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Carbonate rocks have multiscale pore systems that are weakly understood. In this

study, we use combined experimental, modeling, and pore space generation methods

to tackle the impact of microporosity on the flow properties of Estaillades limestone.

First, a nano-core from a microporous grain of Estaillades limestone was scanned

using nanotomography (nano-XRM). The information from the nano-XRM scan was

then used as input into an object-based pore network generator, on which permeability

fields were simulated for a range of porosities, creating a synthetic Kozeny–Carman

porosity–permeability relationship targeted for the specific microporous system present

in Estaillades. We found a good match between the experimental and simulated

Mercury Intrusion Capillary Pressure (MICP) range in the imaged geometry and a

good match between the imaged and object-generated permeabilities and MICP.

A micro-core of Estaillades was then scanned using X-ray microtomography (µCT),

the differential pressure was measured during single-phase flow, and the rock was

flooded with doped brine. The contrast between the images was used to assign

a porosity to each voxel of connected microporosity. The flow through the pore

space was solved using the Stokes–Brinkman (S–B) and Stokes-only solvers, and

the differences between the measured permeability and computed permeabilities

were evaluated. An agreement was seen between the computed permeability of the

Stokes and S–B simulation with the measured permeability. However, the velocity

fields with the S–B simulation captured stagnant regions of the pore space that were

not present in the Stokes simulations. Additionally, we investigated the implications

of including microporosity in the estimation of relative permeability. Nitrogen was

experimentally co-injected through the core with doped brine at a 50% fractional

flow and imaged to capture the two-phase effective permeability and was compared

with the simulated numerical permeability. The Stokes simulation was not able to

predict relative permeability with this method due to the major flow paths in the
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macroporosity being impeded by the injected non-wetting phase. The S–B simulations,

however, allowed flow in the microporous regions around these blocked flow paths and

were able to achieve a relative permeability prediction that was a reasonable match to

the experimental measurement.

Keywords: permeability, multi-scale imaging, Darcy-Stokes–Brinkman equations, Kozeny–Carman, micro-CT,

nano-CT

INTRODUCTION

Experiments combining X-ray microtomography (µCT) with
in situ flow are now accepted methods for studying pore-
scale processes in real rocks (Blunt et al., 2013; Noiriel, 2015).
Pore-scale imaging experiments coupled with simulation are
important tools used in industry prediction of geological and
petrophysical properties, including porosity and connectivity
(Blunt, 2017), mineralogical heterogeneity (Lai et al., 2015), and
relative permeability (Armstrong et al., 2016; McClure et al.,
2018).

Typically, these simulations are done on the segmented image
and are only concerned with the macropore space where the
fluid solid boundary is fully resolved and able to be segmented
into pore and grain on a voxel-by-voxel basis (Mostaghimi et al.,
2013). When the rock grains are solid and the pore throats
are large as compared to the image resolution, typically at least
three voxels across each throat (∼15 microns), a reasonably
accurate segmentation is needed to get a realistic estimation
of flow through the rock (Al-Ansi et al., 2013; Alyafei et al.,
2015). However, not all grains are non-porous, and intra-granular
microporosity significantly contributes to the total carbonate
microporosity (Choquette and Pray, 1970). Most carbonate rocks
have microporous grains (Archie, 1952)—hereafter defined as a
grain with interior porosity that is not fully resolvable at the
resolution of the imaging apparatus.

The Stokes–Brinkman (S–B) flow simulation technique
combines Darcy’s law for effective media flow with pore-scale
Stokes flow and has been proposed as a solution to this problem,
bridging the gap between the fully resolved pore-scale and the
partially resolved nanoscale (Beavers and Joseph, 1967; Neale and
Nader, 1974), particularly when macro and microporosity are
effectively separated in spatial length scale. In many variations of
S–B simulations, Darcy’s law is solved in the porous rock matrix
based on an estimated permeability that is derived from a linear
porosity relationship using the relative greyscale between solid
grains and pore space (Khalili et al., 2012; Apourvari and Arns,
2016).

Assigning porosity values to partially resolved voxels is
well documented (Taud et al., 2005) and has been used
in conjunction with Mercury Intrusion Capillary Pressure
(MICP) measurements in many core-scale simulations on X-
ray tomography images that do not have sufficient resolution
to see the structure and connectivity of the pore space needed
to make a Navier-Stokes calculation possible. In this case,
reconstructed greyscale values are used as an analog for
porosity, and the permeability is assigned to each porosity
value based on the Kozeny–Carman estimation. This method

of assigning a relationship between porosity and permeability,
however, is based on the assumption that the porous medium
is effectively represented by an even packing of equally sized
elliptical beads (Carman, 1937, 1939). Furthermore, this method
does not include any influence associated with micropore
space connectivity (Soulaine and Tchelepi, 2016). A section of
microporosity may have high porosity without necessarily being
connected to the macroporosity in any significant way.

