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The impact of extreme climate events, especially prolonged drought, on

ecosystem response, can influence the land-atmosphere interactions and

modify local and regional weather and climate. To investigate the impact

of vegetation dynamics on the simulation of energy, water, and carbon

exchange at the land surface and streamflow, especially during drought

conditions, we compared the performance of multiple versions of the Noah-

multiparameterization (MP) land surface model (both Noah-MP LSM, version

3.6 and 4.0.1) with default configurations as well as various vegetation

physics options, including the dynamic or input leaf area index (LAI) and

the fractional vegetated area (FVEG). At the site level, simulated water

and energy fluxes from each version were compared to eddy covariance

(EC) flux tower measurements and remote sensing data from Moderate-

Resolution Imaging Spectroradiometer (MODIS) at well-characterized natural

grassland sites in Kansas from 2008 to 2018. The ability of each version to

reproduce annual mean river flows was compared to gauged observations at

United States Geological Survey (USGS) stations over 11 years (2008–2018).

Model performance in replicating spatial patterns during extreme events was

assessed by comparing simulated soil moisture (SM) percentiles over the state

of Kansas to the U.S. DroughtMonitor (USDM). Results from these comparisons

indicate that (a) even though there were di�erences in the latent heat (LE)

components (i.e., transpiration, canopy evaporation, and soil evaporation), the

total LE is mostly insensitive to variations in LAI across all model versions.

This indicates that the incoming net radiation limits the total evaporation,

as the presence of adequate soil moisture allows for higher soil evaporation

when LAI limits transpiration; (b) regardless of the model version, the force

of the precipitation largely dictates the accuracy of evapotranspiration (ET)

simulation; (c) Overestimation of LE resulted in underestimation of streamflow,

particularly over the land surface type dominated by a combination of

grasses and cropland in the western and central part of the state; (d) all of

the tested Noah-MP 4.0.1 vegetation physics produced spatial patterns of
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drought that more closely matched the USDM as compared to version

3.6. These findings have important relevance for applications of large-scale

ecosystem-atmosphere feedbacks in water, carbon, and energy exchange.

KEYWORDS

land surface model, vegetation dynamic, climate, water, drought

Introduction

Monitoring the impacts of climate change and

anthropogenic activities on terrestrial hydrology requires

analyzing and predicting the patterns of water supply and

carbon sequestration along with the underlying surface

perturbations and changes in moisture and heat budgets.

Evapotranspiration (ET) as a key component of the hydrological

cycle is responsible for approximately more than 60 percent

of the precipitation received by the land surface (Jasechko

et al., 2013; Wei et al., 2017). Transpiration from plants

makes up a key component of the terrestrial ET that regulates

land-atmosphere interaction through the coupling of the

carbon-water cycles and surface energy balance. On a global

scale, plant transpiration accounts for more than four-fifths

of the entire global evaporation (Schlesinger, 2014). This

emphasizes the important role of vegetation in coupling the

water and energy cycle within the soil-plant-atmosphere system

(Claussen et al., 2013).

With further rises in global and regional temperatures

and increased variations in regional precipitation patterns,

water availability is a dominant factor that limits ET.

Modeling ecosystem behavior using in situ and remotely sensed

observations provides a means to identify dominant processes

that affect land surface-climate interactions in terms of heat,

water, and carbon exchanges. Land surface models (LSMs), such

as the Noahmultiparameterization (Noah-MP) options, provide

a framework to develop a process-level understanding of the

interactions across the surface-atmosphere interface at various

spatio-temporal resolutions (Niu et al., 2011). The Noah-MP

model was built as an improved version of the earlier Noah

model (Ek et al., 2003). Several studies (Yang et al., 2011; Gayler

et al., 2014; Gao et al., 2015; Zheng et al., 2015a,b) demonstrated

apparent improvements in the simulation of surface fluxes and

temperature, groundwater dynamics, and hydrological variables

(e.g., soil moisture, snow water equivalent, and runoff) of Noah-

MP over the legacy of Noah LSM through validations with

local and global measurements. Noah-MP is based on mass and

energy balance and is coupled with water and carbon cycles

(Cuntz et al., 2016). There are multiple physics options that

impact the flux of water and energy to the atmosphere in Noah-

MP, such as stomatal conductance, hydrological processes within

the canopy and the soil, and canopy radiative transfer. However,

the complex interaction between sub-processes like ET and

canopy resistance is simplified within the original model which

leads to further limitations for LSMs to accurately simulate

land-climate interaction at seasonal to inter-decadal time scales,

especially during prolonged drought (Ma et al., 2017).

