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Remotely sensed evapotranspiration (ET) rates can provide an additional

constraint on the calibration of groundwater models beyond typically-used

water table (WT) level observations. The value of this constraint, measured

in terms of reductions in model error, however, is expected to vary with the

method by which it is imposed and by how closely the ET flux is dependant

to groundwater levels. To investigate this variability, four silvicultural sites

with di�erent access to groundwater were modeled under three di�erent

model-data configurations. A benchmark model that used only WT levels for

calibration was compared to two alternatives: one in which satellite remotely

sensed ET rates fromMODIS-CMRSET were also included inmodel calibration,

and one in which the satellite ET data were assimilated, through the Ensemble

Kalman Filter, into the model. Large error reductions in ET flux outputs were

achieved when CMRSET data were used to calibrate the model. Assimilation

of CMRSET data further improved the model performance statistics where the

WT was <6.5 m deep. It is advantageous to use spatially distributed actual ET

data to calibrate groundwater models where it is available. In situations where

vegetation has direct access to groundwater, assimilation of ET observations is

likely to improve model performance.
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1. Introduction

Sustainable management of underground water resources is a critical issue (Green

et al., 2011; Famiglietti and Rodell, 2013; Walker et al., 2021), due to the importance

of groundwater resources for water supply (Banks et al., 2011). Use of groundwater

resources is more frequently seen as part of the solution to address the impacts

of climate variability (Leblanc et al., 2012), warming and drying (Swaffer et al.,

2020). Sustainable management of groundwater requires an understanding of the

magnitude of water inputs to and losses from the groundwater system. Among the

processes influencing fluxes to and from the groundwater, evapotranspiration (ET)
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is a critical control of recharge to the water table (WT). Where

the WT is sufficiently close to the land surface, ET provides

a critical component to water losses from the groundwater

(Farrington and Bartle, 1991; Benyon et al., 2006; van Der

Salm et al., 2006; Greenwood et al., 2011; Dresel et al., 2018).

Evapotranspiration is thus particularly relevant to sustainable

groundwater management in areas with deep-rooted vegetation,

such as forestry plantations that typically exhibit high ET rates

(Silberstein et al., 2013; Dresel et al., 2018). Evapotranspiration

fluxes are likely to be informative about groundwater states

and dynamic and consequently, ET fluxes could provide a

useful constraint on the parameters of groundwater models,

ubiquitously required to manage groundwater systems.

The use of ET to constrain groundwater models remains

uncommon, with most hydrogeological models calibrated

solely to pressure head or WT level measurements. Confining

calibration to a single data type enhances the risk of non-

uniqueness (Beven, 2006; Moore and Doherty, 2006), and thus

false confidence in model predictions. Introducing additional

data such as ET during calibration has the potential to better

constrain model parameters, reducing non-uniqueness, and

increasing parameter identifiability.

Until recently, ET information was too expensive to collect

from the field, localized to specific sites (Novick et al., 2018),

or, at large scales, unreliable (Kalma et al., 2008) to permit

its general use in hydrogeological model calibration. However,

satellite-based actual ET retrievals are increasingly available and

of sufficiently high quality and suitable for advanced model

calibration and/or data assimilation. For example, in Australia,

the CSIROMODIS reflectance-based scaling evapotranspiration

(CMRSET) dataset (Guerschman et al., 2009, 2022) has been

evaluated across the country, and is able to reproduce reliable

spatio-temporal estimates of actual ET (Glenn et al., 2011).

It is recommended, when using broadscale derived spatial ET

products such as CMRSET, that spatial ET outputs are compared

with local field derived data to correct any bias that might

be inherent in the spatial product (Lopes et al., 2019). The

dataset is now freely available through the Terrestrial Ecosystem

Research Network data portal (https://portal.tern.org.au/actual-

evapotranspiration-australia-cmrset-algorithm/21915, McVicar

et al., 2022) making it readily accessible for scientists. While the

accessibility and reliability of remotely sensed actual ET data

is improving, there remains only limited quantification of the

benefits of incorporating actual ET data into hydrogeological

modeling. Most research that addresses model improvements

from assimilation of remote sensing ET data relates to surface

water models (Immerzeel and Droogers, 2008). Relatively few

studies addressed hydrogeological models (listed in Doble

and Crosbie, 2017) meaning that important questions about

the value of ET data for hydrogeological predictions remain

unanswered.

This study addresses three outstanding questions about the

value of actual ET in constraining hydrogeological modeling

studies:

• Howmuch improvement inmodel performance is achieved

when actual ET is used to calibrate a model in addition to

WT level data, compared to WT level data alone?

• Is there benefit in assimilating actual ET data to

hydrogeological models rather than simply calibrating

models using actual ET data?

• To what extent environmental conditions, such as the

depth to theWT or the homogeneity of the soil profile, alter

the value of modeled actual ET?