To quantify the connected porosity of the pore space, Lin
et al. (2016) flooded the rock with highly doped brine at varying
concentrations. They found that the highest doped brine gave
the best contrast and was able to quantify the distribution of
connected and unconnected porosity, as well as the porosity
distribution of the connected porosity by thresholding the
difference between the dry scan and the doped scan. Any
differences between the two images must be associated with a
change in saturation of the microporosity, with the magnitude
of the change being associated with the fractional change. This
is similar to the method used by Ott et al. (2014) to quantify
pore-scale behavior during salt precipitation.

The Kozeny–Carman equation related the permeability K to
the porosity ϕ by:

K =
ϕ3

c (1− ϕ)2 S2
(1)

where c is the Kozeny constant and S is the specific surface
area based on the solid volume. This relationship can be used
to relate local pore structure to macroscopic flow behavior;
however, the Kozeny–Carman method is fundamentally flawed
when representing more complex pore structures as it assumes
a homogeneous pore structure of evenly packed, uniformly sized
spherical grains. Furthermore, the Kozeny–Carmanmethod does
not incorporate any geological processes that would change the
shape and connectivity of the pore space (i.e., compaction and
diagenesis). To properly define this relationship at the pore-scale,
it is necessary to image the structure of the microporosity and
numerically calculate the porosity and permeability relationship
from a segmented image which well resolves the pore structure at
the nanoscale.

Nanoscale techniques, including FIB-SEM (focused ion
beam scanning electron microscopy), helium ion microscopy,
and nano X-ray microscopy (nano-XRM), have emerged as
technologies capable of resolving this porosity at the resolution of
several nanometres for FIB-SEM and nano-XRM (Wargo et al.,
2013) down to tens of angstroms for the helium ion (Scipioni
et al., 2008; Hlawacek et al., 2014). However, upon imaging at this
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resolution, it is only possible to see small volumes of rock in the
order around 10×10×10µm for charged beam instruments and
around 65 × 65 ×65µm for nano-XRM. Thus, it is necessary to
either image many different parts of the micropore structure or
to find a way of extrapolating these structures synthetically.

Earlier efforts on digital rock analysis extensively used
synthetic pore-space generation, defined as digitally creating rock
geometries, to examine simple systems at the pore-scale, either
digitally as numerical models or by printing them asmicromodels
for microfluidics (Koplik, 1982; Lenormand et al., 1988; Blunt,
2001). However, as imaging technologies have improved, it
has largely supplanted synthetic pore network generation for
examining simple geometries. Nevertheless, synthetic techniques
do present specific advantages, especially when examining
mechanisms behind various processes while controlling the
amount of heterogeneity (Bear, 1972; Singh et al., 2017). These
synthetic pore spaces can either be constructed physically, usually
by glass beads or etchings in glass (e.g., Tohidi et al., 2001;
Phenrat et al., 2009; Zuo et al., 2013), or numerically using a
pore space generator, using stochastic or object-based techniques,
subject to various constraints (e.g., Okabe and Blunt, 2005).

Recently, Andrew (2020) has used a combination of numerical
pore space generation and multiscale imaging to investigate the
porosity–permeability relationships of shale and sandstones. He
found that the (geological) diagenetic processes inherent in the
creation of the porosity should dictate how to approach the
generation to accurately predict the evolution of permeability.
Shales have a porosity defined by authigenic growth within
a deformable matrix, making the pore structure significantly
more spherical than intergranular pore structures, common in
sandstones and carbonates. As such, authigenic organic hosted
pore networks can be modeled (to a high level of statistical
similarity when compared with imaged pore networks) using a
network of (overlapping) spherical pores, while sandstones can
be modeled similarly accurately by modeling individual grains
as convex polyhedra, with the pore network given by the space
between the grains.

The goal of this study is to present a method that combines
fluid flow experiments with multiscale imaging of macro- and
microporosity and synthetic pore space generation to increase
the accuracy of numerical multiphase pore-scale simulations on
microporous rocks using S–B simulations.

