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Micro-flow imaging for in-situ
and real-time enumeration and
identification of microplastics in
water

Nimitha Choran and Banu Örmeci*

Department of Civil and Environmental Engineering, Carleton University, Ottawa, ON, Canada

Microplastics (MPs) are emerging contaminants that have recently gained
global attention. Current identification and quantification methods are known
to be time-consuming, labor-intensive, and lack consensus on protocol
standardization. This study explored the potential of micro-flow imaging (MFI)
technology for rapid and in-situ identification and enumeration of MPs in
water using two (2) MFI-based particle counters. Advantages, limitations, and
recommendations for using MFI for MPs analysis were discussed. MPs with diverse
physical (i.e., microbeads, fragments, fibers, and films) and surface (i.e., reflectivity,
microporosity, color) characteristics were analyzed to understand the detection
capabilities and limitations of MFI technology. Results demonstrated that MFI
e�ectively automatesmostmanually obtained particle features, such as size, color,
object intensity and shape descriptors. It imparts consistency and reduces the
subjective nature of results, thus enabling reliable comparison of the generated
data. The particles can be further categorized based on their circularity and aspect
ratio providing further insight into the shape and potential erosion of MPs in the
environment. Transparent particles, often missed with other techniques such as
microscopy, were detected by the MFI technology. The ability to assign particle
IDs to MPs was an important advantage of the MFI technology that enabled
the further investigation of selected MPs of interest. The limitations of the MFI
technology were apparent in samples with high particle concentrations, with
reflective MPs, and in the presence of bubbles. The color of the background
against which the image was captured also influenced the detection accuracy.
Procedural modifications during sample analysis and improvements in image
analysis can assist in overcoming these challenges. MFI requires minimal sample
preparation and gives real-time imaging data, making it a prime candidate for field
monitoring in surface water systems in addition to laboratory analysis. With the
potential application of machine learning and similar developments in the future,
MFI-based particle counters are well-positioned to meet an important need in
in-flow and real-time identification and enumeration of MPs.
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1. Introduction

Microplastics (MPs) pollution is a global concern and gaining interest due to its potential
implications for all ecosystems. The presence of MPs is felt across all spheres of life, ranging
from the air we breathe (Gasperi et al., 2018) to remote areas with virtually no human activity
(Bergmann et al., 2017). MPs are also reported in drinking water, suggesting that water
treatment processes do not completely remove this emerging pollutant (Eerkes-Medrano
et al., 2019).
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MPs have vast implications for the aquatic ecosystem (Foley
et al., 2018) and may potentially harm humans. The ubiquitous
nature of MPs increases their bioavailability to aquatic species and
trophic transfer to humans (Wang et al., 2019). Although adequate
evidence about the risk associated with human exposure is yet to
be established, their potential effects, such as neurotoxicity and
immune dysfunction, cannot be entirely ruled out (Prata et al.,
2020). Therefore, there is a growing need for technologies that help
monitor MPs in drinking water and surface waters.

Several countries around the globe are undertaking measures
to tackle the issue of MPs, such as banning microbeads
in cosmetics, one-time-use plastics, and limiting unnecessary
packaging (Government of the United States of America, 2015;
United Nations Environment Programme, 2018; ECCC, 2022).
European Union provisionally approved routine monitoring of
drinking water for MPs (European Union, 2020), highlighting
the concerns for not only the environment but also human
health. At present, the identification and detection of MPs are
still in their infancy, lacking standardization and consistency.
Standardization of procedures is key to developing regulatory
policies and monitoring MPs (Yusuf et al., 2022). In the past
decade, numerous methods have been developed to detect MPs
quantitatively and qualitatively. The first step usually involves
isolating the MPs from the sample. Studies have used either
chemical agents (i.e., acids, alkali, peroxide, enzymes) to digest the
organics (Li et al., 2018; Pivokonsky et al., 2018; Olesen et al.,
2019; Uurasjärvi et al., 2020) and/or flotation agents (i.e., NaCl,
ZnCl2, NaI, oil) to separate them (Lahens et al., 2018; Rodrigues
et al., 2018; Chaudhari and Samnani, 2022). Once the MPs are
separated from the matrix, they are further analyzed to quantify
and characterize the isolated particles chemically and physically.
Physical characterization involves defining the morphological
features, while chemical characterization examines the composition
and structure. Chemical characterization is conducted using
both non-destructive and destructive techniques. Non-destructive
techniques include FTIR and Raman spectroscopy (Harrison et al.,
2012; Leoni et al., 2021), while destructive techniques include
GC-MS, pyrolysis-GC-MS, and thermal extraction desorption-
GC-MS (Hendrickson et al., 2018; Sorolla-Rosario et al., 2023).
Spectroscopic techniques require samples to be free of any
impurities hindering the polymer identity, including the IR active
water. Chromatographic methods can handle only a small amount
of particles per run, and the database is limited to a few polymers to
match with (Li et al., 2018).