We address these questions using four silvicultural study

sites in the south-eastern extent of South Australia. Modeling

groundwater and ET in this region offers us the opportunity to

leverage detailed field derived water balance datasets (Benyon

et al., 2006) in sites with broadly similar climatic conditions and

mature tree canopy vegetation, but varying depths to the WT.

Insight into modeling approaches suitable for the region is also

locally valuable. Forestry managers in the region are required to

comply with forestry regulations and water licensing to avoid

negative impacts on water resources (Dye and Versfeld, 2007;

Greenwood, 2013).

2. Methods

2.1. Site description

The study sites lie in the Otway and Murray Basins, in

south-east South Australia (Figures 1a,b). The region has a

Mediterranean type climate, with annual rainfall of 640–750

mm year−1, and potential ET of 960–1,400 mm year−1. The

region is generally flat, with undulations in the south-west

forming Mount Gambier and Mount Burr (Doble et al., 2017).

Up to 95% of regional groundwater resources are found in the

shallow unconfined aquifer, with WT levels being within 2 m

from the surface at their highest (Benyon et al., 2006). Spatial

variations in the depth to WT are mainly driven by surface

topographic variation between flats and interspersed sand ridges

(see Figure 1c).

Softwood and hardwood forestry for timber production

has been practiced in the area for more than a century. The

dominant plantation timber species are Monterey Pine, Pinus

radiata and Tasmanian Bluegum, Eucalyptus globulus (Benyon

et al., 2006).Where these plantations overlie shallowWTs, which

are within 6 m of the surface, it is likely that the trees directly

access groundwater (Canadell et al., 1996; Benyon and Doody,

2004, 2015; Benyon et al., 2006, 2008).
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FIGURE 1

Location of the study area within Australia (a). Details of the topography, plantation sites, and meteorological stations used in this study (b).

Details of the depth to WT of the upper unconfined aquifer (c). Satellite images of the four locations. Jack and Jill (d), Woakwine (e), and Piney

(f). The squares represent the model cell and the CMRSET averaging area.

Ecohydrological studies in the area have previously

characterized vegetation, soil, climate, net irrigation, potential

and actual evaporation, and depth to the WT, from silvicultural

sites (Benyon et al., 2006). We selected four of these sites to

answer the research questions. Two sites (“Woakwine” and

“Jack”) had shallow WT depths (2.5 and 3m), Woakwine

with a homogeneous soil profile and Jack a heterogeneous

profile. One site (“Jill”) has a deep WT (10 m). The fourth

site (“Piney”) records an average WT depth of 6 m (see

Figure 1c for a map of the depth to WT). In general 6

m is the maximum WT depth at which the local forestry

plantations can directly access groundwater (Benyon et al.,

2006), thus this location is at the threshold between deep

and shallow WT. Of these sites, Jill has a homogeneous

soil profile, and Piney a heterogeneous profile. Climate is

similar between the sites, and all contain mature trees: E.

globulus except Piney, which contains P. radiata. Site details

are presented in Table 1. Note that site names correspond

to the those in Benyon et al. (2006), with the codenames in

that paper being Woakwine: 4.EGl; Jack 5.EGl; Jill 6.EGl; and

Piney 11.PR.

2.2. Environmental data

2.2.1. Regional climatic data

The hydrogeological models used in this experiment are

forced with rainfall and potential ET. Timeseries of each were

obtained from three Bureau of Meteorology (BoM) stations

(Figure 1b). Rainfall was obtained every 30 min, while potential

ET values were daily totals. Rainfall data was aggregated, and

potential ET disaggregated by dividing by 24, to produce

hourly values used for modeling (Samain and Pauwels, 2013).

When looking at water table dynamics at a regional scale, the

simple ET disaggregation is considered appropriate enough, as

long as consistency is kept between the model calibration and

the application.

Simulations at Jack and Jill use climatic input from the

Coonawarra station (Lat. −37.290, Long. 140.825 Station

026091), Piney uses data from the Mount Gambier Aero station

(Lat. −37.747, Long. 140.773, Station 026021), and Woakwine

from Robe Airfield station (Lat. −37.177, Long. 139.805 Station

and 026105). Potential ET forcing inputs at Jack have a long gap

between April and September 2002. As the gap affects some of
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TABLE 1 Name, coordinates, and characteristics of the silviculture sites (Benyon et al., 2006).

Name Lat. Long. Soil profile Average WT Vegan. Rainfall (mm/yr) Pot. ET (mm/yr)

Jack −37.372 140.455 Heterog. Shallow (3 m) EG 669 980

Jill −37.373 140.45 Homog. Deep (10 m) EG 701 980

Woakwine −37.400 140.070 Homog. Shallow (2.5 m) EG 545 1,180

Piney −37.738 140.779 Heterog. Threshold (6 m) PR 747 1,230

Soils are assumed homogeneous or heterogeneous in the model depending on the profile composition.

the assimilation results, this period was omitted from the model

evaluation.