First, we imaged the microporosity of Estaillades limestone
using nano-XRM. We then analyzed this image and generated
a synthetic pore geometry, creating a porosity-permeability map
specific to this rock type. A core plug of Estaillades Limestone
was then imaged using micro-CT, segmented, and using a
Stokes–Brinkman using the generated porosity-permeability
relationship. The permeability and flow fields of the S–B
simulation were then compared to a Stokes-only flow simulation
with the same pore space.

We then ran a steady-state flow experiment on the same
core in situ using co-injection of N2 and brine. The core
was then imaged, and relative permeability was simulated
with the GeoDict software (Linden et al., 2014) using
an MICP-like simulated injection method. Permeability
through the wetting phase (WP) was then simulated

using both Stokes and S–B methods, and the relative
permeability measured in situ was then compared to these
simulation results.

The objective of this paper is to use correlative microscopy
with benchmark experiments and modeling to tackle the
challenge of incorporatingmultiscale structural features into flow
models of carbonate rocks.

MATERIALS AND METHODS

Sample Characterization
Estaillades is a limestone quarried at Oppede, France. It
was deposited 22 million years ago and composed mostly of
calcite (>97%) with a minor quartz component. Estaillades
is a medium- to coarse-grained bioclastic grainstone with
microporous bioclast grains. The helium porosity is 0.295 and
it has a bulk-scale absolute permeability of 1.490 × 10−12 m2

(measured at Weatherford Laboratories, East Grinstead, UK).
Estaillades is a well-connected heterogeneous carbonate. The

MICP curve and pore-throat distribution show a clear bimodal
population of pore throats (Figure 1). However, only the larger
population of throats is accessible to µ-CT imaging, and only
contributes around half of the total porosity, with the remainder
residing in the microporous bioclasts. In this study, we define
macroporosity as those regions divisible into pore and grain
during segmentation of the micro-CT images, with all other
partial porosity regions being defined as microporosity.

Nanoscale Imaging
In this section, we describe the nanoscale imaging techniques,
image analysis, synthetic image generation, and numerical
modeling used to create a custom porosity–permeability curve
for Estaillades’ microporosity.

The ZEISS Xradia Ultra 810 nano-XRM was used to image
microporous structure down to a voxel size of 32 nm and an
effective resolution of 50 nm (Figure 2). The extremely high
resolution of this system requires relatively stringent sample
size restrictions, with samples having a diameter no larger
than 100µm. Sample preparation of such a small sample is
extremely challenging, even in non-heterogeneous samples, and
the heterogeneous nature ofmany geological systems compounds
this challenge significantly. To prepare such samples, a complex
multi-stage sample preparation protocol was performed using an
Oxford gimballed laser micro-machining mill model A-532-DW
(www.oxfordlasers.com) (Roth et al., 2016).

First, a 10mm diameter mechanically drilled sample of (air-
saturated) Estaillades was scanned at a low (10µm) resolution
using a ZEISS XRM-510 µCT (Figure 2A). Fiducial marks made
of aluminum tape were placed on the surface of the sample to
enable alignment between the laser micro-machining stage and
the sample. The low-resolution image was then segmented into
microporosity, macroporosity, and solid mineral grains using
the ZEISS Zen Intellesis machine learning-based segmentation
(Figure 2A). As Estaillades is very simple mineralogically (>97%
calcite), the greyscale of each voxel within the microporosity
is only associated with the internal porosity of that voxel,
ranging from the value observed within the macroporosity
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FIGURE 1 | Estaillades limestone MICP curves (A,B) with the µCT resolution shown as a dashed black line. A µCT image (C) with labeled pores, solid, and

microporous grains.

FIGURE 2 | A core of Estaillades is scanned in the µCT (A) and the pores (red), solid grains (blue), and microporous grains (yellow) are identified. A subsection is

identified (B) and milled (C). A section of the milled section (D) is then scanned in the nano-XRM (E).

(corresponding to a 100% porosity within the voxel) to that
observed within the solid grain (corresponding to a 0% porosity).
Therefore, the greyscale distribution within the microporous

phase corresponds to its internal porosity distribution (Figure 3).
A 30 × 30 × 30µm region of microporosity (corresponding
to 3 × 3 × 3 voxels within the macroscopic image) was then
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FIGURE 3 | (A) The raw nano-XRM image, (B) cropped and filtered image, (C) grains identified by machine learning, (D) segmented 3D image, and (E) separated

grains.

