-

series prediction. In Section 3, we introduce the study watersheds

and data used. Section 4 presents the results and discussion, and

Section 5 provides conclusions and recommendations for future

research.

2. PI3NN method for UQ of ML model
predictions

In this section, we introduce the PI3NN method to quantify

ML model prediction uncertainty. We first describe the general

procedure of PI3NN for the MLP dense networks in a regression

setting. Next, we discuss its capability for OOD identification.

Lastly, we introduce our novel network decomposition strategy

and the integration of PI3NN into the LSTM networks for credible

time-series prediction.

2.1. Procedures of PI3NN for UQ

For a regression problem y = f (x) + ε, we are interested

in calculating the PIs to quantify the predictive uncertainty of

the output y, where x ∈ R
d, y ∈ R, and ε is the data noise

with no distributional assumptions. In this study using ML models

for daily streamflow prediction, x represents previous t days of

meteorological observations and y represents streamflow on the

current day. The function f represents the LSTM network used to

learn the rainfall-runoff relationship between x and y.

Based on a set of training data Dtrain = {(xi, yi)}
N
i=1, PI3NN

estimates predictions and quantifies predictive uncertainty using

three networks and is implemented in three steps. Roughly

speaking, PI3NN first trains three networks separately, where

network fωωω(x) is for mean prediction and networks uθθθ (x) and lξξξ (x)

are for PI calculation. The PI3NN then uses root-finding methods

to determine the upper bound U(x) and lower bound L(x) of the

interval precisely for a given confidence level γ ∈ [0, 1]. Without a

loss of generality, in the following we use basicMLP dense networks

to explain the procedure and capability of PI3NN in Section 2.1

and 2.2 and then illustrate its integration into the recurrent network

of LSTM in Section 2.3.

Step 1: train fωωω(x) for mean prediction. This step follows a

standard NN training for the deterministic prediction. The trained

fωωω(x) has two folds. First, the network outputs a mean prediction.

Second, the differences (or residuals) between the prediction fωωω(x)

and the observation y will be used to construct the training set for

networks uθθθ (x), lξξξ (x) in the following Step 2.

Step 2: train uθθθ (x), lξξξ (x) to quantify uncertainty. We first use

the trained fωωω(x) as a foundation to generate two positive data sets,

Dupper and Dlower, which include training data above and below

fωωω(x), respectively, i.e.,

Dupper =
{

(xi, yi − fωωω(xi))
∣

∣ yi ≥ fωωω(xi), i = 1, . . . ,N
}

,

Dlower =
{

(xi, fωωω(xi)− yi)
∣

∣ yi < fωωω(xi), i = 1, . . . ,N
}

.
(1)

Next, we useDupper to train network uθθθ (x), and useDlower to train

network lξξξ (x). To ensure the outputs of uθθθ (x) and lξξξ (x) are positive,

we add the operation
√

(·)2 to the output layer of both networks.

The standard mean squared error (MSE) loss is used for training,

i.e.,

θθθ = argminθθθ

∑

(xi ,yi)∈Dupper

(yi − fωωω(xi)− uθθθ (xi))
2,

ξξξ = argminξξξ

∑

(xi ,yi)∈Dlower

(fωωω(xi)− yi − lξξξ (xi))
2.

(2)

Step 3: construct the PI precisely via root-finding methods.

The outputs of uθθθ (x) and lξξξ (x) approximate the positive and

negative difference between the data and the prediction of fωωω ,

respectively. The bound defined by [fωωω − lξξξ , fωωω + uθθθ ] does not

accurately quantify the PI. To calculate the interval that precisely

encloses the desired portion of data consistent with the given

confidence level, we additionally need to compute two coefficients

α and β such that the upper bound U(x) and lower bound L(x)

defined below are a precise calculation of the PI,

U(x) = fωωω(x)+ αuθθθ (x),

L(x) = fωωω(x)− βlξξξ (x).
(3)
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For a given confidence level γ ∈ [0, 1], we use the bisection method

to determine the value of α and β by finding the roots of

Qupper(α) = 0, Qlower(β) = 0 (4)

where

Qupper(α) =
∑

(xi ,yi)∈Dupper

1yi>U(xi)(xi, yi)−
N(1− γ )

2
,

Qlower(β) =
∑

(xi ,yi)∈Dlower

1yi<L(xi)(xi, yi)−
N(1− γ )

2
.

(5)

In Eq. (5), N is the number of training data and 1(·) is the indicator

function which counts how many training data points are outside

the interval [L(x),U(x)]. When this root-finding problem is solved,

the number of training data falling in [L(x),U(x)] = [fωωω −βlξξξ , fωωω +

αuθθθ ] will be exactly γN. Therefore, PI3NN produces an accurate

uncertainty bound that precisely covers a specified portion of the

data with a narrow-width interval. To make PI3NN work well, it

is important to avoid overfitting in training fωωω(x) in Step 1. An

overfitted network may result in imbalanced data sizes of Dupper

andDlower and a possible unreliable training of uθθθ (x) and lξξξ (x). The

well-established regularization techniques such as L1 and L2 norm

have been tested as a good penalty to avoid overfitting (Lu et al.,

2021).