2.2.2. Site characteristics

All site characteristics are presented in Benyon et al. (2006)

(Table 1). Jack and Jill are paired sites, shown in Figure 1d and

conceptually in Figure 2A. They are located only 110 m apart

within the same E. globulus plantation. This plantation had

a stem density of 1,175 stems ha−1. Jack is located on a flat

plain, over duplex soil (sand–clay) with depth to WT of ∼ 3

m. Conversely, Jill is located at the crest of a sand dune, over a

homogeneous sandy profile with theWT 10 m below the surface

(Benyon et al., 2006).

Woakwine is an E. globulus plantation with a tree density

of 818 stems ha−1 (See Figure 1e). It grows on a homogeneous

sandy soil with the WT at 3 m below the surface. Piney is a

P. radiata plantation with a density of 1,200 stems ha−1 (See

Figure 1f). Piney grows on a duplex sandy-clay soil profile, with

aWT depth of∼ 6m, the threshold depth for plant transpiration

from the groundwater (Benyon et al., 2006).

2.2.3. Water use

Climatically the sites experience different water deficits,

defined as the difference between potential ET and rainfall

(Table 1). This deficit is largest at Woakwine (635 mm year−1),

then Piney (483 mm year−1), and smallest at Jack (311 mm

year−1) and Jill (279 mm year−1). These deficits indicate the

potential “demand” of the forestry plantations for groundwater

use. When compared to actual ET estimates obtained through

past lysimeter studies (Benyon and Doody, 2004; Benyon et al.,

2006, 2008), however, the difference between precipitation and

actual ET was clearly influenced by edaphic rather than climatic

settings. For example, observed actual ET for Jack was 904

mm year−1, which is larger than the 713 mm year−1 for Jill

(Benyon et al., 2006), suggesting that while potential ET—

rainfall was comparable between the sites, some additional 235

mm year−1 was transpired above rainfall at Jack (Data from in-

situ pluviometers show an average difference of about 30mmper

year). The Jill site only relied on rainwater due to a much deeper

depth the groundwater.

2.3. Remotely sensed ET

Remotely-sensed ET estimates were obtained from

CMRSET (Guerschman et al., 2009). This data estimates

actual ET based on surface reflectance from MODIS-Terra

and interpolated climate data. It uses reflectance to rescale the

Priestley-Taylor potential ET and calculates actual ET through

the global vegetation moisture index (GVMI) and the enhanced

vegetation index (EVI). Originally, the CMRSET algorithm was

devised to produce monthly values of actual ET, using 16-day

reflectance values, upscaled in time to a monthly value at 1 km

resolution. In this version of the dataset, the CMRSET reached

an averaged RMSE of 14.9 mm month−1 when compared to

five flux towers. A finer temporal and spatial resolution data-set,

with a 250 m grid at a 8-day composite time step, is used in this

study. Evapotranspiration values are rescaled to the model grid

size (1 km2) as a result of averaging sixteen 250× 250 m tiles.

The polar chart of Figure 2B shows, for Jack and Jill, the

field-measured actual ET and the 1 km2 averaged actual ET

value from CMRSET. The spatial resolution of the resulting

CMRSET dataset is well-suited to distinguish differences in

actual ET between distant sites, but not the paired Jack and Jill

sites as results are located within the same satellite observation

grid. However, actual ET dynamics at the two sites differ. Jack

has higher actual ET rates in summer, which are conceptually

attributed to direct use of groundwater by vegetation, but not

seen at Jill due to the deeper WT (Benyon et al., 2006). Jill,

conversely, displays higher actual ET than Jack during May to

August, presumably due to increased rainfall recorded at that

site relative to Jack (Table 1). Given the differences in these

two proximal sites, the simulations in this study can provide

insight into how CMRSET resolution might impact the value of

calibration to an assimilation of remotely sensed actual ET.

2.4. Models and simulations

2.4.1. Models

Water balance dynamics of the four sites were simulated

using the UnSAT (Unsaturated zone & SATellite) model coupled
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FIGURE 2

Conceptual representation of the local undulation a�ecting the depth to WT (A). Daily Actual ET from the CMRSET (averaged over 1 km2) and

daily actual ET from field data at Jack and Jill (B).

to MODFLOW 2005, as described in Gelsinari et al. (2021).

The UnSAT discretizes the soil column into a continuous

series of vertical layers, applies the water balance to each

layer, and solves for soil water content at each timestep.

Forced by hourly climate data, UnSAT computes net-recharge,

soil water content by depth [θ(z)], runoff, and actual ET.

