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A three-part coupled statistical
and physical model to monitor
water quality parameters
governing disinfection
byproduct risk at an urban
drinking water intake

Deena Hannoun* and Todd Tietjen

Regional Water Quality, Southern Nevada Water Authority, Las Vegas, NV, United States

Extended drought in the twenty-first century has led to loss of volume for lakes

and reservoirs across the globe. In the Colorado River Basin, USA, Lakes Powell

and Mead have experienced a 68 and 71% decline in volume, respectively,

since 2000. Lake Mead is important to the Las Vegas Valley as it accounts for

90–100% of the source water used to serve the 2.2 million residents and 43

million annual tourists. Lake Powell is also vital to maintaining water quality in

Lake Mead as it is located upstream and provides 97% of the water entering

Mead. As Lakes Powell and Mead are projected to continue decreasing in

volume over the next 5 years, it is important to understand the e�ects of

loss of lake volume on water quality in this highly-managed system. Here, the

e�ects of lake drawdown on water quality parameters that a�ect disinfection

byproduct (DBP) formation in the source water for the Las Vegas Valley are

projected over the next 5 years using Federal flow projections, regression

modeling to project influent temperature from Lake Powell into Lake Mead,

and a three-dimensional hydrodynamic and water quality model for Lake

Mead. Results from these modeling e�orts include projections for changes in

values of water temperature, bromide, and total organic carbon (TOC) at the

modeled cell that contains the Las Vegas Valley’s urban drinking water intake.

Rawwater bromide was found to have little change across modeled scenarios;

however, rawwater temperature is projected to increase because of falling lake

surface elevations. Raw water TOC is projected to increase three-fold in the

simulated scenario that includes the most loss of volume but remains close

to historic values in the remaining simulated scenarios. With these raw water

quality projections, water managers can better plan for alterations to the water

treatment processes, including mitigation of DBP formation.
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Introduction

Disinfection in drinking water has been used since the

beginning of the twentieth century to remove and inactivate

pathogens from potable water (Sadiq and Rodriguez, 2004). One

concern with the disinfection process, however, is the formation

of disinfection byproducts (DBPs) in treated water. In the

United States, some DBPs are regulated by the Environmental

Protection Agency (United States Environmental Protection

Agency, 1998), as they are known to have deleterious health

effects in humans (Sadiq and Rodriguez, 2004).

It is also well-established that increases not only in water

temperature (Valdivia-Garcia et al., 2019) but also in DBP-

forming constituents (Valade and Fulton, 2012) lead to increases

in DBP concentrations in finished drinking water. In this study,

future projections for water availability in the Colorado River

Basin, USA, are run through a series of models to project future

water temperatures as well as concentrations of constituents that

contribute to the formation of DBPs.

A research gap in this field exists on several notable

fronts. The system studied in this paper is a chain of large,

highly-managed reservoirs, and it is not well-understood how

management of upstream reservoirs may affect rawwater quality

in downstream reservoirs. Further, reduction of flow in the

entire basin is projected over the next 5 years as a result of

climate change (United States Bureau of Reclamation, 2022b).

While it is well-established that lower lake elevations will lead

to submerged structures, such as drinking water intakes, moving

closer to the water surface and thus being susceptible to seasonal

stratification (Hannoun et al., 2021), the specific effects of

official flow projections on water quality for the basin have

not been studied. Finally, the constituents that contribute to

the formation of DBPs have not been considered in previous

modeling efforts.

This study is novel in two ways. First, the effects of projected

warmer inflows from upstream Lake Powell into Lake Mead

are quantified using regression-based machine learning model.

While past efforts (Wright et al., 2009; Dibble et al., 2020) have

successfully predicted water temperatures entering Lake Mead,

the model presented in this paper is much simpler, relying

only on Lake Powell’s elevation and Julian date as inputs, and

historic temperature profile data for training and validation,

while showing excellent performance in both a hindcast and

forecast. The use of machine learning models to project surface

water temperature is well-documented, and literature on this

subject shows that simple models are adequate to describe

and project surface water temperatures using historical data

(Yousefi and Toffolon, 2022), and that these models can

accurately project the thermal structures of highly-stratified

lakes (Zhu et al., 2020). The simple model presented in this

study is highly adaptable and can be used by researchers who

seek to project water temperatures in submerged structures,

such as drinking water intakes or dam outlets, with minimal

calibration data. These water temperature projections are then

related to downstream temperatures and incorporated into the

three-dimensional hydrodynamic and water quality model for

Lake Mead.