FIGURE 4 | The real nano-XRM (solid black), real micro-CT (solid brown), synthetic (red and rainbow), and bulk core measured (black dashed) MICP curves. Values

are normalized to total porosity.
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FIGURE 5 | Micrite grain equivalent radii frequency histograms for the real geometry imaged by nano-XRM (black) and the 41% porosity synthetic image (red).

identified, which corresponded to the modal porosity within the
porosity distribution of the microporosity (porosity of 40%). The
offset of this region relative to the sample fiducial marks was then
measured, and the region of interest (ROI) aligned underneath
the laser axis. A coarse pillar of dimensions 800µm in diameter
and 2mm in length was extracted from the sample using the
laser micro-machining in a top-down fashion (Figure 2B). This
sample was then transferred to the end of a dowel pin using
an automated sample transfer procedure. This coarse pillar was
then imaged within the µCT with a voxel size of 800 nm along
its length (Figure 2C). This image was then registered with the
macroscopic (10µm voxel size) image of a 10mm diameter pillar
using a normalized mutual information metric.

The coarse pillar was then transferred to a rotational stage
within the laser system with a rotational axis perpendicular
to the laser axis. The sample was then slowly reduced to
produce a fine pillar 65µm in diameter, operating the laser
in a lathe-like fashion. This pillar was then imaged along its
length within the ZEISS Ultra NanoCT at low resolution (128 nm
voxel size) (Figure 2D). This dataset was then registered with
the lower resolution dataset of the coarse (800µm diameter)
pillar (and thereby the macroscopic image of the 10mm diameter
core). This multi-scale representation of the microporosity was
then inspected to identify the location within the nano-XRM
corresponding to the location within the fine pillar of the
region of modal (40%) porosity, initially identified from the

macroscopic image. This region was then scanned at the final,
highest resolution (32 nm voxel size) non-invasively within the
fine pillar (Figure 2E). The internal structure of the imaged
microporosity consists of subhedral crystals of micrite, consistent
with SEM and transmitted light microscopy analysis of this
sample (Andrew, 2014).

The resulting reconstructed image was first denoised using
an edge-preserving non-local means filter, then segmented using
the ZEISS Zen Intellesis machine learning-based segmentation.
Such a segmentation technique has been shown in quantitative
benchmarks to be significantly more robust when dealing with
such noisy and challenging images (Andrew and Hornberger,
2018; Berg et al., 2018). The resulting porosity observed within
the image (41%) matched well with the inferred porosity of
the 30µm × 30 × 30µm region initially identified from the
macroscopic 10µm voxel size image of the 10mm diameter
core. Stokes flow was simulated within this pore geometry using
the LIR FlowDict Solver (Linden et al., 2015) (Math2Market
GeoDict), giving a nano-porous permeability of 2.63× 10−15 m2.

MICP was also simulated on this structure using the SatuDict
modules of GeoDict (Math2Market), showing a good match in
peak position between the microporous peak in the experimental
MICP and the simulated MICP through the microporous
structure (Figure 4).

To extend this result to cover the porosity range
observed within the microporosity, a suite of similar
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FIGURE 6 | (A) The synthetic pore space generated from the volumetric grain size distribution from the nano-XRM image. (B–L) Dilated grains (green) with preserved

grains (red).

pore networks was constructed using object-based
techniques (Andrew, 2020). The connected micritic matrix
was separated into a network of discrete, separated
micrite grains using a watershed algorithm (Figure 3E).
The volume and equivalent radius distribution of
these grains were then measured, showing a unimodal

distribution with a peak equivalent grain radius of around
500 nm (Figure 5).

A histogram of the volumes of the separated grains and the
porosity and permeability of the nano-XRM image is then used
to generate synthetic grains in a pore space (Figure 6A). All
geometry creation was performed in the GeoDict software using
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FIGURE 7 | The synthetic porosity–permeability relationship (blue stars), with the power law fit of Y = 10−20×3.72 (black dashes) and the real image porosity and

permeability value (red diamond).

FIGURE 8 | Estaillades grains (A.1–D.1) and high-resolution sections (A.2–D.2) showing micritic calcite with some dense calcite around the grain boundaries.
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FIGURE 9 | The experimental apparatus consists of the injection, receiving, and confining pumps outside the micro-CT, with a core holder and differential transducer

on the rotation stage inside the micro-CT lead-lined enclosure. The core holder is made of carbon fiber and is equipped with thermocouples and heating wrap. The

core is wrapped in aluminum foil to minimize gas exsolution and beam hardening artifacts. It is then placed inside a Viton sleeve which is attached to the end fittings

supporting the two injection pumps and receiving pump.

the GrainGeo module (details of each GeoDict module used in
this study can be found in the Numerical methods section). These
grains are then dilated successively to create twelve synthetic pore
spaces with porosities ranging from 6 to 56 %.