UnSAT is coupled to MODFLOW 2005 (Harbaugh, Arlen,

2005) through the net-recharge (i.e., gross recharge minus

ET) term. This model configuration allows for plant water

uptake from soil layers below the WT. As UnSAT is a

conceptual model, its parameters are not necessarily entirely

representative of the true soil physical conditions. Thus,

parameters such as UnSAT saturated hydraulic conductivity (Ks)

and MODFLOW saturated hydraulic conductivity (Kh) might

differ. Untying Ks from Kh allows for a better representation

of the different soil-hydraulic properties along the unsaturated

zone.

While UnSAT runs at an hourly time step, MODFLOW

applies an 8-day time step, aligned with MODIS observation

frequency. MODFLOW computes the WT levels through space

[WT(x,y)] which are then fed back to UnSAT, which recomputes

the discretization of the unsaturated zone for the new local

WT value. This non-iterative coupling scheme, similar to Zeng

et al. (2019), provides a useful compromise between accuracy

and computational burden of iterative schemes and has been

validated in Gelsinari et al. (2020). This paper focuses on the

use of actual ET data from remote sensing to inform these

models.

2.4.2. Calibration, deterministic, and stochastic
simulations

To address Research Questions 1 and 2, three different

model calibration and simulations were executed:

- [Level 0]—Single Calibration. This is a simple,

deterministic model calibration as routinely performed in

groundwater models. The coupled UnSAT-MODFLOW model

was calibrated using the Particle Swarm Optimization (PSO)

algorithm (Kennedy and Eberhart, 1995; Shi and Eberhart,

1998) applied to modeled WT levels. For all locations, the WT

level observations were split into a calibration period consisting

of 40 8-day intervals, and a validation period consisting of the

remainder of the observations. The PSO minimizes the Single

Objective Function (SOF) defined as:

SOF =
RMSE(WT)

σ (WT)
, (1)

where σ is standard deviation, and the Root Mean Square Error

(RMSE) is defined as:

RMSE =

√

√

√

√

1

L

L
∑

k=1

(ok − hk)
2 , (2)

where ok and hk are observed and modeled WT levels at

time k, and L is the total number of observations. Calibrated
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TABLE 2 Parameters and perturbation fractions used for the simulations.

Model parameter Jack Jill Piney Woakwine Param. pert.

SOF–MOF SOF–MOF SOF–MOF SOF–MOF fraction (%)

Hydraulic conduct. Ks [mm/h] 30–32 55–50 10–25 50–22 30

Soil porosity [mm3/mm3] 0.35–0.29 0.30–0.29 0.25–0.35 0.35–0.32 –

Critical Soil Moist. [mm3/mm3] 0.10–0.14 0.14–0.14 0.17–0.12 0.12–0.10 –

Residual Soil Moist. [mm3/mm3] 0.05–0.04 0.04–0.04 0.07–0.03 0.05–0.06 –

Drainage empirical value 0.1–1.9 0.5–0.5 3.2–2.5 1.8–2.0 –

Root depth [mm] 5,900–7,200 29,500–26,000 7,700–8,000 4,000–5,000 10

Root distribution parameter 2.00–0.14 0.05–0.01 0.50–0.50 0.40–0.10 –

MODFLOW Kh [m/d] 70–43 30–10 15–10 75–80 10

MODFLOW Sy 0.33–0.11 0.20–0.25 0.10–0.12 0.11–0.11 10

parameters of the Level-0 simulations are listed in Table 2 under

the SOF columns.

- [Level 1]—Open Loop. This approach requires two steps,

as informed by the results of using actual ET fluxes to improve

model calibration (Gelsinari et al., 2021). First, the link between

WT dynamic and actual ET fluxes needs to be established. This

is achieved by minimizing a multi-objective function (MOF)

defined by a combination of WT depth and actual ET as follows:

MOF =
RMSE(WT)

σ (WT)
+

RMSE(ET)

σ (ET)
, (3)

Subsequently, the calibrated values were used as base for the

generation of an ensemble of simulations to account for forcing

inputs and parameter uncertainty.

To form this ensemble, all climatic inputs, initial conditions,

andmodel parameters were treated as random samples. Climatic

forcings were treated as the observed climate with additive

noise sampled from a Gaussian distribution. Parameter values

were treated as the deterministic MOF calibrated values,

with multiplicative noise. The multiplier was varied between

the parameters, as indicated by the “parameter perturbation

fraction” (last column in Table 2). Initial conditions of WT

levels were also perturbed with additive noise to induce a good

spread in the ensemble from the early stages of the simulation.

Calibrated parameters are listed in Table 2 under the MOF

columns.

Care was taken during the ensemble generation to preserve

the statistical accurateness while retaining the relationship

between actual ET and WT levels obtained with the calibration

(Pauwels and De Lannoy, 2009). By applying the verification

skills described in Talagrand et al. (1997) (i.e., ensemble skill,

ensemble spread, and mean square error), the mean of the

ensemble was maintained statistically indistinguishable from

the deterministic run used as its base. This would have made

redundant the analysis of another (deterministic) level.