Visual identification is a cheap, rapid, and easy way to identify
larger MPs (1mm to 5mm) using physical attributes such as size,
shape, and color. These features are also vital for ecotoxicological
studies and the ingestion patterns in the aquatic ecosystem (Zarfl,
2019). Although the absence in the sample cannot be ascertained as
the chances of missing the smaller MPs are higher, it is a simple way
of identification that only requires short-term training (Xiong et al.,
2019). Microscopy is commonly used to aid the visual identification
ofMPs utilizing enhanced surfacemorphology and structure details
through magnified images (Shim et al., 2017). The accuracy of
this technique decreases with smaller fractions, particularly with
MPs of no distinctive color and shape (Käppler et al., 2015; Song
et al., 2015). Simple light microscopy is adequate for detecting large

MPs; however, it is time-consuming and sometimes inconclusive
due to the limitations of light microscopy. Scanning electron
microscopy (SEM) has been used in some studies combined with
energy-dispersive X-ray spectroscopy (EDS) for MPs identification.
In addition to being expensive, SEM and EDS require extensive
sample preparation placing a cap on the number of samples that
can be analyzed in a given time (Vianello et al., 2013; Shim et al.,
2017).

Most current protocols require elaborate sample preparation
steps, making the process time-consuming and tedious
(Huppertsberg and Knepper, 2018). Conversely, monitoring
approaches require time and cost-effective techniques while
maintaining accuracy as they deal with large samples in short
periods (Hengstmann and Fischer, 2019). Therefore, the currently
available methods and technologies are generally suitable for
laboratory research rather than field measurements.

Micro-flow imaging (MFI) is a continuous-flow microscopy
technique employed in some particle counters to quantify the
particles and record their physical properties. Numerous industries,
including pharmaceutical and petrochemical industries and water
treatment plants, have employed in-line particle counters for
quality control. Light obscuration, flow microscopy, and the
Coulter principle are the most used approaches to analyze and
classify particles larger than 2µm. Unlike flow imaging technology,
light obscuration and Coulter counters only approximate the size of
the particles without insight into morphological information, such
as their shape (Demeule et al., 2010). MFI is also more responsive
than light obscuration toward transparent objects as well as samples
with a reduced difference in refractive index between the media and
particle of interest (Huang et al., 2009; Demeule et al., 2010; Zölls
et al., 2013a).

Flow-imaging particle counters capture successive bright-field
images when the sample passes through a flow cell and analyze
a wide range of particle properties such as number, size, length,
shape, and opaqueness using image analysis software. A digital
camera with an extended depth field and ample magnification
is utilized for this purpose (Sharma et al., 2010; Ripple and
DeRose, 2018). Coagulation-flocculation studies (Ball et al., 2011)
and differentiating silicone oil droplets from protein particles
(Sharma et al., 2009) are a few of the common applications of this
technology. With no sample preparation, MFI directly analyses the
liquid and categorizes the particles based on their morphological
features along with the data on particle distribution. It also has
lower maintenance requirements and provides more frequent
measurements (Højris et al., 2016; Koppanen et al., 2022), making
it an ideal candidate for in-situmonitoring of water samples.

This study explored the potential of MFI technology to
quantify and classify MPs in water with an emphasis on in-

situ application and identified the advantages, limitations, and
prospects. Two (2) MFI-based particle counters (PC1 and PC2)
were evaluated to understand the detection capabilities using MPs
with different physical characteristics, color, shape, size, and surface
reflectivity. Filtered surface water and distilled water spiked with
polystyrene microbeads (3.2µm and 25µm) were used for the
experiments in PC1. Fibers and fragments of different colors and
transparent films and fragments with reflective surfaces were used
in PC2 to discern the identification capabilities. The study focused
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primarily on the ability of MFI technology to detect, quantify
and categorize MPs using their morphological features in a flow-
through system without any sample preparation and also identified
areas of improvement for more sensitive testing. MFI-based MP
quantification and identification technology, with some further
developments, would be useful for laboratory and field testing,
provide results in real-time, and could be employed by researchers
and non-experts such as citizen scientists.

2. Material and methods

2.1. Instruments

Two (2) particle counters with MFI capability were used in
this study.

2.1.1. Particle counter 1 (PC1): DPA4100 particle
analysis system (Brightwell technologies)

This is a well-established instrument that has been in the
market for 20 years. The sample flows through a vertical flow
cell (Figure 1A), where a segment is illuminated, and an enlarged
image is captured using a DPA camera. The software assesses
each captured frame to define suspended particles’ physical
characteristics. The images are black and white, and the data
generated can be exported in various formats and graphically
represented with trend charts, scatter plots, and histograms.
DPA4100 particle analyzer offers two (2) magnification settings:
“high” and “low”. Each set point requires a different flow
cell and hardware configuration for optimal performance (see
Supplementary Table S1).