A suite of pore geometries was then created by modeling
the micritic grains as convex polyhedra, bounded by spheres
with a radius distribution given by the radius distribution of
the micritic grains. The polyhedra were placed randomly within
a 3D volume of size 16 × 16 × 16 µm3 without allowing
granular overlap until no more polyhedra could fit within the
pore geometry. This structure was then progressively dilated by
1 voxel at a time in 12 total steps, with simulations of both MICP
and Stokes-flow permeability performed on each successive
pore network until no connected pore network remained
(Figures 6B–L), creating a porosity–permeability relationship
for the intragranular micritic microporosity in this sample

(Figure 7). While the change in porosity between each successive
image is low, the permeability change was high due to the
closing of pore throats. We found that the porosity–permeability
relationship corresponded to a power law fit with an exponent of
3.37, which is reasonable when compared to previously published
Kozeny-Carmen estimations for porous rocks (Pape et al., 2000).
These geometries were then also simulated with SatuDict and
plotted in Figure 4 with a good match to the MICP data. These
results highlight the validity of the synthetic geometry creation
method in creating accurate porosity structures over a range of
porosity values.

In addition to nano-XRM imaging, we also imaged several
microporous grains using a Zeiss Sigma 300 SEM at a pixel
resolution of 20 nm to examine the structural heterogeneity
inside amicroporous grain (Figure 8).We found that themicritic
structures were reasonably regular and consistent with our
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generated synthetic grain packings. However, it is interesting
to note the high-density layers of compacted calcite on the
outside of the grains, perhaps from diagenetic dissolution and
reprecipitation, which is likely to be lower in permeability than
the interior of the grains and could result in an overestimation of
the permeability of the microporosity if they are not considered.
However, the deionised (DI) doping method presented in the
next section largely addresses this error.

Pore-Scale Experiments and Imaging
A new 5mm diameter, 24mm long core of Estaillades was then
drilled from the same 1 m3 block of limestone and was used

for the nanoscale study. The core was loaded into a carbon
fiber core holder (airborne composites) and then imaged dry
(Figure 10). The core was confined using DI water at 10 bar,
and two high-pressure syringe (Teledyne Isco) pumps were used
to drive highly doped brine of 30 wt.% KI through the core
with a constant back pressure of 2 bar (Figure 9) for 1,000
pore volumes and reimaged with the brine inside. The core
was washed with DI water for 1,000 pore volumes, and three
differential pressure measurements were made using a Keller PD-
33X differential pressure transducer with a total range of 300
kPa and an error of 0.01% across the whole range during the
flow of 0.5, 0.75, and 1.25mL min−1 with a 2-bar back pressure

FIGURE 10 | The image processing workflow. The dry scan (A) is segmented using machine learning (B). The doped scan (C) is subtracted from the dry scan to get

the difference image (D). The difference image greyscale is then thresholded to 12 different porosity values and grains, and then the pore space of segmented dry

scan (B) is masked to create the 14-phase segmentation of solid grains (yellow), 12 types of microporous grains (randomly colored), and pores (light blue) (E).
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FIGURE 11 | The wet scan (A) taken during co-injection of N2 (black) in the pore space of Estaillades. A 3D rendering of N2 (B) sieved by size with small (yellow),

medium (blue), and large (red) disconnected clusters. The WP permeability is plotted as a function of NWP saturation (C) with the Stokes simulation in blue, the S–B in

black, the experimental results from the single phase shown as a red star, and the result from steady-state co-injection as a red cross.

(Figure 12). The flow rate was varied to provide a more accurate
error measurement.

The core was then confined at 120 bar, the internal pore
pressure raised to 100 bar, and the temperature raised to
50◦C. Nitrogen gas (N2) was co-injected through the core
with 30 wt.% KI brine and allowed to reach a steady state.
The differential pressure was measured, and images of the
core were taken in situ. Precise details of this experimental

apparatus and method of measuring relative permeability can be
found in Gao et al. (2017).