- [Level 2]—Data assimilation. These simulations use

the Ensemble Kalman Filter (EnKF) to assimilate actual ET

observations into the UnSAT model. The EnKF assimilation

algorithm offers a reduced computational load and the

capacity to deal with highly non-linear systems (Mitchell

et al., 2002; Pauwels et al., 2013). The flexibility and low

computational demand is achieved by propagating multiple,

but limited, realizations of the model. This number defines

the ensemble population. In this case, 32 ensemble members,

generated through the process in Level 1, were used. This

ensemble population is sufficient to represent the UnSAT-

MODFLOW system in synthetic studies (Gelsinari et al.,

2020) (see Supplementary Figure 2). Here we followed the

approach adopted in Gelsinari et al. (2020, 2021). These

studies provide a detailed description of the filter set-up

and the interaction between the state variables, such as

soil moisture and WT levels, and the assimilated quantity

actual ET.

These simulation approaches are shown in Figure 3.

2.4.3. Simulation set-up

Simulations at the four sites were performed over different

periods of time, according to the timing of data acquisition

from previous field investigations, spanning from late 2000

to late 2007 (see Benyon et al., 2006). The domains consist

horizontally of 5 × 1 cells (1 km2 each), where the first

and the last are constant head boundaries, and vertically

of one convertible layer for the saturated zone simulating

the unconfined aquifer. This simple groundwater model

conceptualization aims to model WT levels and actual ET flux

at a single cell per simulation. Model set up was shown to

adequately represent the system through a sensitivity analysis of

different domain sizes, as described in Gelsinari et al. (2021), and

in Supplementary Figure 1.
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FIGURE 3

Simulation levels. In the probability inset: Forecast means the modeled actual ET. Observed means the satellite-based actual ET, which can be a

single value, as in the case of Level-1, or a distribution, as required by the EnKF. Posterior means the distribution resulting from the filter update.

2.5. Simulation skill verification

Simulation results were evaluated using several different

metrics. These included: (i) RMSE (see Equation 2), (ii) the

Pearson correlation coefficient (r) as in Pearson (1920), and (iii)

the Continuous Ranked Probability Score (CRPS—Hersbach,

2000), a measure of the difference between the predicted and

observed cumulative distributions. CRPS avoids some of the

limitations of sum of squared error metrics (like RMSE or r)

which can be highly sensitive to the largest errors, potentially

biasing the model skill evaluation (Schneider et al., 2020).

The CRPS for the probability density function P(x) given by

the ensemble simulation for the variable of interest x (i.e., ET

and WT levels) and calculated at a specific timestep k is defined

by:

CRPSk =

∫

+∞

−∞

(P(x)k − Po(x)k)
2dx , (4)

where Po is distribution of observations. As the observation at

a given time is usually a single value, Po(x) is equivalent to

H(x− xa), where H is the Heaviside function (Bracewell, 2000),

applied similarly to Gelsinari et al. (2021).

With this definition, the CRPS is interpreted as the area

between the cumulative probability function of the ensemble

forecast and the observation function (linear). A CRPS of zero

implies a perfect deterministic forecast (Hersbach, 2000). The

CRPS varies from 0 to 1, and is usually calculated for all

timesteps and then averaged over a simulation period.

RMSE values were calculated for all three calibration

strategies used in these experiments. When the simulations

were based on a parameter ensemble, RMSE values were

calculated for the ensemble average predictions. CRPS

values were calculated for the ensemble simulations only

(i.e., the open loop and data assimilation simulations),

following Equation (4). Verification skills were calculated

over a validation period as previously described in

Section 2.4.2.

Residuals of actual ET were computed as:

RET =

L
∑

k=1

(ik − jk) , (5)

where ik is the satellite observed actual ET and jk is the

modeled actual ET at time k, and L is the total number

of observations. Values greater than zero indicate that

the modeled actual ET under-estimates observations,

while values higher than zero imply that the modeled

actual ET is lower than the remote sensing actual

ET observations.
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TABLE 3 RMSE and r calculated on actual ET and WT levels.

Location Simulation Actual ET WT levels

RMSE Correlation (r) RMSE Correlation (r)

Jack Level 0–S. Calibration 1.512 0.36 0.265 0.82

Level 1–Open loop 1.004 0.71 0.348 0.85

Level 2–Assimilation 0.919 0.74 0.338 0.76

Jill Level 0–S. Calibration 1.036 0.84 0.306 0.88

Level 1–Open loop 1.154 0.70 0.334 0.86

Level 2–Assimilation 1.150 0.67 0.360 0.85

Woakwine Level 0–S. Calibration 1.036 0.59 0.225 0.67

Level 1–Open loop 0.740 0.75 0.313 0.66

Level 2–Assimilation 0.708 0.77 0.267 0.63

Piney Level 0–S. Calibration 0.981 0.81 0.194 0.75

Level 1–Open loop 0.762 0.82 0.278 0.73

Level 2–Assimilation 0.729 0.83 0.233 0.73

3. Results

Performance of the simulations based on the RMSE and

r are presented in Table 2 for both actual ET and for WT

levels. The ensembles were generated so that the mean of the

Level-1 ensemble is statistically equivalent to the deterministic

simulation. RMSE and r-values calculated over the means (for

Level-1 and Level-2) and compared to those of the deterministic

(Level-0) simulation provide an assessment of the simulation

performance against Level-0 as a benchmark.