The second novel approach highlighted in this study utilizes

a three-dimensional hydrodynamic and water quality model for

Lake Mead, the Lake Mead Model (LMM), to project values of

water quailty parameters related to DBP formation. This three-

dimensional modeling framework is well-established to provide

projections for water quality parameters in lakes and reservoirs

(Chung et al., 2009, 2014; Anderson and Schwab, 2011; Marti

et al., 2016; Allan et al., 2017; Gao et al., 2018; Saber et al.,

2020; Amadori et al., 2021; Zamani et al., 2021), and Lake

Mead specifically (Preston et al., 2014a,b; Hannoun et al., 2021).

This study expands upon previous efforts for Lake Mead as it

incorporates Reclamation’s inflow and outflow projections for

Lake Mead (where previous studies used historic data), and also

uses the regression model developed in this paper to incorporate

influent water temperature projections into the LMM (again,

historic temperatures have been used in previous efforts).

The entirety of this modeling effort yields projections for

raw water quality in the modeled cell that contains the drinking

water intake in Lake Mead for future water management

conditions that are being independently generated. Values of

the parameters that govern the formation of DBPs, including

water temperature, bromide, and total organic carbon (TOC)

are projected for the 5-year period from 2022 to 2026. These

projections allow water managers to plan for potential changes

to the water treatment processes before changes are detected at

the intake.

Materials and methods

Study area

The Colorado River Basin is a crucial engineered storage and

delivery system that directly impacts an estimated 40 million

people (Milly and Dunne, 2020). Snowmelt from the Rocky

Mountains feeds the Colorado River (Bales et al., 2006), which

then flows through the Upper Basin states before reaching

Arizona, Nevada, and California, andMexico, discharging to the

Gulf of California. The Colorado River Basin is highly regulated

and consists of 17 reservoirs that are managed based on Federal,

interstate, and intrastate regulations, guidelines, agreements,

and optimal hydropower generation. Lakes Powell and Mead

(Figure 1) are the two largest reservoirs in the United States

and are both part of the Colorado River system. Lake Powell is

located in the Upper Colorado River Basin. It is dendritic and

has a large surface area—653 km2 with potential storage volume

of 32.1 km3 (Hueftle and Stevens, 2001). Lake Powell is mostly

fed by regulated Colorado, Green, San Juan, and Escalante Rivers

inflow upstream and is contained by Glen Canyon Dam (GCD).
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FIGURE 1

Map of Lakes Powell and Mead.

The next reservoir downstream from Lake Powell and GCD

is Lake Mead. Colorado River water enters Lake Mead after

flowing through the Grand Canyon. Lake Mead has a surface

area of 600 km2 and potential volume of 36.7 km3 (LaBounty

and Burns, 2005). Ninety-seven percent of inflow to Lake Mead

is released from upstream GCD. Lake Mead is contained by

Hoover Dam. Both Lakes Powell and Mead have a low trophic

state and are phosphorus-limited, generally resulting in high

water quality (Hueftle and Stevens, 2001; LaBounty and Burns,

2005). Because these reservoirs are so closely linked, changes to

water quality in Lake Powell are expected to affect water quality

downstream in Lake Mead, potentially changing the ecosystem

and native fish populations (Wright et al., 2009; Dibble et al.,

2020).

The Las Vegas Valley relies on LakeMead to provide reliable,

high-quality water to consumers, including over 2 million

residents and 43 million annual tourists (Hannoun et al., 2021).

Raw water is withdrawn from Intake 3, located deep in Boulder
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FIGURE 2

Intake withdrawal depths.

Basin, which is the most downstream basin in LakeMead. Intake

3 was constructed at the considerable expense of $1.4 billion

USD and brought online in 2016 to ensure longevity and water

access security of the Las Vegas Valley’s water delivery system.