One of the major physical mechanism enhancements in the

Noah-MPmodel is the dynamic vegetationmodel that allows for

the prognostic representation of plant phenology, leaf area index

(LAI), and canopy stomatal resistance. Vegetation dynamics in

the Noah-MP modeling system include plant photosynthesis,

respiration, and partitioning of assimilated carbon among plant

parts, including the leaves, roots, and wood which can represent

seasonal and long-term changes in the vegetation phenology

and carbon exchanges over the land surface (Ise et al., 2010;

De Kauwe et al., 2017; Gim et al., 2017). The incorporation

of vegetation dynamic and photosynthesis-based stomatal

resistance in the Noah-MP LSM enables the exploration of the

carbon partitioning in the plant compartments (e.g., the leaves,

roots, and stems) and captures a prognostic representation of

vegetation growth and senescence via canopy states, such as

LAI. In addition, Noah-MP allows for the separation of two-

stream radiative transfer treatment through the canopy for

representing a three-dimensional canopy structure that includes

Jarvis and Ball-Berry photosynthesis-based stomatal resistance

(Ball et al., 1987; Collatz et al., 1991, 1992). The Ball–Berry

stomatal resistance option, together with a dynamic vegetation

model (Dickinson et al., 1998) simulates carbon partitioning to

various parts of vegetation and soil carbon pools. The model

can represent the difference between C3 and C4 photosynthesis

pathways and defines vegetation class-specific parameters for

plant assimilation and respiration (Niu et al., 2011; Arsenault

et al., 2018; Chang et al., 2020). Although landmemory processes

(e.g., a multi-layer snowpack, an unconfined aquifer model

for groundwater dynamics, and soil evaporation) have been

improved in Noah-MP, the predictive skill of the model is still

largely affected by vegetation processes (e.g., components of

plant transpiration, an interactive vegetation canopy layer, and

evaporation of the canopy interception) (Wei et al., 2010). The

influence of these interconnected processes impacts the water

budget and surface energy balance equations, and an imbalance

in one component will affect simulation results in multiple ways.

These errors in representing the water, energy, and carbon

cycle in the model may be more pronounced in transitional

zones that exhibit sharp changes in the precipitation and land

cover as the dynamic vegetation and LAI in the model could

Frontiers inWater 02 frontiersin.org

https://doi.org/10.3389/frwa.2022.925852
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Hosseini et al. 10.3389/frwa.2022.925852

play a more pivotal role in surface hydrological components

like evaporation, soil moisture, and runoff. The objective of this

study is to carry out a set of model runs and analyses over

the state of Kansas which has a strong east to west gradient

of precipitation and land cover type. The analysis is broken

up into three main parts: (i) to assess the impact of vegetation

phenology for different versions of the Noah-MP with various

levels of complexity to simulate energy, water, and carbon

fluxes in a semi-arid grassland-dominated region; (ii) to evaluate

the capability of each model to distinguish drought coverage

beyond the site level; (iii) to compare simulated streamflow with

United States Geological Survey (USGS) gauge measurements

to assess the ability of each model version to capture the

magnitude of surface runoff and identify possible causes for poor

performance in modeled estimates over the domain.

Data, models, and methods

Data

This study uses EC data collected from two Ameriflux

sites located on well-characterized natural grassland sites in

northeastern Kansas (Figure 1). One of the sites (at the Konza

Prairie Biological Station, KON) is located in an annually

burned, non-grazed, watershed in an upland topographic area

and dominated by perennial C4 grass species. This location

has rocky, thin soils of the Florence series with an average

annual precipitation of 870mm (https://www.neonscience.org/

field-sites/konz), approximately 75% of which happens during

the growing season (April–September) (Logan, 2015; Brunsell

et al., 2017). The second site, located at the University of Kansas

Field Station (KFS), is a restored prairie that was used extensively

as agricultural land between the 1940s and the 1960s and was

a hayfield until 1987. Currently, this site contains a mixture

of C3 forbs and C4 grasses with a small fraction of woody

vegetation and is burned approximately every 4 years. The site

has a mean annual precipitation of 990 (mm) (https://www.

neonscience.org/field-sites/ukfs) with soils classified as fine,

montmorillonite, and mesic aquic argiudolls (Kaste et al., 2006;

Brunsell et al., 2008, 2011, 2014). Both locations are prone

to the rapid onset of drought (Roy Chowdhury et al., 2019).

Tower measurements at both sites were collected using the

EC technique (Baldocchi et al., 2001). Data were measured

at each site from towers at 3-m height above the surface.

Three-dimensional wind components, temperature, humidity,

and carbon dioxide concentration are collected at 20Hz using a

triaxial sonic anemometer (CSAT-3, Campbell Scientific, Logan

UT, USA) and a LiCor infrared gas analyzer (LI-7500, Li-Cor,

Lincoln, NE, USA) (Brunsell et al., 2011). Half-hourly data are

processed according to Ameriflux standards and are described

by Brunsell et al. (2014) and de Oliveira et al. (2018), with

missing values of the fluxes gap filled following Reichstein et al.

(2005). The REddyProc package (https://github.com/bgctw/

REddyProc) is used as a post-processing tool to partition half-

hourly net ecosystem exchange (NEE) into the gross primary

production (GPP) and ecosystem respiration. Average daily

rainfall measurements at 10 sites across Konza prairie from long-

term ecological research (LTER) data sets (http://www.konza.

ksu.edu) and daily precipitation measurements from National

Resources Conservation Service (NRCS) (https://websoilsurvey.

sc.egov.usda.gov) at KFS site were used as gauge measurements

to compare with the North American Land Data Assimilation

System (NLDAS-2) (Xia et al., 2012) precipitation data.