The CRPS values (Table 4) provide an additional assessment

of the ensemble performances for the two stochastic modeling

approaches. Specifically, comparing CRPS between Level-2

and Level-1 quantifies the benefits to model performance of

assimilating ET data through the EnKF versus calibrating to ET.

The results are discussed separately for the model predictions of

actual ET and WT.

3.1. Evapotranspiration

Including actual ET in the models through calibration or

assimilation improved simulations of actual ET in the sense

that RMSEs declined and r increased, for every site other than

Jill. The improvements were most evident at Jack, in which the

RMSE decreased by ∼30% and the r improved by ∼100% upon

inclusion of actual ET data in the modeling. Improvements at

Woakwine and Piney are more modest, but still represent∼20%

reductions in RMSE (see Table 3). The modeled actual ET at Jack

is shown in the top panel of Figure 4. This panel shows that the

Level-0 modeled actual ET (yellow line) greatly underestimates

MODIS-CMRSET observations, an underestimation which is

overcome by incorporating actual ET information, in the Level-1

and Level-2 models. The cause of the peak in ET of April 2003 is

due to the model input, as this is similarly found at all the three

levels, meaning that is not an artifact of the Ensemble Kalman

filter update or the input perturbation strategy. The model

response has been interpreted as a situation where the soil profile

is particularly wet combined with high Potential ET (similar

to summer conditions), causing the model to over-estimate

actual ET.

As described in Section 2.4.3, the deep WT at Jill occurs

within the same MODIS-CMRSET pixel as the shallow WT at

Jack, but represents a very different water availability scenario

for the plantation. With the model for Jack reproducing

actual ET fluxes well when constrained with MODIS-CMRSET

observations, it is perhaps unsurprising that the opposite occurs

in the different environment at Jill. Level-1 and Level-2 models

at Jill had an ∼10% higher RMSE and an ∼15% lower r relative

to the Level-0 model.

CRPS values, aggregated over the validation period for the

model runs, are reported in Table 4, with the ET results shown

on the left hand side. CRPS values calculated at each time

represent the actual ET level distribution of the ensemble around

the observation, with a low value indicating good agreement and

thus reduced uncertainty. The CRPS suggest that assimilation

improves the ET ensemble distributions at Jack, Woakwine,

and Piney, although the improvements are relatively small in

percentage terms, and marginal at Jack. At Jill, however, the

assimilation of actual ET increases the CRPS, actually worsening

the model performance relative to calibration.

Figure 5 shows the residuals of 6-month aggregated values of

actual ET for the single calibration, open-loop and assimilation

runs, compared to CMRSET predictions. Values above zero
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FIGURE 4

Remotely sensed (MODIS) and modeled actual ET (Level-0 to Level-1) (A). Observed and modeled WT levels (B) at the Jack field site.

TABLE 4 CRPS values for the two stochastic simulation levels and

relative percentage variation of Level–2 over Level–1.

Jack Jill Woakwine Piney

Actual ET

Level-1 0.807 0.861 0.581 0.544

Level-2 0.804 0.883 0.554 0.508

Variation (%) 0.37 −2.56 4.65 6.62

WT Levels

Level-1 0.195 0.190 0.201 0.161

Level-2 0.162 0.210 0.200 0.134

Variation (%) 16.92 −10.53 0.50 16.77

Green colored (and its shades) cells highlight the best CRPS results and relative

percentage improvement. Red colored (and its variation) cells represent the opposite.

indicate overestimation of modeled ET compared to remotely

sensed observations (CMRSET), while values below zero are

underestimates (Figure 5). For almost all runs across sites and

years, the groundwater models calibrated only to WT levels

underestimate actual ET. The right side of Figure 5 shows the

average of these residuals for each 6 month period, showing

that Level-0 models underestimate actual ET by between 74

and 140 mm year−1. However, these underestimates were

reduced at Level-2 by 25 % (at Jill) to 70 % (i.e., Jack and

Piney). Examination of the calibrated parameters of the Level-0

models show that they predict shorter root lengths and a more

linear root density distribution than do the Level-1 and Level-2

simulations.