2.2. OOD identification capability of PI3NN

A high-quality UQ method should not only produce a well-

calibrated PI for the InD data to accurately quantify the uncertainty

but also be able to identify the OOD samples to avoid overconfident

predictions in the novel condition. In this section, we introduce

the OOD identification capability of PI3NN. An OOD sample is

defined as those data having a different distribution from or on

the low probability region in the distribution of the training data.

For example, if the training data come from a humid, warmer

area, the prediction data in the arid, colder region, which has a

dramatically distinct land cover, could be the OOD samples. If

the training set consists of data from wet years, the prediction

data from dry years could be the OOD samples. As the OOD

samples possess different features from the training set, it should

be qualified with a large predictive uncertainty to show our low

confidence when we use the trained model for extrapolation.

The more the prediction data differ from the training data, the

higher the predictive uncertainty would be. Thus, when we use the

uncertainty to identify the OOD samples to indicate theMLmodel’s

trustworthiness, the UQ method should be able to produce a larger

prediction interval for the data further away from the training

support.

PI3NN achieves OOD identification by properly initializing the

output layer biases of networks uθθθ and lξξξ . Specifically, we add the

following operations into the above Step 2 before training uθθθ and lξξξ .

• Initialize the networks uθθθ and lξξξ using the default option.

• Compute the mean outputs µupper =
∑N

i=1 uθθθ (xi)/N and

µlower =
∑N

i=1 lξξξ (xi)/N using the training set.

• Modify the initialization of the output layer biases of uθθθ and lξξξ
to cµupper and cµlower, where c is a relatively large number.

• Follow the Step 2 to train uθθθ and lξξξ .

Through above initialization strategy, outputs of networks

uθθθ (x) and lξξξ (x) will be larger for the OOD samples than the InD

data. Then after calculating the positive values of α and β in Step

3, it will correspondingly produce the larger uncertainty bounds

[L(x),U(x)] for the OOD samples to indicate that their predictions

are of low confidence.

The key ingredient in this OOD identification strategy is the

modification of the initial biases of the network output layer. It is

known that a MLP dense network is formulated as a piece-wise

linear function. The weights and biases of hidden layers define

how the input space is partitioned into a set of linear regions; the

weights of the output layer determine how those linear regions

are combined; and the biases of the output layer act as a shifting

parameter. These network weights and biases are usually initialized

with some standard distributions, e.g., uniform U[0, 1] or Gaussian

N[0, 1], as default options. Setting the output layer biases to cµupper

and cµlower with a large value of c will significantly lift up the initial

outputs of uθθθ and lξξξ . During the training, the loss in Equation (2)

will encourage the decrease of uθθθ (x) and lξξξ (x) only for InD data

(i.e., xi ∈ Dtrain), not for OOD samples. Therefore, after training,

uθθθ (x) and lξξξ (x) will be larger in the OOD region than in the InD

region. Correspondingly, the PIW of the OOD samples will be

larger compared to that of the training data, based on which we

indicate the extrapolation. Note that the exact value of c does not

matter much, as long as it is a large positive value, e.g., we use

c = 100 in this study. For training data, PI3NN will produce

prediction intervals precisely enclosing γ × 100% portion of data

for a given confidence level γ ∈ [0, 1] no matter how large the

c value is, although a larger c in the network initialization may take

a slightly longer training time for convergence. For the unseen test

data, if they are InD with similar input features as the training set,

PI3NN will produce uncertainty bounds with a similar width as

the training data despite the large c value. If the test data are OOD

outside of the training support, PI3NN will produce a larger PIW

than that of the training data. The larger the c value is, the wider the

PIW. Then, by comparing the PIWs of the test data with those of the

training data, we diagnose whether the unseen test data are InD or

OOD to quantify the trustworthiness of the ML model predictions.

For OOD samples, we are not expected to accurately predict them

due to the data-driven ML model deficiency, but more importantly

we identify them to avoid overconfident predictions.

2.3. PI3NN-LSTM for trustworthy
time-series prediction

PI3NN can be applied to MLP networks in a straightforward

way by following the above three steps in Section 2.1, but it is

challenging to apply it directly to complex deep learning networks.

In this section, we introduce a network decomposition method

to enable the application of PI3NN to various complex networks

and describe its integration with the LSTM for credible time-series

prediction. We first introduce the standard LSTM network, then
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illustrate the network decomposition strategy, and lastly depict the

implementation of PI3NN-LSTM in steps.

LSTM is a special type of recurrent neural network to learn

long-term dependence in time-series prediction, which makes it

particularly suitable for the simulation of daily streamflow where

lag times between precipitation (including both rainfall and snow)

and discharge can be up to months. LSTM learns to map the inputs

over time to an output, thus it knows what observations seen

previously are relevant and how they are relevant for predictions

enabling dynamic learning of temporal dependence. In daily

streamflow modeling, the LSTM network reads previous t days

of meteorological observations as inputs to predict streamflow on

the current day, i.e., learning the mapping [x1, x2, ....xt] → yt ,

where the vector x1 represents the meteorological observations

(e.g., precipitation and temperature) at time step 1 in the previous

time window, and yt represents the value of streamflow at the

current day. As shown in the bottom panel of Figure 1, each LSTM

cell reads the input sequences xt one time step at a time and the

output from the previous time step is fed into the next cell as

another input along with the input at current time step to affect

the prediction, and so on. The outputs from the chain of LSTM

cells are saved in the hidden state variables ht , which dynamically

add, forget, and store information from the meteorological input

sequences. Lastly, the LSTM network uses fully-connected dense

layers to map the information in ht to the quantity of interest yt
and predicts the current streamflow.