In addition to EC data, satellite and USGS streamflow data

are used to evaluate the water-vegetation relationship in the

model over a larger spatial area. The satellite estimates of latent

heat (LE) from MOD16A2 (Running et al., 2021), GPP product

MOD17A2H (Running et al., 2015), and LAI are from collection

6 TERRA/AQUA-MODIS L4 MCD15A2H.006 (Myneni et al.,

2015). All of the MODIS variables are retrieved at an 8-day

temporal resolution and 500m spatial resolution. The satellite

measurements were extracted for the pixel that contains the flux

towers for the period from 1 January 2008 to 31 December 2018,

to compare the MODIS estimates of LE and GPP against those

from the flux tower. We acknowledge that there are several ET

estimates developed using models and remote sensing datasets

including GLEAM, ALEXI, PT-JPL, etc. All these estimates

have uncertainties of their own stemming from modeling and

data fusion assumptions and none of these products can be

considered a true ET reference. MODIS LE is a widely used

product and was selected because the basic measurements are

from the same platform as that of the LAI used in the model

simulations. Observed streamflow from USGS gauges (https://

waterdata.usgs.gov) was also used to assess model-simulated

streamflow across the model domain. The gauges were screened

to only include basins that are entirely within the model domain

and have no upstream reservoir operations. This resulted in 31

basins that range from 10 to 4,000 km2 drainage areas.

Model configurations

The Noah-MP model simulations were run using the open-

source NASA Land Information System (LIS) (Kumar et al.,

2006, 2019). To test the importance of vegetation dynamics on

the water, energy, and carbon fluxes as well as streamflow, we

configured six sets of physics options of land-only (uncoupled)

Noah-MP with the default set of parameters (each model

vegetation configuration summarized in Table 1). All six

model configurations used the same forcing data from the

NLDAS-2. The NLDAS-2 data set includes precipitation (mm

s−1), downward shortwave and longwave radiation (W m−2),

near-surface air temperature (K), wind (m s−1), humidity

(kg kg−1), and surface pressure (hPa). The NLDAS-2 data

set utilizes a combination of ground-based rain gauges, radar,
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FIGURE 1

Study area representing Noah-multiparameterization (MP) grid (black square) over the National Land Cover Database (NLCD) around Kansas Field

Station (KFS) and Konza Prairie Biological Station (KON) tower locations (black dots). The red rectangular box represents the simulation domain.

TABLE 1 Description of each Noah-MP configuration option used in this study.

Model ID Model version LAI FVEG

V3-LD-FD 3.6. Veg.On Dynamic Dynamic (Calculated as a function of the LAI and SAI)

V4-LD-FX 4.0.1. VegOn.Opt 5 Dynamic Annual Maximum of the Gridded Monthly Climatology

V4-LC-FX 4.0.1. VegOff.Opt 4 Look-up table by month and vegetation class Annual Maximum of the Gridded Monthly Climatology

V4-LM-FC 4.0.1. VegOff.Opt 7 MODIS Gridded Monthly Climatology

V4-LM-FD 4.0.1. VegOff.Opt 8 MODIS Dynamic (Calculated as a function of the LAI and SAI)

V4-LM-FX 4.0.1. VegOff.Opt 9 MODIS Annual Maximum of the Gridded Monthly Climatology

satellite observations, and model-generated precipitation,

based on the NCEP North American Regional Reanalysis

(NARR; Mesinger et al., 2006) over the U.S. to produce a

high-resolution (1-hourly 12.5-km) gridded precipitation and

surface meteorological data set. The land cover classification and

soil texture types used in this experiment are from the 30 arc-

second data of the U.S. Geological Survey (USGS) 24-category

vegetation (land use) and the hybrid State Soil Geographic

(STATSGO)/Food and Agriculture Organization (FAO) soil

texture data sets, respectively, both of which are maintained by

the NCAR/RAL (Research Application Laboratory, National

Center for Atmospheric Research) (https://ral.ucar.edu/

solutions/products/noah-multiparameterization-land-surface-

model-noah-mp-lsm). For some configurations, a monthly

gridded 0.144-deg FVEG climatology produced by National

Oceanic and Atmospheric Administration (NOAA), the
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National Environmental Satellite, Data, and Information

Service (NESDIS) (also available from RAL) was used as input.

All model runs span the entire state of Kansas (37◦-40◦N,

102◦-95◦W) at a spatial resolution of 1/8◦ grid (∼12.5 km) and

an hourly temporal resolution. The soil layer thicknesses in the

models consist of four layers with thicknesses of 0.1, 0.3, 0.6, and

1m from top to bottom with a total soil depth of 2.0m. To avoid

the impact of initial conditions (e.g., soil moisture) on water

fluxes, energy fluxes, and state variables in the model, a 5.6-year

(July 2002–Dec 2007) spin-up was run for each model version.