Previously, two intakes located closer to the water surface were

used (Figure 2). At full capacity, Lake Mead has an elevation

of 1,221 ft (371.9m) above sea level. When Intakes 1 and

2 were constructed, Lake Mead’s elevation was significantly

higher than it is today; therefore, the intakes withdrew high-

quality water from deep in the water column. At the current

lake elevation, Intake 1 is above the water surface. Intake 2,

while no longer used, would withdraw epilimnetic water during

most of the summer due to lower lake surface elevations from

extended drought and the deepening of the surface layer of the

lake seasonally.

The Colorado River Basin has experienced an extended

drought since the year 2000, leading to a decline in elevation of

both Lakes Powell and Mead. Further, future climate scenarios

are projected to weaken the correlation between Colorado River

snowpack and streamflow, leading to less available water in the

basin (Udall and Overpeck, 2017; Milly and Dunne, 2020). A

decline in available water may impact water quality in the basin

in several ways. First, as Lake Powell’s elevation declines, releases

from GCD may shift from cool, stable hypolimnetic releases to

seasonally variable, warmer epilimnetic releases (Wang et al.,

2022). Second, raw water withdrawn at Intake 3 may also come

from epilimnetic regions of the water column and be subject to

higher seasonal variability, again as a result of loss of volume

(Hannoun et al., 2021). Finally, with less available water passing

through Lake Mead for dilution, precursor constituents that

contribute to the formation of DBPs, such as bromide and TOC,

may increase in concentration, which could then yield a change

in water treatment processes and DBP mitigation strategies.

Ensemble flow projections for the
Colorado River Basin

The extended drought in the Colorado River Basin is

expected not only to weaken the link between snowpack and

available water, but also to reduce the volume of water available

in the system (Milly and Dunne, 2020). To quantify the effects of

these changes in the basin on raw water quality, projected flows

for the Colorado River Basin were taken from Reclamation’s

24-Month Study (24MS; United States Bureau of Reclamation,

2022b).

For this study, historic flow traces were replaced with

projected traces. Selected traces include the most probable,

probable minimum, and probable maximum scenarios. The

minimum scenario is the driest hydrologic state evaluated which

is similar to a scenario that would probabilistically be exceeded

90% of the time. Consequently, it yields the most pessimistic

flow regime simulated in this study, leading to a significant

decrease in Lake Mead’s water surface elevation level over the
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5-year period. The most probable scenario is median hydrologic

scenario. The maximum flow scenario is similar to a scenario

that would probabilistically be exceeded 10% of the time, and it

results in the highest elevation of Lake Mead at the end of the

simulation period. There is about an 80% probability that future

flow scenarios will fall between the minimum and maximum

traces (Wang et al., 2022).

The 24MS is initialized using previous end-of-month

reservoir elevations in the basin. The most probable trace

uses the 50% Colorado Basin River Forecast Center (CBRFC)

projected flow in the Upper Basin for year one and the

second year is derived from 50% of historical flows (1991–

2020). The minimum and maximum traces use the 10 and

90% CBRFC forecasts for year one, respectively, and then

25 and 75% of historical flows for year two. Because the

24MS only projects out for 24 months and the effects over

a 5-year period were needed, the 24MS derived projection

data for years 3–5 that represent a repeat of the year two

unregulated inflow hydrology in the Upper Basin was used.

The model takes water demand into account implicitly in

the Upper Basin by using the unregulated inflow forecast

and explicitly in the Lower Basin by incorporating demand

schedules from the Lower Basin states and Mexico. The model

complies with all Colorado River Policies, including the 2007

Interim Guidelines, the Lower Basin Drought Contingency

Plan, and Minute 323 (United States Bureau of Reclamation,

2022a).

Reclamation’s model projections are used in two ways in this

study (1) forecasting inflow and outflow volumes for Lake Mead

(2) projecting inflow temperature into LakeMead based on Lake

Powell’s elevation projections.