2.1.2. Particle counter 2 (PC2): Particuleye
(Particuleye technologies)

This recently developed instrument was exclusively built for
MPs research and monitoring. It is a 3-D printed prototype that
is compact and can be easily assembled and transported, making it
ideal for field use. The sample flows through a horizontal flow cell
of a rectangular cross-section. A color camera captures images in
the flow cell (Figure 1B) illuminated against a black background.
Although the inlet has a larger diameter of 7mm, the pump
connections have a smaller diameter of 4.3mm, thus limiting the
particle size. A peristaltic pump is used to intake the samples, and
the user can adjust its speed using the software.

2.2. Measured parameters

The particle counters provide information on the quantity
and morphological characteristics of the samples. Their software
allows selecting the bin size of interest and provides graphical
representations of the measured data. Table 1 shows the parameters
that are computed by PC1 and PC2. In PC1, the user can set
the sample volume to be analyzed, while the analysis time can be
customized in PC2. There is the flexibility of setting any value
by the user, and PC1 offers the choice of offsetting some initial

FIGURE 1

(A) Flow cell of PC1 (B) flow tube of PC2.

designated volume from the analysis. Effective circular diameter
(ECD) and circularity values of the detected particles are not readily
accessible in PC2, but they can be computed by applying simple
mathematical operations to the available data. PC1 also measures
the feret diameter and object intensity of the particles analyzed.
Feret diameter is defined as the distance between the two farthest
points on the projected area of the particle or can be referred to
as the maximum diameter (DraŽić et al., 2016). Object intensity
is a measure of the porosity of the particles detected, and the
instrument computes the mean, maximum and minimum object
intensities. Intensity is related to the porosity of the particle and
assumes a value between 0 and 255. Values equal to or greater than
255 are identified as the carrier medium, in this case, water. The
device detects those that fall below 255 as particles.

2.3. Sample preparation for PC1

Since PC1 is limited to smaller size particles due to the width
of the flow cell (100µm and 400µm depending on the flow
cell type, Supplementary Table S1), laboratory-grade polystyrene
beads were used for the experiment. The samples were run in a
low magnification setting with a flow cell of an upper limit of
400µm (Model no. BP-4100-FC-400-U). Polystyrene latex particles
(Thermo Scientific, California, USA) of sizes 3.2µm and 25µm
(see Table 2 for properties) were used for the experiments. In
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TABLE 1 Parameters computed by the software in each particle counter.

Sl No. Parameter PC1 PC2

1. Effective circular
diameter (ECD)

X Can be
calculated

2. Area X X

3. Perimeter X X

4. Feret diameter X NA

5. Circularity X Can be
calculated

6. Color Greyscale X

7. Object intensity X

8. Size range Low
magnification:
0.75-100 µm
High
magnification:
2.25-400µm

20 µm-4.3 mm

9. Time-series
concentration

X X

10. Object intensity X X

11. Mean, median and
mode

X Can be
calculated

TABLE 2 Properties of the polystyrene latex particles.

SlNo. Size (µm) Coe�cient of
variation (CV) (%)

Solids (%w/w)

1 25 15 10

2 3.2 45 10

this experiment, surface water was spiked with MPs (polystyrene
microbeads) to evaluate the detecting capabilities of the device. 20
µL of the latex solution was diluted to 25mL using distilled water,
and 10mL of this solution was used for sample analysis. Surface
water was obtained from the Rideau River in Ottawa, Ontario
and filtered through a 53µm stainless steel sieve (Endecotts Ltd,
London, England) before use. 10mL of the filtered surface water
was used to run the unspiked sample. For the spiked sample, 2mL
of the diluted MPs sample was mixed with 8mL of the filtered
surface water. PC1 comes with a mixing apparatus and the samples
are mixed before detection.

2.4. Sample preparation for PC2

Four (4) MP types with varying physical characteristics were
obtained from post-consumer products (Table 3). Polymer type was
not the focus of the current study, but they were analyzed using
ATR-FTIR to ensure they were plastics. Each MPs was shredded
into small pieces using stainless steel scissors to reduce the size to
the MP range. The prepared samples were sieved using a steel sieve
of 4.75mm to obtain particles in the range of the instrument to
avoid clogging the device connections. 20 MPs of each type were
mixed in 250mL distilled water separately in 400mL beakers. The

samples were placed in a magnetic stirrer, and the mixing speed was
adjusted as required. If necessary, a drop of soap solution was added
to the surface to bring down the floating particles, and the inlet pipe
was always kept submerged in the beaker. Priming was done before
running the sample with distilled water alone, and a blank sample
was run to see if there were any significant interferences.

3. Results and discussion

The results from particle counters were generated both as
histograms and Excel sheets. The histograms provided a quick
preview of results and particle size distribution. Using the Excel
sheet, it was possible to analyze the particle data further and isolate
or calculate the parameters of interest.

3.1. Analysis and visualization of PC1 data

3.1.1. Images from PC1
Figures 2A–F shows the images captured by PC1 in different

samples. The images can only be captured in greyscale, which
limits the device’s identifying capability to a great extent. The MPs
were spherical and could be differentiated by their circular shape
amongst other particles in surface water.