The gridded runoff and baseflow from the Noah-MP

model were used in conjunction with a hydrologic routing

model that mimics the movement of water through the

natural stream channels, based on topography and stream

channel characteristics. The routing model utilized the 30 arcsec

(∼1 km) HydroSHEDS topography dataset (Lehner et al., 2008)

and a slope-adjusted velocity parameterization based on the

work of Gong et al. (2009). Although this routing algorithm

only solves for continuity and not momentum, it provides

a computationally efficient method that has been utilized in

several hydrologic monitoring and forecasting applications

(Sheffield et al., 2013; Yuan et al., 2015).

Two important vegetation characteristics within the Noah-

MP model are LAI and the greenness FVEG. Within the model,

the greenness fraction represents the percentage of the grid that

is covered with vegetation and the LAI represents the vertical

thickness of the vegetation, and therefore, the total evaporative

surface area. The Noah-MP model simulations differ in the way

LAI and FVEG are calculated in themodel. TheNoah-MPmodel

can be run with the dynamic vegetation either off or on. When

it is turned on, the LAI, stem area index (SAI), and FVEG are

predicted from the vegetation model of Dickinson et al. (1998)

with default parameters, and the Ball-Berry (Ball et al., 1987)

model is used for stomatal resistance.

To help organize and analyze the different model versions,

a three-part naming convention is used (Vx-Lx-Fx) where the

first part denotes the model version (Vx), the second part

denotes the LAI source (Lx), and the third part denotes the

FVEG source (Fx). The Noah-MP model version in this analysis

will be version 3.6 (V3) or version 4.0.1 (V4). There are

three options for the LAI source which include: dynamically

calculated by the model (LD), from a Noah-MP look-up table

climatology by month and by vegetation class (LC), and LAI

from 8-day MODIS measurements interpolated into a daily

input variable (LM). There are also three options for FVEG

which include: dynamically calculated by the model (FD), the

monthly climatology input gridded dataset (FC), and the annual

maximum of the griddedmonthly climatology at each grid point

(FX). Using this convention, the V3-LD-FD model run uses

version 3.6 with LAI and FVEG from a dynamic simulation of

carbon uptake and partitioning. A summary of the six different

Noah-MP model versions is given in Table 1. In these runs,

V3-LD-FD and V4-LD-FX both use the dynamic vegetation to

compute LAI and SAI; however, V4-LD-FX does not calculate

FVEG but instead uses the annual maximum FVEG from the

monthly climatological gridded data. The V4-LC-FX does not

use dynamic vegetation; instead, the LAI is based on themonthly

look-up table values, and the FVEG is based on the annual

maximum FVEG from the monthly climatological gridded data.

It should be noted that the values of monthly climatology

FVEG and the look-up table LAI prescribed for each land use

type vary among months but have no interannual variability.

Versions V4-LM-FC, V4-LM-FD, and V4-LM-FX use LAI from

MODIS real-time data. The difference among these models lies

in FVEG configurations. This combination of model simulations

will facilitate the assessment of the representation of vegetation

in the Noah-MP model and its impact on surface fluxes

and streamflow in the model. The simplified representation

of groundwater and runoff option (SIMGM) was used in

all configurations.

Methods

Simulation results are compared with EC fluxmeasurements

of water and energy, time series of soil moisture, and

MODIS LAI observations. While ground observations from

flux towers (e.g., Ameriflux network) are preferable to satellite-

based observations, the absence of field measurements of LAI

necessitates a comparison with satellite retrievals of LAI. We

aggregated LE, GPP, NEE, and LAI data sets to monthly

composites averaged over the entire study period for both

model and observations. By focusing on the effects of vegetation

dynamics on the near-surface flux exchanges, we highlighted

the growing season period (from April to September) at both

sites. It should be noted that the MODIS LAI input data was

upscaled from the finer resolution of the data product (500m)

up to themodel resolution (1/8◦grid or∼12.5 km) via averaging.

Model comparisons with the EC data are made by comparing

the model grid cell that covers the tower locations as shown in

Figure 1. The model performance for LE and GPP fluxes was

evaluated and summarized in Taylor diagrams using the Pearson

correlation coefficient (r), normalized standard deviations (sd),

and root-mean-square error (RMSE).

To quantitatively assess the simulated streamflow with the

USGS gauge observations and model outputs for LE with

MODIS, the Kling-Gupta efficiency (KGE) was used as a

dimensionless performance metric. It is defined as:

KGE = 1−

√

(r − 1)2 +
(

µs

µo
− 1

)2

+
(

σs

σo
− 1

)2

(1)

where r is the Pearson correlation coefficient, µ and σ are

the mean and standard deviation of the simulated (s) and

observed (o) values, respectively. The KGE can range between

–∞ and 1 with the value equal to 1 indicating a perfect match
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between model simulations and observations. The advantage

of the KGE is that it accounts for correlation, variability, and

bias of simulated time series and equally weights each metric.

Compared to traditional fit metrics, such as RMSE or Nash-

Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970), the KGE

provides more insight into the model skill and the ability to

evaluate different components of overall error (Gupta et al.,

2009; Fowler et al., 2018; Ghimire et al., 2020). A meaningful

benchmark for the KGE is one in which the observed mean is

used as a predictor and yields a KGE score of 1 –
√
2 ≈ −0.41

(Knoben et al., 2019). Therefore, in evaluating the streamflow

and LE, the benchmark of−0.41 is considered a lower limit (i.e.,

minimumKGE threshold), and values below that are not directly

quantified but considered poor model simulations. To eliminate

water resource management effects on the results, basins with

storage greater than 10% of the mean annual streamflow from

the USGS were not considered in the analysis.