To enable the application of PI3NN for the complex LSTM

networks and meanwhile maintain the method’s simplicity and

computational efficiency, we propose the following network

decomposition strategy. First, we decompose the LSTM model

into two subnets: a recurrent net and a subsequent MLP dense

net. The recurrent subnet learns input features and their temporal

information in the period of look-back window t, and saves this

information in the hidden state variables ht , i.e., [x1, x2, ....xt] → ht .

Subsequently, the dense subnet learns the input-output relationship

from ht to yt , i.e., ht → yt . After the entire LSTMmodel is trained,

the vector ht will save all the information of the meteorological

input sequences. Then, we can use ht as a new set of inputs for the

MLP network to predict the current streamflow of yt and quantify

its predictive uncertainty, without considering the recurrent subnet

anymore. In this way, we successfully transform the problem of

quantifying predictive uncertainty on the complex LSTM models

into the UQ problem on the simple MLP models, which greatly

simplifies the task.

To summarize, we perform the following three steps to

integrate PI3NN into LSTM for time-series prediction and

predictive uncertainty quantification (Figure 1) :

• Step 1. Train a LSTM model to predict yt from multivariate

input sequences of [x1, x2, ....xt] in a standard way;

• Step 2. Perform the network decomposition and extract

values of the hidden state variables ht as inputs and calculate

the difference between the LSTM model prediction and

observation on yt as outputs to train two MLP networks for

estimating the PI;

• Step 3. Determine the PI of yt precisely by computing the

coefficients of α and β via the root-finding method.

In comparison to the three steps in Section 2.1, PI3NN-LSTM

has the following similarities and novelties. Step 1 is similar. Both

train a ML model fωωω(x), either a MLP model or a LSTM model,

in a standard way for deterministic prediction. Step 2 is novel

here. The PI3NN-LSTM method takes the network decomposition

strategy and uses the hidden state variables ht as the inputs

instead of the original model inputs for the calculation of the

PIs, where the size of ht is equal to the number of LSTM cells.

In this way, PI3NN-LSTM can use two MLP networks uθθθ and

lξξξ for the UQ of the LSTM model. Additionally, these two MLP

networks can have simple structures because their inputs of ht
usually have simpler structures than the original LSTM inputs of

multiple sequences [x1, x2, ....xt]. Also, the MLP networks can be

fully connected or use dropout depending on the problem and

data size, but dropout is not necessary for our algorithm. Step

3 is the same as in Section 2.1. By employing the techniques

in Section 2.2, the PI3NN-LSTM method can also examine the

OOD samples in the time-series simulation and characterize the

possible data/domain shift to avoid overconfident predictions. The

strategy of network decomposition is the key here to enable the

simple and computationally efficient calculation of the PIs for

complex LSTM models. And this strategy can be generally applied

to other deep learning networks. For example, we can decompose

a convolutional neural network (CNN) model into a convolutional

net and a MLP dense net, and decompose a graph neural network

(GNN) model into a graph net and a MLP dense net. The recurrent

net, convolutional net, and graph net in the LSTM, CNN, and

GNN model, respectively, perform like an encoder which extracts

temporal, spatial, and graphical information into a hidden/latent

variable. Then, we implement PI3NN on these hidden variables to

simplify the UQ task into the MLP problem to enable its general

application.

PI3NN-LSTM uses three networks to quantify the prediction

uncertainty affected by data noise and under new conditions.

Its OOD identification capability describes what the ML

model does not know outside the training regime to mitigate

overconfidence, this description somehow addresses the model

structural uncertainty. Some methods such as deep ensembles

(Lakshminarayanan et al., 2017) used ensemble sampling to

quantify prediction uncertainty and address the model structural

uncertainty. Our method can be applied to different model

structures to further consider the influence of model structural

uncertainty on the prediction.

3. Application of PI3NN to two diverse
watersheds

We apply the PI3NN-LSTM method for daily streamflow

prediction and UQ from meteorological observations in the snow-

dominant East RiverWatershed (ERW) and the rain-drivenWalker

Branch Watershed (WBW) in the western and southeastern US,

respectively. The two watersheds are distinctly different in their

climatological patterns and hydrological dynamics, thus these

applications enable us to investigate whether PI3NN-LSTM is

able to provide consistently good predictions under different

conditions.

Frontiers inWater 05 frontiersin.org

https://doi.org/10.3389/frwa.2023.1150126
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Liu et al. 10.3389/frwa.2023.1150126

FIGURE 1

The workflow of the PI3NN-LSTM method where a LSTM network is trained for prediction and two MLP networks are trained for UQ.