3.1.2. Particle size distribution
During the preliminary analysis, PC1 generated the ECD range

against the particle count and the concentration. Figures 3A–D
shows the particles detected by the instrument against the bin
size (of ECD) defined after spiking the distilled and surface water
samples with 3.2µm and 25µm MPs. PC1 could accurately detect
the size and counts of spiked particles, and the surface water
contained a large number of small particles (<10µm) as expected.
The number of images that need to be stored was specified before
the sample analysis. The image analysis may not have included the
analysis of every particle detected by the instrument but those from
the images stored. In addition to particle size distribution, various
other parameters were tabulated in the Excel sheet, and the relevant
ones were plotted.

3.1.3. Circularity
Circularity measures the degree to which the shape of the

particle resembles that of a circle. It is the ratio between the
circumference of the circle with equivalent particle area to its
perimeter. It ranges from 0 to 1, where closer to 1 implies more
roundness and vice versa. Image analysis by PC1 computes the
circularity of the particles in the image stored. The majority of
surface water particles had circularity in the range of 0.7 to 1
(Figure 4A). This held true for the spherical microbeads (Figure 2)
used in this experiment (Figures 4B, C). No significant differences
were observed between the circularity of the MPs and the surface
water particles. Therefore, circularity may not be a defining
parameter to distinguish round-shapedMPs from the surface water
matrix, although it is an important physical parameter in defining
particles. MPs in natural water samples can initially be of any shape
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TABLE 3 MP samples prepared for the experiments with PC2.

Sl No. Sample Source Relevant features Polymer type

1. Transparent film Packaging material Transparent in nature LDPE

2. Shiny particles Nail art accessories Reflective PP

3. Fibers Toothbrush bristles, produce
bag

Different colors of fiber Nylon, LDPE

4. Black porous particles Packaging material Discontinuous and similar to the background color against
which images are captured

Polystyrene

FIGURE 2

Images from PC1 (A) 25µm MPs in distilled water (B) 3.2µm MPs in distilled water (C) filtered surface water without MPs addition (D) 25µm MPs in
surface water (E) 3.2µm MPs in surface water (F) filtered surface water spiked with 3.2µm and 25µm MPs.

(i.e., rectangular, triangular), but they retain a rounder shape after
exposure to environmental erosion. Therefore, many MPs have
similar sizes and shapes to the organic and inorganic particles
in water.

3.1.4. Object intensity
Object intensity measures the light that reaches the detector

after passing through the object, and the closer the value is to 255,
the more porous the particle is (Kollu and Örmeci, 2015). Object
intensities are described in three formats, minimum andmaximum
intensities correspond to the lowest and highest intensities, while
the mean refers to the average of all pixel intensities. MPs are
expected to be denser with less porosity compared to organic
particles in water, and this might be a feature that can help to
distinguish MPs.

From the box and whiskers plot (Figure 4), it could be
observed that the MPs were overall less porous (denser) compared
to the particles in surface water. 3.2µm and 25µm MPs had

a mean object intensity of approximately 130 when the mean
object density of surface water particles was approximately 195
(Figure 4F), indicating a substantial difference. A larger difference
was observed in the minimum object intensity parameter, which
was approximately 190 for surface water particles and 40 for MPs
(Figure 4E). However, the maximum object intensity was 202 for
all three samples (Figure 4D), indicating minimum or mean object
intensity may be more useful parameters for MP detection. The
outliers in all the cases need further investigation, but the lack of
particle ID in PC1 hinders the same. Although several outliers exist
in both cases, these parameters are worth exploring to ascertain if
they could be one of the distinguishing properties of MPs against
the entities present in surface or drinking water.

3.2. Analysis and visualization of PC2 data

PC2 visualizes the data in histograms for a quick review
of the particle size distribution (Figure 5A), concentration plot
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FIGURE 3

Particle size distribution histogram: 25µm and 3.2µm MPs dispersed in (A, C) distilled water and (B, D) surface water.

(Figure 5B), and time-series concentration graph (Figure 5C). The
bin sizes are automatically chosen depending on the sample, unlike
PC1, which has the option to customize the bin size. Nevertheless,
the particle size of interest could be isolated and plotted from the
Excel sheet data. The concentration plot (Figure 5B) shows the
number of frames with the corresponding concentration range of
MPs on the X-axis.

PC2 captures several images analyzed by the software to
extract pertinent information about the particles. A unique particle
ID is assigned to every object detected by PC2, and the object
characteristics are displayed against this ID in an Excel sheet.
Particles can thus be located using the image file name and the
bounding box (bbox) coordinates that are shown against the
particle ID in the Excel sheet. Data also includes the dimensions
of the box in which the particle is enclosed, RGB (red-green-blue)

value with the corresponding color, area, and perimeter of the
object in pixels.