Machine learning temperature model for
Glen Canyon Dam

The temperature of water released from GCD and entering

Lake Mead has become an important point of discussion for

researchers studying the Colorado River Basin. As Lake Powell’s

elevation falls, the surface of the lake moves closer to the release

depth for GCD, resulting in the potential for the water to

become warmer and subject to wider intra-seasonal fluctuations

(Wright et al., 2009; Zamani, 2014; Glen Canyon Dam Adaptive

Management Program, 2022). Currently, releases from GCD are

hypolimnetic and the water quality is relatively constant year-

round. Warmer releases from GCD and changes to seasonal

regimes are expected to affect the ecosystem downstream,

including native fish populations in Grand Canyon (Wright

et al., 2009). These changes to GCD release temperatures are also

expected to affect water quality in Lake Mead.

Previously, thermodynamic models have been constructed

to project downstream release temperatures for GCD; the model

takes air temperature, dam release temperature, mean flow

volume, and distance from GCD as inputs. The model output is

projected temperature at a user-specified distance downstream

from GCD. Forecasted release volumes and temperatures from

Reclamation can be incorporated into the model to yield future

projections (Wright et al., 2009; Dibble et al., 2020). This

thermodynamic model has been validated and is extremely

useful when studying how temperatures can change as a function

of distance from GCD; however, these model projections

are only as robust as the release temperature and volume

projections. As part of this study, a robust machine learning

model to project water temperature entering Lake Mead is

constructed. In previous studies, temperature projections at

GCD were generated using the 2D CE-QUAL-W2 model for

Lake Powell; however, to operate the model proposed in this

paper, temperature projections at GCD are not needed. The

framework for a new statistical temperature model proposed

as part of this study uses historical water column temperature

data to train the model and yields water temperature projections

at GCD using only Lake Powell’s projected elevation (from

Reclamation) and Julian date. This statistical model overcomes

some typical shortcomings of machine learning models by

incorporating training data from a nearby deep water sampling

site located in Lake Powell, close to GCD.

Machine learning models have recently become popular

due to their robustness and relative ease of implementation. In

this study, a type of machine learning model called a random

forest model is used. The random forest model is named

because it uses a classification and regression tree (CART)

algorithm that examines data for potential split points, with the

resulting visualization of the model looking like a tree. Optimal

splits are calculated using a nonlinear least squares algorithm,

with the goal of minimizing the difference between the model

output and the training data output. The algorithm terminates

splitting when the child nodes are pure, meaning it contains

only elements from one predictor (Brieman et al., 1984). The

machine learning framework is implemented in MATLAB using

the TreeBagger function (Taylor et al., 2021; Mathworks, 2022).

A number of regression modeling frameworks were tested as

part of this study, and the TreeBagger function was selected with

an optimal number of trees that minimize model error.

There are advantages and disadvantages to the different

modeling frameworks considered in this paper. Thermodynamic

models, such as (Wright et al., 2009; Dibble et al., 2020), are

consistent with the laws of physics and conserve mass and

energy, yielding defensible and physically sound results (Moran

et al., 2014). However, as mentioned earlier, when these models

incorporate outputs from other models as predictor variables,

they are highly dependent on the quality of the incorporated

projections. Further, these models can propagate uncertainty in

initial projections yielding unrealistic projections (Smith, 2014).

Statistical models also have similar concerns. Statistical models

have the advantage of being relatively easy to understand,
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modify/update and implement. One disadvantage of using a

statistical model is that these models ignore the underlying

physics of the processes they are seeking to model and may

not conserve mass or energy. Further, statistical models are

limited by their training data sets. Machine learning models

are notorious for having poor out of bag (OOB) performance,

meaning that phenomena not incorporated in the model

training data will yield wildly inaccurate model output.

The machine learning model presented as part of this

study overcomes the poor OOB performance typically associated

with these types of models by increasing the training set to

not only include historic GCD release temperatures, but also

thermodynamic data taken from a deep water site located

upstream from GCD. It is assumed that the water profile

from this sampling site is representative of the water column

thermodynamics at the location of the dam. Consequently,

the machine learning model presented incorporates potential

temperature scenarios where the dam intake is located in the

epilimnion or metalimnion, instead of simply limiting the

training data to historic hypolimnetic releases, which tend to

be cooler and relatively stable year-round. Further, the machine

learning model incorporates Julian day as an input while

training so that seasonal air temperature effects are organically

incorporated into the model. The model projects the inflow

temperature of water entering Lake Mead at its confluence with

the Colorado River as a function of Lake Powell elevation and

time of year. This model is extremely robust as it can account

for inflow temperatures in any release scenario using GCD’s

main outlet. Further, this model can serve as a basis for utilities

or lake managers that are concerned with changes in dam

release dynamics. As long as temperature data is available for

both the dam outlet and a nearby sampling site representative

of dam thermodynamics, this relatively simple model can be

constructed, validated, and used to make future projections.