3.1. Snow-dominant East River Watershed
(ERW)

ERW is located in Colorado, US and it contains several

headwater catchments in the Upper Colorado River basin. The

watershed is about 300 km2 and has an average elevation of

3266 m above mean sea level, with 1420 m of topographic

relief and pronounced gradients in hydrology, vegetation, geology,

and weather. The area is defined as having a continental,

subarctic climate with long, cold winters and short, cool summers.

The watershed has a mean annual temperature of 0C , with

average minimum and maximum temperatures of -9.2C and 9.8C,

respectively; winter and growing seasons are distinct and greatly

influence hydrology. Annual average precipitation is approximately

1200 mm/yr and is mostly snow. River discharge is driven by

snowmelt in late spring and early summer and by monsoonal-

pattern rainfall in summer (Hubbard et al., 2018).

We consider data from two gauged stations, Quigley and Rock

creek, both of which are headwater catchments with areas of 2.33

km2 and 3.24 km2, respectively. Each catchment includes four

sequences of data: three input sequences of daily precipitation,

maximum air temperature, and minimum air temperature, and

one output sequence of daily streamflow. Quigley catchment has

about 2 years of meteorological and streamflow observations

from 09/01/2014 to 10/13/2016 with 774 daily measurements.

Rock creek catchment has about 3 years of observations from

08/31/2014 to 10/04/2017 with 1131 daily measurements. In the

LSTM simulation, we reserve the last year as the unseen test data

for prediction performance evaluation and use the remaining data

for training. These two catchments have short records, which is

a deliberate choice. As a new development of the PI3NN-LSTM

method and the first application to streamflow prediction, we want

to first use a relatively small dataset, where the trained model

could suffer from significant predictive uncertainty due to limited

available data, for detailed analyses of performance in both InD

and OOD situations. And then in the second case study of WBW,

we work with a longer record of data for further investigation and

demonstration.

3.2. Rain-driven Walker Branch Watershed
(WBW)

WBW is located in East Tennessee, US, and is part of the Clinch

River which ultimately drains into the Mississippi River (Curlin

and Nelson, 1968; Griffiths and Mulholland, 2021). WBW includes

the West Fork and East Fork catchments, which are 0.384 km2

and 0.591 km2 in size, respectively. WBW has an average annual

rainfall of 1350mm and amean annual temperature of 14.5C, which

is consistent with a humid southern Appalachian region climate.

The watershed elevation ranges from 265 m to 351 m above mean

sea level. Rain is the primary precipitation type in this region.

Streamflow in both the West Fork and East Fork catchments is

perennial and is fed by multiple springs (Johnson, 1989). We use

data from the East Fork catchment in this study. The data consist

of seven input sequences, including daily precipitation, maximum

and minimum air temperature, maximum and minimum relative

humidity, and maximum and minimum soil temperature, and

one output sequence of daily streamflow. We have 14 years

of observations from 01/01/1993 to 12/31/2006 with 5113 daily

measurements. Given this long record of data, we reserve the last

4 years (2003–2006) as unseen test data for prediction performance

evaluation and use the first 10 years of data for training.
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3.3. Implementation and performance
evaluation metrics

For both watersheds, we use LSTM networks for streamflow

prediction and PI3NN method to calculate the 90% prediction

interval for uncertainty evaluation. In the networks training stage,

we use 20% of the training data as validation set to tune the

network structure and the learning hyperparameters through the

random search method. We then choose the model structure and

hyperparameters that give the best performance, i.e., the smallest

MSE, in simulating the validate data as the final model. Specifically,

for the LSTM network, we consider one or two layers with the

number of nodes in the set of [32, 64, 128, 256] and the look-

back window size in the set of [30, 45, 60, 75, 90, 120]. For the two

MLP networks used for UQ, we consider one or two layers with

the number of nodes in the set of [10, 20, 30, 40, 50]. For all the

three networks, we use Adam optimizer with consideration of the

learning rate between 0.001 and 0.01 with an increment of 0.001.

The final network structures and hyperparameters are summarized

in the following Table 1. Note that these hyperparameters are

tuned based on validation data performance. The complexity of

a NN’s structure depends on several factors including the input-

output relationship extracted from the data and data size. A shorter

record of data does not necessarily require a simpler network

structure than the longer record as long as the network complexity

produces a good performance and does not suffer from overfitting.

Moreover, these hyperparameters are standard for NNs. Our

PI3NN method does not introduce extra hyperparameters which

saves the effort of tedious tuning and more importantly promises

stable prediction performance. Additionally, the MLP networks

used by PI3NN usually have a simple structure which enables a

data- and computationally-efficient training and UQ.

We then use the trained models to predict the streamflow

and quantify the predictive uncertainty in the test period. We

use the Nash-Sutcliffe-Efficiency (NSE) to assess model prediction

accuracy, and use the Prediction Interval Coverage Probability

(PICP) and Prediction Interval Width (PIW) jointly to evaluate

the quality of the UQ. NSE is an established measure used in the

hydrological modeling to evaluate streamflow simulation accuracy

based on the following equation:

NSE = 1−

∑N
i=1(yi

obs − yi
pred)2

∑N
i=1 (yi

obs − y
obs

)2
, (6)

where N is the total number of samples in evaluation, yi
pred

represents predictions, yi
obs and yi

obs are the observations and

mean observations, respectively. The range of the NSE is (-inf, 1],

where a value of 1 means a perfect simulation, a NSE of 0 means

the simulation is as good as the mean of the observations, and

everything below 0 means the simulation is worse compared to

using the observed mean as a prediction. According to N. Moriasi

et al. (2007), a NSE value greater than 0.50 is considered

satisfactory, greater than 0.65 is considered good, and greater than

0.75 is very good.