The total particle count can be computed from the particle size
distribution chart (Figure 5A). The total number of MPs computed
by PC2 was higher than that were actually present in the sample.
On further investigation, it was observed that a single particle was
sometimes segmented into several smaller objects, and each was
assigned a particle ID. The segmentation of the particles can be
due to various reasons, such as uneven illumination of the object
and software analysis issues. The real-time concentration of the
particles was described through time series particle concentration
plot (Figure 5C), which depicted the number of particles in each
frame captured in chronological order, along with the moving
average of the data. The moving average was computed at a 7-
frame interval. Sudden high concentration peaks were observed
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FIGURE 4

Circularity of the particles detected in di�erent samples (A) filtered surface water without MPs addition, (B) 25µm MPs in distilled water (C) 3.2µm
MPs in distilled water. (D) Maximum, (E) minimum and (F) mean object intensity of the particles detected in di�erent samples-filtered surface water
without MPs addition, 25µm and 3.2µm MPs in distilled water.

in some frames while the subsequent frame was empty. Moving
average smoothened the data and gave a more precise measure
of the particle concentration than the concentration in a single
frame/image captured.

3.2.1. MP fibers
Fibers are defined as those with an aspect ratio

(length/diameter) >3. The detection of fibers is generally difficult
due to their smaller size, and it gets more complicated to distinguish
between synthetic and natural polymers. The application of optical
microscopy to identify MP fibers was reported to be particularly
challenging (Jung et al., 2021). Figures 6A, D shows the blue and
orange fibers used for the study. Blue (Figures 6B, C) and orange
(Figures 6E, F) MP fibers were detected by the PC2. The color
of the fibers was also defined by PC2 against each particle ID.
MP color may be one of the features that can be combined with
other parameters to separate MPs from natural particles. Since the

dimension of the box enclosing each particle are measured by PC2,
these data can be used to compute the aspect ratio, which can be
further used to classify the particles into fibers.

3.2.2. Black and porous MP fragments
Black-colored MPs (Figure 7A) were chosen to provide a

challenge since the background against which the images were
captured was also black. The detection capability of the instrument
was hence tested in this case. The particles used were also
porous (containing micropores) to reflect the similarities of
environmental samples.

Although samples were detected against the black background,
poor visibility in the images captured suscepts it to extract
erroneous data on the physical features of particles, such as size
(Figures 7D, E). The color was accurately designated with both
white (Figures 7B, C) and black backgrounds. Since the fragments
contained pores, each fragment was identified as two or more
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FIGURE 5

Plots from PC2 (A) particle size distribution and (B) concentration plot for blue microfibres (C) time series particle concentration for blue microfibres
from PC.

particles (separated by pores), subsequently increasing the particle
count and leading to inaccurate information on features.

3.2.3. Reflective particles
MPs with reflective properties such as glitters are widely found

in the environment ranging from sewage sludge (Lusher et al., 2017)
to river sediments (Hurley et al., 2018). Glitters are known to evade
detection during extraction procedures such as Fenton treatment
and density separation and are underestimated (Yurtsever, 2019).
When MP particles that appear shiny (Figure 8A) are analyzed
via MFI, the reflectance may lead to estimating one particle as
several particles. Some areas appear lighter than others (Figure 8B),
and darker areas are detected as separate objects within the bigger
object. Most of these issues can be resolved by improving image
analysis. This can be achieved through excluding the detection

of smaller particles within a larger object and training the image
analysis software.

3.2.4. Transparent films
Transparent MPs were reported as the most prevalent type in

freshwater and drinking water systems (Yin et al., 2019; Campanale
et al., 2020; Shruti et al., 2020; Xu et al., 2021). They are likely to
have originated from using agricultural plastic sheets and plastic
packaging materials meant for disposal after short-term use (Xiong
et al., 2018; Campanale et al., 2020). The opacity of the MPs was
reported to play a vital role in their detection. Transparent MP
particles are harder to detect, reducing the likelihood of accurate
characterization of MP types in environmental samples and further
leading to underestimation (Song et al., 2015; Nel et al., 2021). It
is, therefore, necessary to develop methodologies with technologies
that have the capability to detect particles with varied opacity. In
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FIGURE 6

Blue and orange fibers used for the experiment (A, D) and as imaged by PC2 (B, C) and (E, F) respectively.

this study, PC2 detected the MP films, although the color was
misidentified as it was matched from light gray to black depending
on the illumination against the black background (Figures 8D,
E). The films were overestimated due to their reflective nature,
similar to the issue with reflective MPs discussed in 3.2.1. Hence,
improvements in imaging techniques are necessary to enhance the
accurate estimation of transparent MPs and films.

