AUTHOR=Zhao Mengqi , Boll Jan TITLE=Adaptation of water resources management under climate change JOURNAL=Frontiers in Water VOLUME=4 YEAR=2022 URL=https://www.frontiersin.org/journals/water/articles/10.3389/frwa.2022.983228 DOI=10.3389/frwa.2022.983228 ISSN=2624-9375 ABSTRACT=

The rapid growth of demand in agricultural production has created water scarcity issues worldwide. Simultaneously, climate change scenarios have projected that more frequent and severe droughts are likely to occur. Adaptive water resources management has been suggested as one strategy to better coordinate surface water and groundwater resources (i.e., conjunctive water use) to address droughts. In this study, we enhanced an aggregated water resource management tool that represents integrated agriculture, water, energy, and social systems. We applied this tool to the Yakima River Basin (YRB) in Washington State, USA. We selected four indicators of system resilience and sustainability to evaluate four adaptation methods associated with adoption behaviors in alleviating drought impacts on agriculture under RCP4.5 and RCP 8.5 climate change scenarios. We analyzed the characteristics of four adaptation methods, including greenhouses, crop planting time, irrigation technology, and managed aquifer recharge as well as alternating supply and demand dynamics to overcome drought impact. The results show that climate conditions with severe and consecutive droughts require more financial and natural resources to achieve well-implemented adaptation strategies. For long-term impact analysis, managed aquifer recharge appeared to be a cost-effective and easy-to-adopt option, whereas water entitlements are likely to get exhausted during multiple consecutive drought events. Greenhouses and water-efficient technologies are more effective in improving irrigation reliability under RCP 8.5 when widely adopted. However, implementing all adaptation methods together is the only way to alleviate most of the drought impacts projected in the future. The water resources management tool helps stakeholders and researchers gain insights in the roles of modern inventions in agricultural water cycle dynamics in the context of interactive multi-sector systems.