To identify drought events across the state of Kansas, two

drought events, 2012 and 2018 were selected based on the data

archive from the U.S. Drought Monitor (USDM). The event in

2012 was the most severe and widespread drought in Kansas

since 1988 in terms of both duration and spatial coverage

(Anandhi, 2016), while the 2018 drought was milder and less

extensive (Chen et al., 2020). In the model, the percentile of the

top 1-meter SM (root zone) is used as an indicator of drought-

induced water stress. The percentile is calculated as a 30-day

moving average for each day of the year using the top 1-m

SM with the percentile distribution based on a 14-day moving

window centered on the target day over the 11-year simulation

period. The USDMwas compared to simulated SM based on the

following percentiles: greater than 31 is considered no drought,

between 21 and 30 is considered abnormally dry (D0), 11–

20 is considered moderate drought (D1), 6–10 is considered

severe drought (D2), 3–5 is considered extreme drought (D3),

and 0–2 is considered exceptional drought (D4) as in USDM

drought severity classification (Hayes et al., 2012). The model

representation of drought is then compared with the weekly

USDMmaps.

Results

Overall model performance

Site level

The differences in the simulated land surface water and

carbon fluxes, between the sites, are compared against the tower

observations to evaluate the performance of the different model

configurations. Comparisons among year-round daily LE and

GPP from different model versions at both KON and KFS sites

are summarized in the Taylor diagrams where the EC data are

used as a reference (Figure 2). Overall, there is no significant

difference among models in capturing LE at both sites. At KON,

LE output from all models falls over the normalized standard

deviation of 1 which indicates that all models could regenerate

variability in the data compared to the measurements. Whereas

at KFS, the simulated LE from all models have more variability

than the measurements (since they extended beyond the solid

line with sd = 1). GPP products from V3-LD-FD and V4-LD-

FX are close to each other but V4-LD-FX is slightly closer to the

observed point. The dominant factor contributing to biases in

modeled LE and GPP is the choice of LAI and FVEG (Figure 2).

Both MODIS LE and GPP were calculated using observed or

gap-filled climatological LAI inMODIS collection 6 tomaximize

the available reliable data. Therefore, potentially poor-quality

LAI could influence LE and GPP and may dampen their inter-

annual variability. The correlation coefficients of LE and GPP at

the KON site range from 0.75 to 0.80 and from 0.60 to 0.70 for

the simulations, while LE and GPP correlation coefficients at the

KFS site are slightly lower, 0.70–0.75 and 0.45–0.58, respectively

(Figure 2). At each site, RMSE values for LE and GPP (presented

with gray arcs in Figure 2) are similar. But compared to the KON

site, RMSE increased from 0.75 to about 1 at the KFS site, which

reveals a higher degree of agreement between the simulated LE

and GPP from different model versions and field measurements

at the KON site. One of the reasons for the differences in the two

locations is that the dominant land cover type at the KON grid

cell in the model is consistent with dryland cropland and pasture

as compared to the KFS grid cell which is mainly characterized

as cropland/grassland mosaic.

Seasonal fluxes

To take a wider view of the role of dynamic phenology

and the ability of the models to simulate the water and carbon

cycle, 11-year average seasonal cycles of climatological fluxes

are summarized in Figure 3, 4. It should be noted that the

results of all model configurations, using MODIS LAI as input

are qualitatively very close in all output variables at seasonal

cycles at the two study sites. Therefore, LAI and FVEG model

outputs nearly overlap each other (purple, cyan, and tan lines).

At the KON site, all model configurations overestimate the

climatological LE during the early growing season (Mar-Apr).

However, the difference between EC measurements and all

model simulations decreases substantially in the middle of the

growing season (June) when the leaves are fully developed,

and fluxes are large and continue until the end of the year.

Accordingly, at the KFS site, all configurations overestimated

the LE during the early growing season with the largest positive

bias in June (Figure 3). Model performance is reflected in 11-

year averaged KGE scores between simulated andMODIS LE for

different model versions at each site. At KON and KFS sites, the

V4-LM-FX model provides a better fit (with KGE = 0.345 and

KGE= 0.737, respectively) between simulated andmeasured LE.

At KFS, all model versions overestimate LE in comparison to

EC observations but again V4-LM-FC and V4-LD-FX provide

a better match with more accuracy leading to higher KGE
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FIGURE 2

Taylor diagrams for comparing model performance: (circles) latent heat (LE) and (diamonds) gross primary production (GPP) from both KON and

KFS sites. The radial distance from the origin is the normalized standard deviation and the correlation coe�cient is displayed as the azimuthal

position. All statistics are calculated on a daily time scale from 2008 to 2018 and colors represent di�erent models consistent with the color

codes.

values. Although the difference between simulated LE from all

versions at both sites increases rapidly at the beginning of the

growing season, this deviation becomes smaller particularly at

the KON site during the later growth stages. The peak value of

the modeled LE at both sites happens in June which is consistent

with the measurements. Observed LE values from the early

vegetative stage (April to July) represent sharp (at KON) and

gradual (at KFS) rise andmoderate decline during the late season

from August to September at both sites. Simulated sensible heat

fluxes (H) from all model versions were less at both sites for the

first 6 months of the year compared to the EC measurements.