3.2.5. Color detection
The color of MPs is a salient feature that is often a

decisive factor in separating them from the environmental matrix.
Additionally, color may be correlated to the exposure time of
the plastic to the seawater (Ogata et al., 2009) and the degree
of photodegradation and weathering (Turner and Holmes, 2011).
Most of the time, color classification is done visually, which may be
biased, time-consuming and inconsistent (Nuelle et al., 2014; Shim
et al., 2017). To illustrate, some studies used a more specific class
to define color that included the opacity of the MP particle along
with the perceived color, while others restricted to the conventional
categories of color (Fiore et al., 2022; Wu et al., 2022). Brighter
hues are readily separated during the preliminary step, while dull
ones may be missed, possibly introducing a bias (Hidalgo-Ruz
et al., 2012). MFI-based particle counters can automate this process
rendering more uniformity to the process. However, transparent
particles may be incorrectly labeled as the same color as the

background. PC2 generated color images, while PC1 was limited
to greyscale images. Image analysis software of PC2 uses the RGB
(Red, Green, Blue) value to match the color to 17 hues, of which 5
are lighter/darker shades of the background.

3.2.6. E�ect of background
The background against which the image is captured has an

evident effect on defining the color of MPs, with special emphasis
on transparent particles. It may be expected to have poor visibility
of the particles of the same shade against which the image is
captured. However, dark-colored particles were detected against
the black background by PC2 (Figures 7D, E). Nonetheless, image
analysis may be renderedmore complicated in cases where particles
are barely visible against the background. Particles may be missed
or partially detected, leading to misappropriation and reduced
efficiency. Therefore, running the samples against light and dark
backgrounds is recommended to ensure accuracy while automating
the entire process to make the analysis time efficient.

3.3. Image analysis software

PC1 has three basic modes of analysis: “Standard Mode”
represents the particle size distribution as a histogram plot of
concentration against size while offering the option of image
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FIGURE 7

(A) Black MPs used in the experiment. Images from PC2: (B, C) shows the detected MPs against the white background while (D, E) are those against
black background (the green box indicates the particle).

storage. “Time-Resolved Sampling” measures the acquisition
time for each image while generating size distribution charts.
These two modes also have an option for image storage. The
“shape analysis” mode analyses the image stored to evaluate the
morphological characteristics of the particles captured. It also
generates images along with an Excel sheet containing particle
count and concentration against the corresponding ECD range.
The image analysis function can be applied after the procedure
by setting the required parameters, such as aspect ratio and ferret
diameter, in the software and exporting to Excel format rendering
more flexibility. The results can be expected in a few minutes with
the graphical representation of the data acquired.

PC2 is more user-friendly in terms of both equipment use and
the software interface. In contrast to PC1, PC2 has a particle ID
attached to every particle identified, also indicated in the images
captured by the camera. Particle ID makes it possible to distinguish
the particles from each other and get a closer look at the object
of interest. The results can be retrieved as a zip file within a
few minutes of analysis and accessed in a browser on a laptop
or cellphone, making it compatible with field use. To rule out
counting the same particle more than once, the particles with
similar shape, color, and size in successive frames are identified
as the same and labeled with the same particle ID. In addition
to these parameters, the location of the particle in the frame is
also included to identify the duplicates. This is important because

there may be distinct particles with similar morphological features,
and excluding the location factor may lead to misappropriations.
However, the possibility of underestimating MPs with similar
appearances cannot be completely ruled out.

PC1 also measures the object intensity and circularity, which

are essential parameters in filtering out the air bubbles entrapped

during the operation of the instrument. Some MFI software has

an image recognition feature that classifies the image based on

the baseline set by the user to identify a similar image (Zölls
et al., 2013b). MFI is widely employed to discriminate the protein

aggregates by combining numerous parameters such as aspect ratio,

circularity, and object intensity (Strehl et al., 2012). Similar features

for the MPs could be identified to distinguish them from the rest of

the sample for the proficient use of this technology.

3.4. Advantages of MFI in MP identification

3.4.1. Field monitoring of MPs in surface water
A precautionary approach to minimize human exposure

is recommended until more conclusive evidence on the MPs

consumption is established (Danopoulos et al., 2020; Leslie and
Depledge, 2020). This approach involves regular monitoring,

among other mitigation techniques recommended by the State of
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FIGURE 8

(A, C) Reflective particles and transparent films used in experiment, (B) reflective particles detected by PC2, (D, E) transparent films as detected by the
PC2.

California (Wyer et al., 2020). Currently, there is a lack of standard
protocols for monitoring and identifying MPs in raw and treated
water samples. Most studies are limited to larger (mm size range)
MPs due to the difficulty in isolation, recovery and analytical
detection of small MPs (micron and sub-micron size range).
These challenges undermine the effectiveness and efficiency of MPs
monitoring in drinking water, particularly in treated effluent, since
the treatment processes can remove particles as small as 45µm (Na
et al., 2021; Frond et al., 2022).