Relational polynomial model

Water temperature is projected to change as the water leaves

GCD and flows ∼300 miles to Lake Mead (Wright et al., 2009;

Dibble et al., 2020). For purposes of the LMM, temperature

data from the Grand Canyon Monitoring and Research Center,

Diamond Creek near Peach Springs (United States Geological

Survey, 2022), located upstream from the confluence of Lake

Mead and the Colorado River, is incorporated as a boundary

forcing value for Colorado River water inflow temperature

(Hannoun et al., 2021). Therefore, a relational model between

recorded temperatures at GCD and the Diamond Creek gauge

was constructed. A polynomial was chosen this time as there

was a limited range of historic temperature data available at

Diamond Creek and OOB error from a random forest model

was a concern. The Akaike and Bayesian information criterion

(O’Sullivan and Chen, 2020) were used to select and construct

a second-order polynomial that relates Julian date and water

temperature at GCD. The polynomial model was constructed in

MATLAB using polyfitn (D’Errico, 2022).

In this study, the temperature projections at Diamond Creek

are incorporated into a hydrodynamic and water quality model

for LakeMead. After the LakeMeadModel is run to completion,

the output parameters are analyzed at the cell containing the

drinking water intake for the Las Vegas Valley, Intake 3. This

allows water managers to determine what potential changes to

the treatment process may be necessary to ensure continued

delivery of high-quality water to consumers.

Lake Mead hydrodynamic and water
quality model

A three-dimensional hydrodynamic and water quality

model for Lake Mead is used to simulate quantities of

interest over a five-year timeframe, 2022–2026, consistent

with the projection period from Reclamation’s 24MS model.

The LMM is implemented in Aquatic Ecosystem Model

3D (AEM3D), which approximates quantities of interest by

solving the Reynolds-averaged Navier-Stokes equations with

a wind-forced mixing model and turbulent eddy closure

(Hydronumerics, 2020). The model solves for hydrodynamic

and water quality parameters in each grid cell, including,

but not limited to, temperature, dissolved oxygen (DO),

conductivity, chlorophyll a, suspended sediment, conservative

and decay tracers, zooplankton, phytoplankton, and chemical

parameters such as phosphorus, nitrogen, and carbon (Hodges

and Dallimore, 2013). The LMM was calibrated to measured

data to ensure model accuracy and minimization of error as a

future planning tool (Hannoun et al., 2021).

Inflows into the LMM are primarily dominated by the

Colorado River (97%), which is released from upstream GCD.

The remaining inflow comes from the upstream Virgin and

Muddy Rivers, and the Las Vegas Wash, which is primarily

comprised of recycled treated wastewater effluent from the

Las Vegas Valley. Most outflow from Lake Mead is released

downstream via Hoover Dam, with minor outflow from the

drinking water intake (Figure 3).

Seven simulations using the LMM were conducted as

part of this study (Table 1). First, a historic 5-year simulation

was conducted for comparison to projected future scenarios.

This simulation used both historic inflow and outflow

volumes as measured at Lake Mead, as well as historic

inflow temperatures from the Colorado River into Lake

Mead. Three simulations used Reclamation’s projected inflow

and outflow volumes for the most probable, minimum,

and maximum flow scenarios. The corresponding scenarios

were also incorporated into the machine learning model to

unite Colorado River inflow temperature projections with
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FIGURE 3

LMM bathymetry and grid cell size.

TABLE 1 Summary of LMM simulations.