These differences diminished from the middle of the growing

season until the end of the year and the simulated H pattern

became more consistent with the observations, especially at the

KFS site. The result of two versions of the model (i.e., V3-LD-FD

and V4-LD-FX) compared with MODIS and EC measurements

of GPP are also presented. Both versions of the model were able

to reproduce the trend of carbon uptake compared to the flux

measurements. Except for 3months in themiddle of the growing

season (June–August) at the KON site and 1 month (August)

at the KFS site, both models overestimate GPP. Like LE, peak

simulated GPP happens in June which is almost 50% larger at

the KON than the KFS site (Figure 3).

It should be noted that upscaling finer grid cells to coarser

resolution resulted in a difference between theMODIS LAI value

for a single tower pixel and MODIS measurements used in the

model (divergence between all the MODIS-derived LAI model

versions and blue dots, Figure 3). In addition, the difference

among green vegetation fraction of versions using maximum

climatology FVEG in winter months (January, February, and

December) reflects the canopy height variation relative to the

snow depth. When snow cover is higher than the vegetation

height, the FVEG will drop below its maximum value in

the model.

One of the main takeaways from Figure 3 is that there

is little deviation in the LE flux across model configurations

despite the fact that the models vary substantially in their

representation of LAI. To explore this in more detail, the

components of LE including transpiration, soil evaporation

(Esoil), and canopy evaporation (Ecanopy) are shown in Figure 4.

It is important to note that the units in Figure 4 are mm

(evaporation) and not w/m2 (latent heat flux) as in Figure 3.

Despite the insensitivity of LE to the impact of vegetative

properties at both sites, there is a distinct difference among

individual components of LE for each model configuration.

Specifically, transpiration and canopy evaporation vary directly

with the LAI and models that show higher initial LAI show

a larger transpiration and canopy evaporation. It should be

noted that canopy evaporation is relatively small (about 10

times smaller) as compared to the other components. Even

though there is a high connection between model LAI and

transpiration and canopy evaporation, this is offset by much

lower soil evaporation. This tradeoff between soil transpiration,

canopy evaporation, and soil evaporation results in little
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FIGURE 3

Seasonal climatology of simulated LE, leaf area index (LAI), fractional vegetated area (FVEG), and GPP from di�erent Noah-MP configurations vs.

MODIS and EC measurements during the 11-year study period for KON and KFS sites. Gray-shaded areas denote the growing season.

Frontiers inWater 08 frontiersin.org

https://doi.org/10.3389/frwa.2022.925852
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Hosseini et al. 10.3389/frwa.2022.925852

FIGURE 4

Seasonal climatology of simulated Transpiration, Ecanopy, and Esoil from di�erent Noah-MP configurations vs. MODIS and EC measurements

during the 11-year study period for KON and KFS sites. Gray-shaded areas denote the growing season.

difference between the total LE in all model simulations

and indicates that models are primarily operating in an

energy-controlled regime.

Simulated fluxes during drought events

Figure 5 presents the diurnal time-series of measured

and NLDAS-2 forcing precipitation, SM percentile, simulated

transpiration, and simulated vs. measured LE throughout two

selected drought years (2012 and 2018). The simulation results

of both sites show a nearly similar pattern; therefore, only the

results of KON will be discussed. For all model versions, LE

converges together when there is a precipitation event according

to the NLDAS-2 atmospheric forcing data which indicates

that all versions have a similar behavior when the soil is well

watered. The large differences between modeled and measured

LE values generally occur during inconsistencies between daily

gauge measurements and NLDAS-2 rainfall forcing data. Top

1-m SM percentiles from all model versions slightly diverge

from each other during the late winter and early spring but

they show a very similar behavior throughout the growing

season in both years. Despite the subtle variation, among SM

percentiles from all model versions in the rest of 2018, there is

a noticeable contrast among SM percentiles throughout the fall

andwinter of 2012. The behavior andmagnitude of transpiration

are almost identical in all the MODIS-LAI-based models and

the pattern is very similar to the model versions with dynamic

vegetation (e.g., V3-LD-FD and V4-LD-FX). However, there

is a distinct separation between V3-LD-FD and V4-LD-FX,

especially during the summer and early fall. Version with

prescribed LAI (V4-LC-FX) failed to capture seasonal variability

of LAI and FVEG and express a different transpiration pattern

compared to the other version.

As shown in Figure 6, both V3-LD-FD and V4-LD-FX

capture the general trend of LAI during the drought years.
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FIGURE 5

Precipitation, top 1-m soil moisture percentile, transpiration, and LE at the KON site for two selected drought years (2012, left; and 2018, right).