PICP is defined as the ratio of samples that fall within their

respective PIs. For example, for a sample set {(xi, yi)}
N
i=1, we use

ki to indicate whether the sample yi is enclosed in its PI [L,U], i.e.,

ki =

{

1, if L(xi) ≤ yi ≤ U(xi),

0, otherwise
(7)

Then, the total number of samples within upper and lower bounds

is counted as:

s =

N
∑

i=1

ki. (8)

Consequently, the PICP is calculated as:

PICP =
s

N
× 100%. (9)

For each prediction data, the PIW is calculated as

PIW = U(x)− L(x) = αuθθθ (x)+ βlξξξ (x). (10)

A high-quality uncertainty estimate should produce a PICP value

close to its desired confidence level with a small PIW for InD data

to demonstrate its accuracy and precision, and should be able to

quantify uncertainty with a large PIW for the OOD data to avoid

overconfident predictions.

4. Results and discussion

In this section, we evaluate the PI3NN-LSTM model’s

prediction performance. We assess the prediction accuracy using

the NSE score and by comparing the observed and simulated

hydrographs. We investigate the UQ capability based on three

aspects: the quality of the PI, the robustness, and data-,

computational-efficiency of the method, and its capability in

identification of OOD samples. In the following, we first analyze

the results from the two snow-dominant catchments in ERW with

short records of streamflow observations and then move to rain-

driven WBW with a relatively long record of data. We discuss the

results in ERW in detail and briefly summarize the findings in

WBW as an extensive demonstration.

TABLE 1 The network model structures and their learning parameters used in streamflow prediction and UQ for both watersheds ERW and WBW.

Quigley in ERW Rock creek in ERW WBW

LSTM network MLP network LSTM network MLP network LSTM network MLP network

One

layer

with #

nodes

Look-

back

window

size

Learning

rate

One

layer

with #

nodes

Learning

rate

One

layer

with #

nodes

Look-

back

window

size

Learning

rate

One

layer

with #

nodes

Learning

rate

One

layer

with #

nodes

Look-

back

window

size

Learning

rate

One

layer

with #

nodes

Learning

rate

128 45 0.001 10 0.001 128 60 0.001 20 0.005 32 60 0.001 20 0.005
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FIGURE 2

Predicted (dashed blue line) and observed streamflow (solid red line)

in the snow-dominant Quigley catchment where the gray area

quantifies the 90% predictive interval. Daily precipitation is plotted

upside down on the top associated with the right y-axis, where

snow (temperature below 0◦C and in snow-water equivalents) is

highlighted in black. Subfigures (A, B) illustrate the results from

training and test data sets, respectively.

4.1. Streamflow prediction in
snow-dominant ERW

Figure 2 depicts the 2 years of data in Quigley catchment

where the top panel shows the 1 year of training data and the

bottom panel shows the following year of unseen test data. This

figure describes the rainfall-runoff dynamics of a typical snow-

dominant watershed. Streamflow peaks in the spring/early summer

and precipitation is highest in the winter from snowfall. The time

lag between precipitation and streamflow can be explained by snow

accumulation in the winter months and subsequent snow melt in

spring. The LSTM network is able to successfully simulate this

rainfall-runoff relationship and its memory effects by producing

the predicted streamflow close to the observations based only on

the precipitation and temperature inputs. The NSE value for the

training data is 0.94 and for the test data is 0.87, suggesting a high

prediction accuracy. Moreover, a close look at the figure shows that

in both training and test periods, the predicted hydrograph fits the

general trends of the observation pretty well with a close peak flow

timing and similar rising and falling limb shapes.

In Figure 2, we can also see that PI3NN accurately quantifies

the predictive uncertainty where the PICP value of 89% in training

data is close to its desired confidence level of 90%. Furthermore, the

uncertainty bound covers the observations with a narrow width,

demonstrating an informative UQ. Figure 3 summarizes the PIW

for the training and test data using boxplots. It can be seen that

the largest PIW in the training set of Quigley catchment is about

0.5 in/d, which occurred when simulating peak flow where the

LSTM model shows a relatively large error (Figure 2A). For the

FIGURE 3

Prediction interval width (PIW) of the training and test data for the

Quigley and Rock creek catchments in ERW. The similar PIW

between the training and test data in Quigley indicates that the

prediction for the test period can be trusted. In contrast, the largely

di�erent PIW between the training and test data in Rock creek

suggests that its test period encounters some new climates that

have not been seen before in training and the ML predictions may

not be trusted.

data points with accurate streamflow simulation, PI3NN produces

a relatively narrow uncertainty bound with a small interval width,

presenting high confidence in line with the high accuracy. The

similar PIW of the training and test data for Quigley shown in

Figure 3 indicates that no OOD samples have been detected in this

catchment and that the LSTM model predictions in the test period

can be trusted. Indeed, we observe a high prediction accuracy of

the test data as validated by the observations in Figure 2B and its

PICP value suggests that about 74% of the test data are enclosed

in the uncertainty bound. Note that, we do not expect the 90%

PI to enclose the exact 90% of the test data. PI3NN is guaranteed

to produce the exact coverage for the training data because of its

root-finding strategy. But for the unknown test data, a different

feature from the training set would cause a different prediction

performance and predictive uncertainty coverage.