Run # Inflow and outflow

volumes for Lake

Mead

Colorado River influent

temperature

1 Historic (2016–2021) Historic (2016–2021)

2 24MS most probable Machine learning and

polynomial model

3 24MS maximum Machine learning and

polynomial model

4 24MS minimum Machine learning and

polynomial model

5 24MS most probable Historic (2016–2021)

6 24MS maximum Historic (2016–2021)

7 24MS minimum Historic (2016–2021)

Reclamation flow projections. Finally, three simulations were

run with Reclamation’s projected inflow and outflow volumes

for the most probable, minimum, and maximum flow scenarios;

however, historic inflow temperatures were used to quantify the

effects of the updated temperature model.

In all seven simulations, historic measurements were

used for the remaining boundary conditions, such as

meteorological parameters, remaining tributary inflow volumes

and characteristics, and Colorado River inflow conditions such

as DO and nutrients. Results from the LMM in this paper

are presented at the modeled cell that contains the drinking

water intake.

The entire three-part modeling framework, including inputs

and outputs, is outlined in Figure 4.

F-test

The F-test is used in this analysis to quantify the

contributions of predictor variables, in this case lake elevation

and Colorado River influent temperature, on the resulting

projected temperature at Intake 3 determined by the LMM.

The F-test assigns p-values to each predictor, with a small

p-value meaning the predictor is important. The algorithm

reports -log(p) as scores, so higher scores again indicate

more importance for the predictor (Rasmussen et al., 1996).

The scores are summed and normalized to yield a percent

contribution of each predictor to projected Intake 3 water

temperature (Hannoun et al., 2021).

Results

Machine learning and polynomial
models: Construction and validation

The random forest model for inflow temperature into Lake

Meadwas developed using training data from both historic GCD

outflows and a sampling site located close to GCD. The model

Frontiers inWater 07 frontiersin.org

https://doi.org/10.3389/frwa.2022.983257
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Hannoun and Tietjen 10.3389/frwa.2022.983257

FIGURE 4

Three-part modeling framework.

training set was taken as 50% of the available data at both sites

from 2000 to 2019, and the remaining data was reserved as test

data (Hegde et al., 2019). Model fit to training data yields an

excellent R2-value of 0.962; the R2-value for the model applied

to the test data nearly equals the test set at 0.945. These metrics

show that the machine learning model is not only an excellent fit

to historic data, but also a robust tool for future projections.

The relational polynomial model computes water

temperature at Diamond Creek from 2010 to 2019 with

an R2-value of 0.896. Convergence plots for both the machine

learning and relational polynomial models are provided in

Supplementary materials.

To further validate the temperature model, a hindcast,

where the model is run and compared to a concrete historic

event (Evans and Shen, 2021), was performed for the random

forest temperature model from 2016 to 2019. Further, model

projections for 2020 are included and are OOB as this year

was not included in the test or training sets. The model shows

excellent agreement to data for both locations per measures of

mean absolute error (MAE), root mean square error (RMSE),

and R2, even for OOB data (Figure 5; Table 2).

Machine learning and polynomial
models: Projections

The temperature model is used to generate projections for

water temperature based on Reclamation’s 24MS predictions

from 2022 to 2026. Model projections show seasonal trends

present at Diamond Creek near the inflow to Lake Mead, with

the minimum scenario producing the most warming, followed

by the most probable and maximum (Figure 6).

These projected inflow temperatures are input into the LMM

along with the corresponding projected inflow and outflow

volumes from the 24MS model.

Lake Mead model

24MS flow scenarios

The results of Runs 2–4 represent a comprehensive view

of projected future raw water quality at the modeled cell that

contains the drinking water intake as a result of both loss of
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FIGURE 5

Hindcast and forecast for temperature model located at (A) GCD; and (B) downstream Diamond Creek.

TABLE 2 Performance metrics for temperature model.

Performance metric GCD Diamond Creek

2016–2019Hindcast 2020 Forecast 2016–2019Hindcast 2020 Forecast

R2 0.91 0.58 0.91 0.92

MAE (◦C) 0.30 0.66 0.68 0.67

RMSE (◦C) 0.55 0.84 0.88 0.85

volume in Mead and potential warmer releases from GCD.

Raw water temperature (Figure 7), bromide (Figure 8), and

TOC (Figure 9) are compared across the 5-year simulation

period. Historic baseline simulations (Run 1) are provided

for comparison.