3.2. WT Levels

The Level-0 simulations generated the best performance

in terms of WT predictions as measured by RMSE in all the

locations, as shown in Table 3, with the r being similar for

most of the simulations. The CRPS metrics in Table 4, however,

show that assimilation can improve ensemble WT predictions

compared to the open loop, notably at Piney and Jack, in which

quite large percentage improvements in CRPS are achieved by
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FIGURE 5

Residuals of the actual ET (RET) depths calculated as 6-month aggregates, and aggregated RET over the simulation periods.

assimilation. The r in the Level-2 Jack simulation is reduced;

this is a consequence of the EnKF continuously updating the

WT level (see Figure 4B). For example, the Level-2 model shows

abrupt changes in WT in the period of June–December 2003.

These changes are due to the filter causing rapid and non-

smooth changes in WT predictions, which lower performance

metrics. Not all abrupt changes in the model predictions,

however, are associated with the EnKF. For example, the shifts

in WT around September 2002 occur in both Level-1 and

Level-2 simulations, and are associated with the gap of the

potential ET forcing data. As a results of this gap, the period

from 2002/04/01 to 2002/10/31 was removed when calculating

performance metrics.

Similarly to Jack, the CRPS for Piney improves between

Level-1 and Level-2 and the performance of the model is

good overall. However, the r-value is not improved. At

Jill and Woakwine, CRPS, RMSE, and r worsened or were

close to unchanged between Level-1 and Level-2. At Jill,

the declining performance may indicate that actual ET data

were disinformative of the local water balance (Beven and

Westerberg, 2011).

4. Discussion

Including actual ET in the simulations via calibration or

assimilation improved the ability of the models to represent

ET fluxes at all sites except Jill, generally at the expense of

the ability of the models to represent WT dynamics. Overall,

assimilation of actual ET timeseries improved the representation

of ET fluxes and the ensemble predictions of WT levels, while

slightly worsening the RMSE and values of WT predictions

compared to the deterministic run.

4.1. How do site attributes a�ect
modeling strategies?

Across both actual ET and WT, and for all levels modeled,

the model predictions were most reliable at Piney. This site

exhibited the highest stem density of all the plantations, which is

likely to have produced near homogeneous conditions of water

use, and may mean that satellite observations of actual ET were

more reliable than when made over the more variable land

surface conditions at the other sites.

The benefits of informing model calibration with actual ET

were greatest at the Jack, Piney, and Woakwine sites. These sites

had relatively shallow WT that were at the limit of or within

the rooting depth of the plantations, suggesting that WT levels

might be well coupled to evaporation at these locations. Actual

ET assimilation has previously been shown to perform well

in areas with significant groundwater-vegetation interactions

(Gelsinari et al., 2020).
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Information provided from actual ET, reduced model

performance only at the Jill site. Presumably this is due to

the localized deep WT at Jill, which is not representative of

the conditions across the MODIS-CMRSET pixels used for the

analysis. Under such a condition, the ET data is disinformative

rather than informative, and worsens the model predictions.

There is less differentiation between calibration and assimilation

under these circumstances, because the ET in all cases does

not add a meaningful constraint to the groundwater model.

Preliminary analyses of digital elevation models could be useful

to identify such locations that might exist in one remote sensing

pixel.

4.2. Recommendations

Across all sites, incorporating actual ET information into

model parameterization reduced the quality of predictions of the

WT dynamics while improving the prediction of ET fluxes. This

suggests that an improvement in the fidelity of modeling the

local water balance might require reduced accuracy in modeling

the specific signature of WT levels. It also indicates the risks

inherent with using only a single metric to evaluate a model

performance: overfitted models based on a single measurement

can overestimate a model’s ability to replicate all hydrological

processes. If the models are only evaluated against WT level

results, the single calibration (e.g., WT levels) seems to produce

good results.

However, the quantitative management of groundwater

resources requires having good estimates of fluxes, such as

recharge and ET, and not only of groundwater levels. If the

volume of water transpired by plantations is underestimated in

models (as it was in all Level-0 models) then management based

on model interpretations could be incorrect. Underestimation

of water used by forest plantations could contribute to

unsustainable management of groundwater resources, which

itself can trigger non-linear and hard-to-reverse changes in

water resource availability. By accounting for satellite based

remote sensing ET, the models better replicated the fluxes of

plant transpiration, especially in areas where plant-groundwater

interactions were strong. The benefits of informing the model

with actual ET greatly improved the estimates of ET volumes,

at the cost of losing some precision in the estimates of WT

levels. However, this loss of precision is not problematic with

the benefit of obtaining better estimates of important hydrologic

quantities such as ET or recharge.

Consequently, using actual ET observations from satellites

is a valuable approach to improving the fidelity of groundwater

models, especially if remote sensing outputs can be bias

corrected using field collected data. This approach may

be particularly beneficial in sites exhibiting vegetation-

groundwater interactions, which closely couple WT levels to

ET.