Pore-Scale Image Processing
The Weka3D machine learning segmentation algorithm in Fiji
was used to segment the macro pore space (Figure 10A) for both
the Stokes and S–B simulations (Figure 10B).
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TABLE 1 | Porosity and permeability values for microporosity calculated from numerical simulations on synthetic images.

Porosity range in

difference image

(%)

Porosity of simulation (%) Simulated permeability (m2) Fraction of total core volume (%) Segmentation phase #

100 N/A N/A (Pore) 9.95 1

54–99.9 57 7.47 × 10−15 17.16 2

49–54 52 6.91× 10−15 4.63 3

44–49 47 4.79 × 10−15 4.62 4

39–44 42 3.24 × 10−15 4.86 5

32–39 36 2.12 × 10−15 7.22 6

24–32 27 8.06 × 10−16 6.93 7

20–24 22 4.59 × 10−16 4.09 8

16–20 18 2.44 × 10−16 3.65 9

13–16 15 1.17 × 10−16 3.21 10

10–13 12 4.95 × 10−17 2.78 11

7–10 9 1.73 × 10−17 2.36 12

0.1–7 7 4.76 × 10−18 7.73 13

0 N/A N/A (Grain) 20.83 14

N/A N/A 0 (Viton Sleeve) N/A 15

More details on segmentation can be found in the Supplementary Materials.

FIGURE 12 | (A) Differential pressure (kPa) measurements across the core at brine flow rates of 1.25, 0.75, and 0.5mL min−1 with a back pressure of 2 bar. (B)

Differential pressure measured during co-injection of N2 and KI brine.

It is important to note that while segmentation using
machine learning can be more accurate, it takes longer to
train the algorithm and is more computationally expensive
compared to watershed (Arganda-Carreras et al., 2017), and
thus computational capacity should be considered prior to
the selection of segmentation methods. The images of the
rock filled with doped brine were then used to identify
the solid grains and unconnected microporosity. The pore
space, unconnected microporosity, and solid grains were then
masked, and the remaining greyscale values were used to label
the connected microporous grains based on porosity using
Avizo 9.3 (www.fei.com) (Figure 10D). These porosities were
then assigned a permeability based in FlowDict based on the
permeability calculated on the synthetic pore spaces (Table 1). A
similar workflow was followed for the images of imaged in situ

fluid distributions, with the images registered to the dry scan, and
then the nitrogen was segmented inside the pore space using a
watershed algorithm on the difference image. The non-wetting
phase (NWP) saturation can then be calculated based on the
number of pore space voxels filled with gas. Figure 11 shows
the nitrogen in the pore space visualized as small, medium, and
large clusters.

Numerical Methods
All simulations in this paper were completed using modules
contained in the Math2Market GeoDict. This includes
synthetic pore space generation (GrainGeo), S–B flow
with an LIR adaptive grid (FlowDict), and synthetic MICP
injection (SatuDict).
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The GrainGeo module in GeoDict (Linden and
Weigmann, 2018) can be used to create digital 3D
models of ceramics, sintered materials, grain packings,
or digital rocks. The starting point for modeling is user-
defined parameters, such as known grain size distribution,
pore size distribution, and grain shapes. By changing
the parameters of the underlying model, new material
structures are designed and their material properties can
be studied.

The LIR solver (Linden et al., 2015) in the FlowDict
module is a very fast and memory-efficient iterative
finite volume method. The solver computes the
permeability, as well as velocity and pressure fields, on
large 3D images. The LIR solver can be used for the
numerical solution of the Stokes, S–B, Navier-Stokes,
and Navier-Stokes–Brinkman equations. Here, we use the
S–B equation:

− µ1
−→u + µK−1−→u + ∇p =

−→
f (2)

where K−1 is the inverse of the permeability
tensor, µK−1 is the flow resistivity, p is the

pressure, −→u is the fluid flow velocity, and
−→
f is the

force density.
Our 3D images are represented as regular voxel grids, where

the number of grid cells grows cubically. The LIR solver uses
an adaptive grid, instead of a regular grid, to significantly
reduce the number of grid cells. The basis of the adaptive
grid is a data structure called LIR-tree (Hilpert and Miller,

2001) that is used for the spatial partitioning of 3D images.
The pore space is coarsened in areas with small velocity and
pressure variations, while keeping the original resolution near
the solid surfaces and in regions where velocity or pressure
vary rapidly. Pressure and velocity are discretized on staggered
grids and are arranged in such a way that each cell can satisfy
the Navier-Stokes–Brinkman equation independently from its
neighbor cells.