One feature that makes the particle counter a prime candidate
for field monitoring is its potential to generate real-time analysis
results. Time is a vital constraint to the monitoring process.
On average, it takes around 41 h for sample preparation and
extraction of MPs from the water before polymer identification
through spectroscopy (Frond et al., 2022). Therefore, more
research is required to develop faster and more cost-efficient
techniques. MFI may find application in MPs identification due
to the rapid generation of results. The fact that most of the
process is automated and generates time-series analysis results is
an added advantage. For example, PC2 generates a continuous
particle count histogram in chronological order (Figure 5C). The
results can be enhanced and improved by combining image
analysis with computer vision and machine learning. With
continued improvement in image analysis techniques, particle
counter could be a promising technique in MPs detection and
monitoring (section 3.6).

3.4.2. Classification of MPs as films, fibers, and
fragments

Shape is an important feature of MPs that plays a crucial role
in their removal in WWTP (McCormick et al., 2014). Mukhanov
et al. (2019) classified the MP particles isolated from the marine
environment into four (4) broad categories: elongated, round,
fibers and irregular, using feret diameter, circularity and area. PC1
extracts the features mentioned above along with perimeter, aspect
ratio and ECD from the image analysis performed after sample
analysis. The values are indicated against each image captured with
object numbers in the Excel sheet. Using the “sort” function in
Excel, isolating the particles of required features can be done easily.
One of the main drawbacks of PC1 is that one cannot ascertain
which features belong to a particular object in the indicated image.
On the other hand, PC2 has the particle ID feature, as discussed
in 3.3, which enables to ID the particle in question and isolates the
same for further investigation if necessary. Hence, these features are
essential for developing a more robust analysis technique.

3.4.3. Intercomparability of the data
Size fractionation is carried out by filtering through filters

of decreasing pore sizes. Size categorization of the MPs varies
significantly in the previous publications, including the method
or type of filter paper used (Hanvey et al., 2017). Lack of
standardization and consistency in the methodology and
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reporting of final results in MPs identification and analysis
renders the comparison and replicability of published works
difficult, hindering the development of a database for MPs
evaluation (Besley et al., 2017; Müller et al., 2020). MFI generates
information on the size, shape, and color of every particle detected,
among other details, enhancing the data intercomparability
and flexibility to adapt to future classification and
protocols developed.

Researchers often quantify isolated MPs as the number of
MPs per volume or mass. The mass of MPs or their volume
is less popular due to difficulty in computation. The size range
of the particles via sieving may be used to express the “size
parameter” rather than evaluating the diameter of each particle.
Color is reported by subjective evaluation of the MP particles
(Hartmann et al., 2019). All these factors point to the need for a
systematic categorization and to reduce the subjective nature of the
result. MFI combined with image analysis could eliminate this bias
while gathering more data on all the isolated particles in a much
shorter time.

3.5. Challenges of application of MFI on
MPs identification

While MFI may provide a number of morphological
characteristics of the MPs in a short span, there are certain
limitations to employing this technology. With careful
precautions and considerations, errors in measurements can
be minimized.

3.5.1. Accuracy
Several factors affect the accuracy of the data obtained from

the MFI technique. Some particles may be missed, while others
may be counted more than once. Overestimating particles is
one of the most common errors in MFI. Since the particles are
quantified from the images taken, there is a risk of overestimating
the particles as the same particle may be caught in consecutive
frames and counted more than once. Image analysis should
be accounted for to rule out duplicates and improve accuracy
(See section 3.3).

MPs can stick or overlap with one another, underestimating
quantity and misrepresenting their physical characteristics.
Figure 9 shows more than two (2) 25µm MPs sticking together,
presenting as one single MP fragment. As shown in the figure, the
shape and size of this cluster are very different from the individual
microbeads. Furthermore, the MPs can also get attached to the
tubing of the device and around the submerged inlet pipe. When
more than one particle is counted as one when they simultaneously
occupy the same sensing volume, the particles are underestimated,
referred to as a coincidence error. Coincidence error is one of the
leading causes of error in particle counters (Pisani and Thomson,
1971). This effect may be more pronounced in samples with high
particle concentrations, and dilution may be necessary for those
scenarios (Brightwell Technologies Inc, 2007). These factors must
be considered to understand the accuracy of the technology.

FIGURE 9

25µm MPs sticking to each other.

3.5.2. Clogging of the inlet tubes
Identifying any bottleneck along pipes and junctions starting

from the inlet is crucial to avoid clogging issues. In addition to the
camera magnification, the minimum diameter of the entire system
of connections should be analyzed to ascertain the maximum
particle size that can enter the inlet. For example, although the
inlet pipe diameter of the PC2 is 7mm, it reduces to 4.3mm at
the junction connecting to the pump, resulting in clogging on the
entry of larger particles at the inlet (Figure 10). Furthermore, it is
recommended to maintain the same cross-section throughout the
conduit and junctions. Particles traveling parallel or too close to
each other may result in clogging on sudden reduction of the cross-
section. The sample may require appropriate pore-size filtering to
eliminate any blocking across the equipment conduits. It should
also be noted that blocking out large MPs from the measured
sample would lead to not only clogging but also errors in counting.