Historic vs. projected inflow temperature

A pairwise comparison of simulations where the flow

scenario is held constant and Colorado River inflow temperature

into Mead is varied (historic vs. projected) shows that large

changes to raw water temperature occur in the minimum

scenario (Figure 10).

F-test analysis

Results of the F-test algorithm show that lake elevation

dominates water temperature at Intake 3, with contributions

from Colorado River influent temperature becoming more

important as more lake loss of volume occurs (Table 3).

Discussion

This study presents a concrete replicable framework for

projecting water temperature near a submerged structure such

as an intake or dam outlet if one has water temperature

profile data available nearby. The machine learning model

presented here is validated through both a forecast and hindcast

and overcomes traditional OOB error-related shortcomings

by incorporating profile data in both the test and training

data. Further, the relational polynomial model provides a

framework for relating release temperature from a structure

downstream based on a historic data set. Both models show

strong agreement to calibration data and are suitable for
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FIGURE 6

Projected inflow temperature entering Lake Mead.

FIGURE 7

Projected raw water temperatures at Intake 3.

incorporation into a forecast generated by a hydrodynamic and

water quality model.

A three-dimensional hydrodynamic and water quality

model, the LMM, is then used to project DBP risk at

an urban drinking water intake. Water temperature values

and bromide and TOC concentrations are projected from

2022 to 2026 as they contribute to DBP formation. This

model is used for general future operations guidance as

there is some uncertainty associated with model projections,

not only from 24MS projections, but also from associated

model error.

The LMM does not project changes in bromide in

any scenario modeled as part of this study. Raw water

temperature is projected to increase as a result of loss of

volume in Lake Mead. The maximum scenario is consistent

with historic raw water temperatures. The most probable

scenario yields slightly warmer raw water temperatures;

however, these temperatures are within the range of what
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FIGURE 8

Projected raw water bromide at Intake 3.

FIGURE 9

Projected raw water TOC at Intake 3.

the existing water treatment plants are capable of handling

without major changes to the treatment process or significant

infrastructure changes. The raw water temperatures projected

under the minimum scenario project significant warming

that could affect treatment processes, potentially increasing

chemical costs. The F-test shows that Colorado River influent

temperature into Lake Mead has a larger effect on raw

water temperature with loss of volume from both Powell

and Mead.

TOC maintains relatively constant and near historic levels

in the maximum and most probable scenarios; however, a

three-fold increase in TOC is projected in theminimum scenario

in 2025 and 2026. An investigation of TOC dynamics at lower

lake levels shows that below lake elevations of 1,017 ft (310m),

an inflection point appears where TOC begins to accumulate in

the Colorado arm of Lake Mead (see Supplementary materials),

directly below where the Colorado River enters Lake Mead.

This accumulated TOC enters Boulder Basin by way of the
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FIGURE 10

E�ects of Colorado River temperature model on raw water temperatures at Intake 3.

TABLE 3 F-test results to quantify the e�ect of predictors (lake

elevation and Colorado River influent temperature) on intake 3 water

temperature.

Flow scenario Percent contribution

of lake elevation

Percent contribution

of CR influent

temperature

Most probable (Run 2) 89% 11%

Maximum (Run 3) 99% 1%

Minimum (Run 4) 83% 17%

Narrows as in interflow in the top and/or middle of the water

column. This TOC is mostly comprised of dissolved labile

organic carbon, and the model projects this accumulation as

a result of both the relatively high background TOC in the

Colorado River coupled with the shallower (<10m) mean depth

of the Colorado arm. Mean depth in the Colorado arm and

mean maximum TOC in the Colorado arm are highly correlated

(Spearman’s rho:−80%; p< 0.01). This TOC plume is projected

to propagate downstream to the drinking water intake, where

there is still a strong negative correlation between mean depth

in the Colorado arm and TOC concentration at the modeled cell

that contains the intake (Spearman’s rho: −64%; p < 0.01). If

this phenomenon projected by the LMM occurs, warmer water

coupled with a three-fold increase in TOC could potentially

increase DBP formation and prompt re-evaluation of existing

DBP mitigation strategies.
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