(Top panels) Gauge precipitation measurements at the site; (Second row) top 1-m soil moisture percentile; (Third row) Transpiration; (Bottom

panels) Comparison of average daily simulated LE from all di�erent Noah MP configurations (various colored lines) vs. EC measurements (black

dots) and NLDAS-2 precipitation forcing (blue bars).

Except for a few months at the beginning of the growing

season, V4-LD-FX overestimates LAI during both events.

However, V3-LD-FD underestimates LAI in the middle and

late growing season. Both leaf onset and LAI ramp-up occur

much faster compared to MODIS-LAI measurements in both

V3-LD-FD and V4-LD-FX models in 2012 and V4-LD-FX in

2018 which leads to higher LE during the growing season

length. Measured and forcing precipitation were generally close

to each other from January to April in both years. From

the early growing season, NLDAS-2 starts to produce more

precipitation, particularly in 2018 which results in a higher

cumulative precipitation difference between the forcing and

gauge measurements (Figure 6, third panel). There is a good

agreement between all model versions simulated and in-situ

measurements of SM in the top 10 cm, but this agreement fades

after June during the 2018 event. The overestimation of soil

moisture depletion during drying phases was greater in V4-LC-

FX than in other versions. This version assumes fixed vegetation

conditions for each year which leads to relatively higher ET loss

estimates in both dry years, and a sharper decline of soil moisture

at deeper layers (30–100 cm), especially during maximum plant

development, whereas dynamic LAI phenology in other versions

simulates changes in leaf area and reproduces more realistic

drought-induced vegetative stress and SM trend.

Domain level

Latent heat flux

Figure 7 shows the spatial distribution of the 11-year

domain-averaged mean seasonal KGE values between simulated

and MODIS LE for the different model versions. The overall

spatial patterns are consistent for all model versions with the
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FIGURE 6

Comparison of average daily simulated LAI from all di�erent Noah-MP configurations vs. MODIS measurements (top panel), simulated FVEG

(second panel), and simulated soil moisture for the top layer (10 cm) compared to the field measurements (black dots) and average soil moisture

for the three bottom soil depths (30, 60, and 100cm) (bottom panels) throughout the selected drought years (i.e., 2012 and 2018) at the KON site.

highest values in the eastern part of the state and low values

in the western portion of the state. A comparison of MODIS

and modeled climatology indicated that all model versions

overestimate LE over the entire state particularly in the central

and western parts of the state (see Supplementary Figure S1).

Analyzing the components of KGE reveals that except for small

areas in the middle and southwest of the state, the overall

correlation component is very close to unity over the entire

region (Supplementary Figure S2). This reflects the ability of

the model to reproduce the timing and shape of the seasonal

cycle as measured with no clear tendency for systematic errors

(Supplementary Figure S3). The areas with a higher ratio of

the simulated and observed standard deviation corresponded

with lower KGE values. In the central and eastern parts of the

state, the ratio of the simulated mean and observed mean (bias

ratio) for the LE flux is closer to 1 (Supplementary Figure S4).

This spatial pattern is more evident in MODIS-retrieved LAI

versions (i.e., V4-LM-FC, V4-LM-FD, and V4-LM-FX). The

large variability in LE from all the model versions other than

MODIS in the western portion of the state indicates that the

limitation of themodel is mainly governed by the overestimation

of variability.

To further evaluate the performance of each model, Figure 8

shows the 11-year climatological averaged LE of three selected

grid cells. The three grid cells were selected based on the

average KGE values across all model runs. The difference among

simulated LE from all versions is not very noticeable at the

selected grid cells with minimum and maximum KGE values

although this divergence becomes more pronounced at the

location with a minimum KGE value. The peak of the LE at the
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FIGURE 7

Spatial distribution of seasonally averaged Kling-Gupta e�ciency (KGE) of LE flux (W m–2) between each Noah-MP configuration and MODIS.

For the three assessment criteria, a value of 1 indicates a perfect agreement between MODIS and the simulations. The minimum threshold is set

to −0.41 for any KGE values ≤ −0.41.

grid cell with the highest KGE value happens in June which is

consistent with the MODIS measurements (Figure 8A). At the

selected grid with a minimum KGE value, the MODIS LE is

very low and does not vary over the year, but all model versions

demonstrate a similar but higher LE (Figure 8B). The primary

land cover type at this grid cell is comprised of sedimentary

rocks. This issue could be attributed to the MODIS inaccuracy

and model limitations in land cover type identification. The

low and quite constant MODIS LE values could reflect the

absence of water in this unvegetated rocky area. There is a

distinct separation among model versions with different LAI

and FVEG options at the grid cell with the minimum threshold

KGE value which reflects the sensitivity of heterogeneous land-

use and spatial locations to LAI and FVEG inputs (Figure 8C).

In addition, the grid cell with minimum threshold KGE value

of LE from MODIS is shifted to an earlier time (between

May and June). Interestingly, LE products from MODIS never

dipped below 15 (Wm−2) even in the wintertime compared to

much lower EC measured values (≈5 Wm−2), which reflect the

limitation of the MODIS LE data (Miranda et al., 2017).