Figure 4 illustrates 3 years of data in Rock creek catchment

where the top panel shows 2 years of training data and the bottom

panel shows 1 year of test data. The test period of 2017 is a wet,

cold year with unusually high precipitation (snow accumulation)

in winter. Rock creek is a small headwater catchment and its

streamflow is rather sensitive to the meteorological forcings, so

the high precipitation in winter results in a correspondingly large

peak flow in summer from snow melt, showing a data/domain

shift relative to the training period of 2015-2016. In this case

study, we want to investigate the LSTM model’s capability in

predicting the OOD samples caused by the new climate condition

and more importantly to examine whether PI3NN can identify the

data/domain shift and produce a large uncertainty by showing low

confidence based on these anomalies.

Figure 3 clearly shows that the test data in Rock creek have a

much larger PIW compared to the training set. This large difference

in the uncertainty intervals indicates that the test samples contain

some features that have not been learned before and the predictions

on some of these samples cannot be trusted. Taking a close look

at the hydrograph in the test period of Figure 4B, we observe that

the uncertainty bound in the peak flow regions between the two
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FIGURE 4

Predicted (dashed blue line) and observed streamflow (solid red line)

in the snow-dominant Rock creek catchment where the gray area

quantifies the predictive uncertainty. Corresponding daily

precipitation is plotted upside down where snow (temperature

below 0◦C) is highlighted in black. Subfigures (A, B) illustrate the

results from training and test data sets, respectively.

FIGURE 5

Projecting the training and test data of the input hidden state

variable (ht) from its original 128 dimensions to the 2-dimensional

space using principal component analysis for visualization. The 21

points (highlighted in green triangles) of the test data are identified

as OOD samples, which suggests that their predicted streamflow

cannot be trusted. These streamflow predictions are located

between the two green dashed lines in Figure 4B which indeed

shows poor prediction accuracy.

green dashed lines are remarkably high, and indeed this highly

uncertain region has a larger prediction error where the model-

predicted streamflow deviates from the observations the most.

FIGURE 6

Streamflow observations and predictions for di�erent confidence

levels (γ ) in the Quigley catchment. The 95% PI (γ=0.95) encloses

95% of the observations (PCIP=95%) and the 95% interval is wider

than the 90% interval (γ=0.9) showing accuracy of the PI3NN

method. Subfigures (A, B) illustrate the results from training and test

data sets, respectively.

This underestimation of peak flow is understandable because the

ML model only saw relatively low precipitation in the training

period. Importantly, PI3NN is able to identify this underestimation

by giving it a high uncertainty and a low confidence, suggesting

that the model predictions on these data points should not be

trusted, although the model has a good prediction performance

in training. This error-consistent uncertainty information is very

useful in real-world applications where the groundtruthed data are

unavailable. The calculated uncertainty can serve as a prediction

error quantifier (which is usually calculated as the difference

between the predictions and the observations) to indicate the ML

prediction’s credibility to avoid overconfident predictions.

Note that, PI3NN identifies OOD samples based on their input

features. If the data points are an anomaly in input space (e.g.,

extreme climates) then PI3NN can identify them and produce

a high uncertainty in the output predictions (e.g., streamflow).

However, if some data points have input features similar to

the training set, although their predictions are poor, PI3NN

or any other UQ methods cannot assign them large predictive

uncertainties. In Rock creek catchment, the input space of the

two MLP dense networks used for calculating the PIs are the

128 hidden state variables (ht). We project the training and

test samples of ht from their original 128-dimensional space to

the 2-dimensional space using principal component analysis for

visualization. Figure 5 indicates that there are 21 test data, at

the upper right corner highlighted in green, relatively far away

from other points and can be identified as OOD samples. We

find that these 21 input data result in the streamflow predictions

between the two green dashed lines in Figure 4B where PI3NN

gives them large predictive uncertainties. This analysis explains the
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OOD identification capability of PI3NN. It demonstrates that if

new climates make the trained ML model fail to accurately predict

streamflow, PI3NN can correctly identify these new conditions

and reasonably reflect their influence on streamflow prediction by

producing a large uncertainty.