3.5.3. Entrapment of particles in bubbles
Bubbles may also entrap other particles and remain stagnant

in the tubing for the rest of the analysis. Figure 11A shows a
few of the black MPs trapped in the bubble prior to the imaging
section of the device. Therefore, the ones trapped were never
imaged and analyzed. This further leads to underrepresentation
and underestimation of the MPs in the sample. Hence, care should
be taken to avoid the generation of bubbles by proper priming at
the beginning and ensuring the inlet is submerged at all times to
minimize errors in analysis.

3.5.4. Formation of air bubbles
Air bubbles are formed predominantly during mixing or due

to insufficient priming at the startup of the equipment. Bubbles
may have several implications for the quantification of MPs. One
of them is bubbles being detected and analyzed as particles. Due
to its reflectance, a single bubble may be estimated as several
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FIGURE 10

Clogging of the connection tubes by the MP particles.

individual particles. This is clearly depicted in Figures 11B, C,
where PC2 designated several particle IDs to one air bubble,
leading to a drastic increase in particle count. Also, since bubbles
travel slower than other particles, they may be duplicated in
consecutive frames. All these factors ultimately contribute to the
overestimation of particles. With machine learning, it may be
possible to detect and eliminate the bubbles from being counted as
they have a very different appearance and shape compared to MPs
and other commonly found particles in the matrix. Classifiers can
be created with bubble images to filter them out. PC1 uses the object
intensity feature to identify the transparent air bubbles and exclude
them from being quantified as particles. In biopharmaceutical
formulation studies, individual air bubbles were separated using a
circularity filter, while a filter with an intensity/aspect ratio was used
for the bubble clusters (Sharma et al., 2010).

3.5.5. Floating MPs
Most MPs tend to float on water due to their low density

(Supplementary Figure S1A), which poses a problem as they are
not sucked into the sample measured by the MFI instruments.
Therefore, a mixing unit is advised to mitigate the problem, and
caution should be taken to avoid introducing bubbles during the
process. A magnetic stirrer may be used to mix the samples, which
was used with PC2 in this study to bring the spiked MPs into the
solution Supplementary Figure S1B). If the real-time concentration
is not of prime importance, adding a few drops of soap to negate
the surface tension can help sink the MPs and allow them to
the inlet pipe. However, caution is advised as soap addition may
generate bubbles. Since PC1 works with a smaller sample volume, a
mechanical stirrer is used in a syringe setup for uniform mixing of
the sample (Supplementary Figure S1C).

FIGURE 11

(A) MPs trapped in the bubbles in the tubing (B, C) bubbles detected
as particles in PC2.

3.6. Future prospects of MFI for monitoring
MPs

Image recognition can be enhanced through machine learning.
Using the artificial neural network, MFI has proved to be an
effective tool for differentiating silicone oil droplets, air bubbles,
and protein aggregates (Gambe-Gilbuena et al., 2020). Along
similar lines, it is worth exploring the use of these tools to
develop classifiers for the MP particles against the commonly
found contaminants in the water environment (Lin et al.,
2022). A comprehensive training set is required to achieve
good accuracy for identification. There is a growing interest in
automating the labor-intensive task of MPs screening by visual
means and classifying them according to their morphological
characteristics. New techniques are being developed using a
deep learning approach and computer vision that can analyze
the images of MPs taken with a digital camera or a mobile
phone. These produced outcomes remarkably close to that
assessed by human experts half the time and free from the
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error resulting from fatigue. These techniques were applied
to pretreated samples in a non-mobile environment for MPs
monitoring (Lorenzo-Navarro et al., 2020, 2021). Integrating
these methods into continuously generated images captured
by MFI systems offers promising prospects for detecting,
quantifying, and identifyingMPs in water environments in-situ and
in real-time.

4. Conclusion

This study investigated the potential of MFI-based particle
counters to identify MPs in water. Results from the MFI
included information on common particle descriptors such as
effective circular diameter (ECD), ferret diameter, circularity
(from PC1), and color (from PC2). Furthermore, the shape of
the detected particles was defined using circularity and aspect
ratio. Automating the extraction of these features enhances
the intercomparability of the data for future studies. The
object intensity parameter can be one of the parameters used
to differentiate MPs from lighter organic particles in natural
waters. Particle ID was identified as an important feature that
makes MFI a more versatile technology and enables further
investigation if necessary. Time series particle concentration plots
aid utilizing MFI in field applications for MP identification.
MFI also presents certain challenges, such as coincidence error,
overlap, and overestimation of particles that affect the accuracy
of the analysis. Operational precautionary measures can control
some of these challenges, such as the formation of bubbles that
affect the enumeration efficiency. While it may not eliminate
the bubbles completely, image analysis features such as intensity
can significantly improve accuracy. With further research and
advances in image analysis techniques and machine learning,
MFI can be a suitable in-line and real-time monitoring option
for MPs in water environments both in the laboratory and in
the field.
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