The difference between Level-1 and Level-2 is more subtle

than the improvements relative to Level-0 models. There is a

substantial increase in effort and skill needed to set up an EnKF

scheme, and the benefit of doing so requires careful evaluation.

In densely vegetated areas where the WT is within the reach

of the plant roots, such as Jack, Woakwine and Piney, data

assimilation improved RMSE and CRPS values for WT, actual

ET and thus volumes of transpired water. Overall, however, the

improvements in simulations between simple calibration and

assimilation were relatively modest, and data assimilation may

not be necessary for successful use of ET in groundwater models

in general.

Although one of the key advantages of remote sensing data

is to provide spatially distributed data, in this experiment that

piece of information was not used as the focus was on the

calibration and data assimilation of models using actual ET

data. Regardless of the calibration method, the potential for

rapid spatial changes in depth to groundwater and water balance

within a satellite pixel is the main constraint on using ET for

model calibration. Modelers should determine whether local

groundwater dynamics can be reasonably represented at the

scale of the satellite ET pixel before proceeding.

Future work in model evaluation could consider longer time

periods, more sites, the use of drones for the estimation of

actual ET at much higher spatial resolutions (Marzahn et al.,

2020), and further refining metrics. For example, representing

the CRPS as a time dependent metric allows for more in-

depth analyses to identify the specific conditions for which

an ensemble is or is not improved (Gelsinari et al., 2021).

Similarly, it could further explore the role of the soil profile

in moderating model performance. During this experiment,

identifying and isolating the effects of integrating ET data over

different soil profiles (i.e., Homogeneous vs. Heterogenous) was

not conclusive. With the results obtained at Piney and Jack, it

was shown that heterogenous profiles (usually considered more

difficult to model and calibrate) do not represent an obstacle per

se to the application of this methodology.

Here, we focused on measured actual ET fluxes and WT

levels, and were not able to examine how ET information altered

prediction of the distribution of soil moisture in the profile.

A specific assessment of the soil moisture content at all the

locations could provide more insights into the effect of using

actual ET retrievals on model fidelity in the unsaturated zone.

In this study, water content distributions accounted for by

using ET fluxes as a proxy for the water content along the

soil column.

5. Conclusion

This study focused on the ability of a satellite-based

ET dataset (CMRSET) to inform coupled unsaturated zone-

groundwater models. Three levels of application of the remotely
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sensed ET were applied to four plantations in the water-

limited, south-east of South Australia. These plantations show

a combination of WT depth, soil profiles, and vegetation type

for each of the locations that is representative of numerous

other plantations in the area. Thus, they provide insights into

the value of using satellite based actual ET to improve modeled

hydrological quantities.

The findings of this paper show that incorporating actual

ET fluxes whenmodeling vegetated areas substantially improved

the model capability of accounting for water fluxes. This is

especially evident in areas where vegetation has direct access to

groundwater, resulting in higher transpiration. For these areas

the error reduction in predicted ET volumes is up to an order of

magnitude.

Stochastic simulations of a model calibrated using WT

level and actual ET data were performed to account for

forcing input and parameter uncertainties. For actual ET,

Level-1 RMSE and r-values report improvements of up to

50% for all the locations, with the exception of deep WT

levels (i.e., Jill), when compared to the model calibrated

using only WT level data. The deterministic simulations

(Level-0) calibrated on WT levels only performed better

than the stochastic when evaluated against WT levels. This

comes at the price of poorer performances when simulating

actual ET, which is a variable of great importance in water

limited environments.

The application of ET assimilation (i.e., Level-2) to these

locations is evaluated through the RMSE and the CRPS.

The data assimilated simulations present reduced actual ET

and WT levels RMSE compared to calibrating with a MOF,

and also improves the ensemble distribution as indicated by

CRPS values. However, the value of performing a complex

ET assimilation is not always justified by the magnitude of

the error reduction. Improvements were more obvious in

densely vegetated areas when plants have access to groundwater.

Conversely, where groundwater was deep and vegetation water

use was lower, a reduced filter effect was shown, which is in

agreement with the lack of direct correlation between actual

ET and WT when the latter is deep. Finally, these results

indicate that benefits can be obtained by using actual ET

observation in the calibration phase, as performed through

the MOF.

These findings support the use of actual ET to

inform hydrogeological models as a valuable tool for the

quantitative management of groundwater resources, and

is particularly relevant in silvicultural areas. Updating the

model with readily available, continuous, satellite-based

ET time-series helps in improving assessments of water

consumption by forest plantations accessing groundwater

in water-limited environments. More accurate estimates of

water used by vegetation is beneficial for water resource

managers who are more often dealing with problems

arising from unaccounted water use in already heavily

allocated groundwater systems. The method has the

potential to provide useful information for non stationary

systems, such as environments experiencing climate change

related stresses.
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