In the above analysis of ERW data, we demonstrate the PI3NN-

LSTM’s prediction accuracy, predictive uncertainty quality, and

OOD identification capability. In the following, we discuss its

robustness and efficiency. First of all, PI3NN is computationally

efficient. It quantifies predictive uncertainty using three NNs’

training where the first network is the standard LSTM for mean

prediction, and the other two are MLP networks to calculate the

prediction interval. In both catchments, we use a single-layer MLP

FIGURE 7

PIW of the training and test data for di�erent output layer bias

initialization in training the two interval networks for the Rock creek

catchment. A larger c value initializes the bias to a larger value and

the default c value usually draws a sample from a standard Gaussian

distribution. Di�erent c values do not a�ect training and any large c

values here can identify the OOD samples with large PIWs, which

indicates the reliability of PI3NN.

network whose training only takes 10–20 s and the computational

cost of the following root-finding step is negligible (less than

1 s). Also, for a different confidence level, PI3NN just needs to

perform the root-finding step to determine the corresponding

uncertainty bounds without further network training, and the

calculated intervals are well-calibrated and consistent with the

confidence level. As illustrated in Figure 6 where both the 90%

and 95% prediction intervals are plotted, the 95% PI encloses

95% of training data (PICP=95%) and its width is wider than the

90% interval. Note that, it only takes about 20 seconds of PI3NN

to accurately calculate these predictive uncertainties for a range

of confidence levels after the standard LSTM model simulation.

Moreover, PI3NN is data efficient. Attributed to the LSTM network

decomposition strategy (Section 2.3), we are able to use rather

simple MLP networks to estimate the uncertainty bound; and the

simple network structures enable a small number of training data

for an accurate learning. Here, by using 1 year of training data in

Quigley and 2 years of training data in Rock creek, we are able to

reasonably quantify the uncertainty and correctly identify the OOD

samples.

Additionally, PI3NN is assumption-free. It does not involve a

Gaussian assumption of the data noise, which makes it practically

applicable to hydrological observations. And it is also able to

generate an asymmetric uncertainty bound to precisely quantify

the desired confidence level with a narrow width. Furthermore,

PI3NN does not introduce extra hyperparameters allowing for

stable performance. The only non-standard parameter that needs

to be specified in PI3NN is the constant c in initializing the output

layer bias when using its OOD identification capability. In Figure 7,

we demonstrate that as long as c is specified with a large positive

value, PI3NN is able to detect the OOD samples by showing a

larger PIW comparing to the training set. The exact value of c

does not matter much and would barely affect the UQ quality.

As we can see, with a different c, the PIWs of the training data

are similar to each other and the specification of c does not affect

the uncertainty coverage. For unseen test data, if OOD samples

exist, a large c will lead to a large PIW enabling the identification

of data/domain shift, although the larger the c value is, the more

obvious the identification.

FIGURE 8

Scatter plots of absolute prediction errors VS. the PIW for both the training (A) and test (B) data sets in Rock creek catchment. The prediction interval

shows error-consistent uncertainty where high uncertainties (i.e., large PIWs) correspond to large errors.
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FIGURE 9

Predicted (dashed blue line) and observed streamflow (solid red line) in the East Fork of rain-driven WBW. Also shown in green lines are LSTM

predictions using weighted mean squared errors as the loss function. Corresponding daily precipitation is plotted upside down on the top associated

with the right y-axis, where snow (temperature below 0◦C) is highlighted in black. (A) Training data of 1993–2002. (B) Test data of 2003–2006.

PI3NN is also a robust uncertainty estimate which produces

error-consistent confidence. Figure 8 visualizes the relationship

between absolute prediction errors and the PIW for both the

training and test data sets in the Rock creek catchment. A clear

monotonic trend is observed where the PIW increases as the

increase of the errors, exhibiting decreasing confidence with the

degradation of the prediction accuracy. Moreover, the identified

OOD samples which cannot be accurately predicted by the ML

model show a large PIW and a large error at the upper right

corner of Figure 8B. This error-consistent UQ property enables us

to confidently use PI3NN as a MLmodel trustworthiness quantifier

to diagnose when the model predictions can be trusted and when

the models may fail for the new conditions.

4.2. Streamflow prediction in rain-driven
WBW

In this section, we summarize the results from applying the

PI3NN-LSTM model for streamflow prediction in rain-driven

WBW. Figure 9 depicts 10 years of training (top) and 4 years of

test data (bottom) in the East Fork of WBW. In comparison to

Figures 2, 4 that depict snow-dominant hydrological dynamics, this

rain-driven watershed hasmany fewer snow days and shows a faster

runoff response after a precipitation event. The training and test

periods have similar magnitudes of precipitation on both annual

and event scales. In fact, we find that all the meteorological forcing

inputs are of a similar magnitude in the training and test sets.

PI3NN did not identify OOD samples in this dataset.

Figure 9 indicates that the LSTM network is able to simulate

the streamflow reasonably well by showing a good fit to the

observations. The overall NSE is 0.65 for the training data and

0.6 for the test data. Figure 10 plots each test year individually

where both the predictive values and the 90% PI are depicted.

Different years demonstrate different prediction accuracies, e.g., the

NSE in 2005 is up to 0.78 while the subsequent year (2006) has

a relatively low NSE of 0.50. In all the four test years, the LSTM

model appears to underpredict peak flows, e.g., the observed peak

flow is 617 L/s in 2003, but the predicted peak flow is 194 L/s; the

observed peak flow is 274 L/s in 2004, and the predicted peak flow

is 128 L/s. In this rain-driven watershed, peak flow happens during

storms. It seems that the LSTM model has difficulties accurately

predicting the magnitude of these event-triggered streamflows

and the underprediction in peak flows results in the relatively

low NSEs in most test years. Looking at the training period in

Figure 9A, it seems that even for the training data, LSTM has some

underpredictions of peak flows. To explore the possible reasons for
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FIGURE 10