The pore morphology method (Ahrenholz et al., 2008) is

used in SatuDict, and it predicts the distribution of a WP and
an NWP inside a porous medium. The method distributes two

fluids by using morphological operations rather than solving
partial differential equations. Here, we assume a strong water-

wet system. For drainage, it can be envisioned that spheres

are pushed into the structure and placed in the pore space,
where the pore size is greater than a certain radius. The

radius is decreased in an iterative process, which corresponds
to an increase in capillary pressure. The superposition of all

spheres represents the NWP. The pore morphology method

achieves this placement of spheres by dilation and erosion
processes of the solid phase with the pore space. Additional
connectivity checks (Menke et al., 2015) with respect to NWP
and WP reservoirs can be used to increase the validity of
the distributions, and they allow the introduction of residual
phases. The output of the algorithm is a finite sequence of
quasi-stationary states. For the relative permeability of the WP,
for instance, we solve a single-phase flow inside the WP and
treat the interface between WP and NWP as an immobile no-
slip interface.

FIGURE 13 | Velocity fields rendered with high velocities in red and low velocities in blue for Stokes (A) and S–B simulations (B). The PDFs of velocity (C) are shown

for Stokes (red) and S–B (blue) simulations.

Frontiers in Water | www.frontiersin.org 13 July 2022 | Volume 4 | Article 935035

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Menke et al. Carbonate Multi-Scale Imaging and Modeling

RESULTS AND DISCUSSION

Differential pressure measurements were used with Darcy’s Law:

k = −
QµL

A (1P)
(3)

where k is permeability (m2), Q is the flow rate (m3 s−1), µ

is a viscosity of 1.08 × 10−3 (Pa.s−1), L is the length of the
core (m), A is the cross-sectional area of the core (m2), and 1P
(Pa) is the differential pressure between the inlet and the outlet
of the core. The calculated permeability from the differential

pressure measurements was 2.43 × 10−14 m2 (Figure 12A).
Each of the large-scale simulations was run for 162 h on 24 3.0
GHz cores. The Stokes simulation used around 80 GB of RAM
while the S–B used around 256 GB of RAM. Unfortunately, due
to memory constraints, the least permeable phases (1–5) were

set to zero permeability in the S–B simulation. The estimated
permeability of the Stokes simulation was 1.21 × 10−14 m2,
while the S–B simulation was 3.57 × 10−14 m2. These values
indicate that the Stokes simulation underestimated permeability
by 50%, while the S–B simulation over estimated permeability
by 46%.

FIGURE 14 | The three widest percolation paths through the core shown in green with the rock shown in gray (A) and the rock transparent (B).
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There are three likely sources of error in the Stokes
simulations—segmentation error, correlated heterogeneity
(Apourvari and Arns, 2016), and unaccounted for the
contribution of microporosity in permeability. It is possible
that the Weka segmentation needs more training as it is still not
able to capture all the small pore throats that contribute to flow.
However, we posit that it is more likely the lack of microporous
regions that closes off flow in places that would otherwise have
hydraulic connection as we see in the high-density calcite crystal
layer on the SEM images of exterior of the grains in Figure 8.

In contrast, the S–B simulation overpredicts permeability. We
posit this could be due to an overprediction of connectivity in
the microporous regions, which is also consistent with Figure 8.
While our method of doped brine flooding should minimize
misidentification of completely unconnected areas of micro
porosity, if there is a minor hydraulic connection the doped brine
would still flood the area very slowly and by the time 100 pore
volumes have been flooded through the core the micro-porosity
would be completely flooded. A possible solution to this problem
would be to perform time-resolved imaging during doped-brine
flooding, where the slow flooding of the microporosity could be
quantified to have some idea of the local connectivity of each
microporous voxel.

The velocity fields and probability density functions (PDFs)
of velocity are shown in Figure 13. A visual inspection of the
velocity fields does not reveal very much difference. However,
when we compare the PDFs of velocity in Figure 13C, we
see a distinct difference in the peak velocities and tail. In
the Stokes simulation, the velocity PDF is a smooth gaussian
distribution with a peak centered around 1. However, in the S–
B simulation, we see a smaller secondary peak around 1 with
the main peak around 10−2 with a long tail. This indicates that
in the Stokes simulation, we only capture advective flow, while
in the S–B simulation, there is a large amount of slow flow
through the micropore space. This result has many applications
but is particularly important during contaminant transport for
predicting the concentration of contaminants with time. If the
slower transport is not incorporated into the model, then the
peak and the tail will not be accurately predicted.