Predicted (dashed blue line) and observed streamflow (red dots) in the East Fork of rain-driven WBW where the gray area quantifies the 90%

prediction interval. Figures in the left column have a linear scale on the y-axes to show the underprediction of peak flows while figures on the right

have a logarithmic scale on the y-axes to show the accurate prediction and predictive uncertainty of base flows. Note that the y-axis range on each

figure is di�erent.

the underprediction, we designed another numerical experiment

where we used weighted mean squared errors (wMSE) as the loss

function in training with the weight proportional to the streamflow

observations. Results indicate that the wMSE loss did not improve

the underprediction of peak flows and even made the fitting worse

compared to the standard MSE loss by penalizing the fit of low

flow. The overall NSE is 0.55 of wMSE compared to 0.65 of the

MSE in training and the NSE is 0.43 of wMSE compared to 0.6 of

MSE in testing. We think one possible reason is that these peak

flows are erratic events which have relatively small observations

compared to other streamflow data.MLmodels are data driven, and

the small sets of data can deteriorate LSTM’s capability in learning

the underlying mechanism causing the high peak flows. Future

investigations are needed to examine this possibility.

On the other hand, the peak flow timing in the test years is

accurately predicted. For example, peak flow in 2003 was observed
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on the 47th day of the year and was predicted to occur on the

48th day. Peak flow was observed on the 37th day of 2004 and

was predicted to happen on the 38th day. Both the observed

and predicted peak flow happened on the 92nd day of 2005.

Additionally, the LSTM model does a good job at predicting

base flows. Zooming into the base flow regions by plotting the

streamflow in logarithmic scale in Figure 10, we can see that the

predicted base flows are close to the observations with a high

consistency. Additionally, the predictive uncertainty in the test

period can be precisely quantified by PI3NN, where the calculated

PICP is close to the desired value of 90% and most of the observed

base flows are encompassed by the prediction intervals. PI3NN

does not assume a Gaussian distribution for the data so it can

produce an asymmetric uncertainty bound to precisely cover the

observations. For example, in August-October of 2003 where the

model underpredicts streamflow, PI3NN produces a higher upper

bound of the prediction interval to cover the observations. Note

that the predictive uncertainty associates with the prediction; if the

predicted value greatly deviates from the observation and OOD

samples are not detected, then we cannot expect the uncertainty

bound encloses the observations. However, it is interesting to see

that although the prediction accuracy is not very high for some

years, e.g., the NSE is 0.5 in 2006, the prediction interval can

cover the desired number of observations nicely with the PICP of

85%.

WBW has a complex geomorphological structure and

interconnected hydrological processes (Griffiths and Mulholland,

2021). Many topographical, geological, soil, and ecological factors

affect streamflow dynamics. However, in this model, we only

consider a few meteorological variables as the inputs to simulate

streamflow, which may result in poor predictions due to the

limited input data and some missing information on important

cause-effects. It is usually the case that the data, including the

number of input variables and the number of observations, are too

few to enable the ML model to accurately capture the underlying

mechanisms of complex hydrological dynamics in watersheds.

UQ cannot address the lack of data and it is not a replacement for

data acquisition, but instead, the calculated large uncertainty can

guide data collection to reduce the uncertainty. Additionally, it is

promising to see here that the reasonably quantified uncertainty

from PI3NN can encompass the desired number of observations

despite the relatively poor fit.

5. Conclusions and future work

In this study, we further develop our PI3NN method to enable

the quantification of predictive uncertainty of various deep learning

networks and integrate the method with the LSTM network

for streamflow prediction. Application of the PI3NN-LSTM

approach to both snow-dominant and rain-driven watersheds

demonstrates its prediction accuracy, high-quality predictive

uncertainty quantification, and the method’s robustness, and data-

and computational-efficiency. For the test data which have similar

features as the training data, PI3NN can precisely quantify the

predictive uncertainty with the desired confidence level; and for

the OOD samples where the LSTM model fails to make accurate

predictions, PI3NN can produce a reasonably large uncertainty

indicating that the results are not trustworthy. Additionally, PI3NN

produces error-consistent uncertainties where the prediction

interval width increases as the prediction accuracy decreases.

Therefore, when we apply the ML model to predict streamflow

under future climate and at ungauged catchments where no

groundtruthed data are available, the uncertainty quantifies the

model predictions’ trustworthiness, indicating whether the results

should be trusted or further investigation needs to be conducted.

PI3NN is computationally efficient, robust in performance, and

generalizable to multiple data with no distributional assumptions.

Attributed to the network decomposition strategy proposed in this

work, PI3NN now can be broadly applied to various networks

including convolutional networks, graph networks, recurrent

networks, and the combined model structures of these networks,

for trustworthy hydrological predictions.

Although data are a key to improve ML model predictability,

UQ is significantly important for quantifying the influence of

data quality and the trustworthiness of the predictions under the

changing climate and environmental conditions. Additionally, we

can use UQ to guide the data collection in the large-uncertainty

regime and to examine the model deficiency for further model

development and improvement. In the future, we will apply PI3NN

for streamflow prediction in multiple watersheds across the US and

integrate it with different ML models for a variety of hydrological

applications.
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