The segmentation technique employed for the macro pore
space may also significantly control the simulated velocity
PDF (Figure 13C). As discussed in the Methods section and
Supporting Information, when a typical watershed segmentation
was attempted on this image, the macropore space was
unconnected throughout the length of the samples. In previous
studies, the watershed has been used to segment the pore space,
and the predicted permeability values were far below the ones
predicted in this paper. Menke et al., 2015, 2016, 2017 report
values ranging from 1.53× 10−14 to 1.57× 10−13 m2. It is likely
that pore space remained connected in these cases because while
the samples were imaged at approximately the same resolution,
they were significantly shorter (and thus overall contained less
heterogeneity). However, the watershed segmentation still did
not properly segment the small throats, and thus the permeability
was predicted to be much lower than would be expected from
the experimentally measured permeability of 2.43 × 10−14 m2.
For complex pore structures, watershed segmentation will be

less accurate than the more sophisticated textural and featural
segmentation approaches and should be used with caution.

During co-injection, we measured differential pressure for
95 h. We observed a cyclic perturbation where pressure builds
from ∼90 to ∼180kPa over the course of ∼5 h and then
suddenly drops back down. These pressures correspond to WP
permeabilities fluctuating between 1.52 × 10−15 and 2.74 ×

10−15 m2. We imaged the core during flow and observed the
NWP saturation to be 0.6 in the macropore space. It is important
to note that each 3D scan took around 5 h, and any changes in
saturation during this period would be time-averaged. To try
and understand why the pressure was building and releasing,
we modeled the streamlines through the core using FlowDict
(Figure 14). We found that all the flow of NWP is directed
through a single small pore throat, about two-thirds of the way
through the core. We postulate that this small flow impedance
was causing capillary pressure to build and then be released as the
local capillary pressure built enough to flow through this small
pore throat, a theory supported by the approximately periodic
nature of the pressure fluctuations (Reynolds et al., 2017; Spurin
et al., 2019). More experiments targeting the investigation of
this theory would be an interesting target for future research,
however, they are out of the scope of this paper.

Relative permeability was then simulated by simulating fluid
distributions using SatuDict, injecting the NWP into the core
from both sides using a maximal inscribed spheres technique
on the connected pore network, slowly increasing the saturation
from 0 to 1. Microporosity was assumed to be fully saturated.
Permeability was calculated by simulating flow through the
WP as a single-phase permeability using both the Stokes
and S–B methods. We found that initially, the permeability
estimation ranged between 1.21 × 10−14 and 1.14 × 10−14

m2 for NWP saturation of 0–0.036, but after this saturation,
the NWP completely blocks all connected pathways, and the
permeability is predicted as zero. In the S–B simulations,
however, we observe that the initial permeabilities are higher
than the Stokes flow with values ranging from 3.57 × 10−14 to
2.92 × 10−14 m2 for NWP saturation of 0–0.067. Furthermore,
there is a connected flow path for all saturations, and we
find that the predicted permeability of 2.30 × 10−15 m2

at a saturation of 0.59 is in reasonable agreement with the
experimental measurements.

CONCLUSION

We have developed a method of using multiscale imaging
and experiments to characterize relative permeability in
a microporous carbonate, even at high NWP saturations.
Intra-granular microporosity in this system was characterized
using targeted nano X-ray microscopy, which was then
used to generate a suite of synthetic pore geometries
hydrodynamically similar to the imaged network. This was
used to generate a customized Kozeny–Carman porosity–
permeability relationship, which was used to populate a
macroscopic porosity map generated from the (macro-scale)
X-ray microscopy.
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By coupling multi-phase flow simulation with a multi-
scale description of flow, we were accurately able to predict
relative permeability at a fractional flow of 0.5, where a
single-scale simulation failed to capture an effective flow
pathway—the WP disconnected in the macropore space,
only remaining connected through the microporosity. Such a
multiscale approach is particularly powerful when attempting
to assess systems with high levels of multiscale structural
heterogeneity, such as complex carbonate and shale reservoirs.
It also shows that, while these systems can be extremely
challenging to characterize, they are tractable by coupling
state-of-the-art imaging technologies with stochastic network
generation, guided by a geological understanding of the medium
in question.

Future work may include the extension of these analyses
across the full experimental relative permeability curve, fast
tomography imaging to observe dynamic changes in saturation,
further (quantitative) assessment, and comparison of micritic
structures across several rock types.
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