Monthly streamflow

To further explore the impact of vegetative dynamics

on surface fluxes and the water balance, we evaluated the

model’s performance for simulating the annual streamflow at

31 basins across the study domain. The median KGE values

of the annual average streamflow for all model versions are

given in Figure 9. The KGE scores vary among the different

models and the study basins. Some gauges consistently perform

better or worse than the others in all the models (e.g., the

gauges denoted with letters a, b, and c in Figure 9) but most

of the gauges do not demonstrate a consistent KGE score

across the model configurations. As shown in Figure 9 (lower

right), box plots compare the KGE statistics across the model

configurations and indicate that the configurations that use

measured MODIS-LAI (LM) result in slightly higher KGE

values as compared to other configurations. However, there

is no significant difference in the model performance among

the six configurations, in terms of KGE for the simulated

annual streamflow with all versions reflecting the same spatial

variations in streamflow across the domain. Although not

shown, the majority of basins have a correlation coefficient

(r) closer to the ideal value of unity and there was no basin

with a negative correlation. The bias ratio between average

values for modeled (µs) and measured (µo) discharge and

variability component (σ s/σo) is less than one for most of the

gauges. This represents an underestimation of discharge with

lower variability in simulations. The notable underprediction

in the streamflow could be the result of an overestimation

of evaporation (Figure 3) or a simplified representation of

groundwater dynamics in Noah-MP which represents recharge

and discharge processes in an unconfined aquifer.
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FIGURE 8

Climatological LE from all di�erent Noah-MP configurations vs. MODIS across the selected domain for the entire study period (2008–2018) for

(A) grid cell with the highest KGE value (0.90) located in the western part of the state and the dominant land cover type is classified as grassland,

(B) grid cell with minimum KGE threshold (−11.87) located in the eastern part of the state and the dominant land cover type is classified as

cropland/grassland mosaic, (C) grid cell with minimum threshold KGE value (−0.42) located in the south-central region of the state and the

dominant land cover type is classified as grassland. Here, colors represent di�erent models consistent with the color codes.

To further illustrate the streamflow behavior of each model

configuration, the mean monthly time series of the simulated

streamflow for selected gauges with the highest, lowest, and

minimum KGE values are shown in Figure 10. Overall, there

was a good agreement between all model version simulations

and USGS measurements at the mean monthly time-step for

the selected gauge with the highest KGE value (Indian Creek,

Overland Park, KS). This gauge is in the northeast part of the

state, suggesting good model performances over the subhumid

to humid regions of Kansas (Figure 10A). Other gauges with

minimum mean KGE value (Rattlesnake Creek near Zenith,

KS), and minimum threshold KGE value (Big Creek near

Hays, KS) are in the central part of Kansas (gauge locations

indicated in Figure 9). At Rattlesnake Creek, all model versions

overestimate the monthly averaged runoff regime (Figure 10B).

At Big Creek, the simulated runoff followed the trend of the

USGS observations reasonably well until 2016 but after that,

the simulated streamflow exhibits considerable underestimation

of peak low magnitudes (Figure 10C). This could reflect a

significant difference between climatic characteristics in the

eastern vs. western parts of Kansas. Generally, the western part

of the state is characterized by a semiarid climate with hot, dry

summer and cold, windy winter and the eastern part tends to be

considerably more humid, with sultry summer and cold winter

months. This west-east climatic contrast impacts the generation

of surface runoff and evaporation which is closely related to

rainfall intensity. In addition to spatial patterns in precipitation

gradient, in the west and central areas of Kansas, excessive

groundwater pumping may lower the water table below the

stream-water surface, causing the stream to lose water to the

underlying aquifer and decrease the groundwater seepage to the

stream. In addition, catchment size and land use characteristics

may also affect the runoff retention time. Hydrographs indicate

that all the model versions tend to consistently underestimate

the peak streamflow in the west and central part of Kansas.

Model performance evaluation during drought

To investigate the impact of vegetation representation in

simulating rapidly emerging severe drought conditions, the

simulated top 1-m SM percentile from different model versions

over the state of Kansas were compared with USDM drought

categories for two selected drought events in 2012 and 2018

(Figure 11). It is necessary to note that some disagreements

between themodel SM percentiles and USDM are expected since
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FIGURE 9

Map of streamflow prediction performance using KGE for 31 selected basins across the model domain, and boxplots of each model

configuration with the range from −0.41 to 1. The numbers on the boxplots represent the total number of the gauges below the minimum KGE

benchmark value (−0.41). Locations of USGS gauges with maximum (a), minimum (b), and minimum threshold (c) average KGE in this figure are

marked on the map.

the USDM drought is based on many factors like county-level

information on drought, expert opinion of the current impact

of the drought on a region, precipitation, streamflow, reservoir

levels, snowpack, and groundwater (Sehgal, 2019). Furthermore,

the model SM percentiles were calculated using only the 11-

year simulation period. Despite these differences, the general

agreement is expected, and the USDM can still provide a good

comparison to assess the ability of the model to detect drought.

In August 2012, exceptional drought (D4 category) covered

most of the west and portions of the east part of the state.

In August 2018, only some areas in northeast Kansas were

affected by the D4 category drought. It can be observed that

the top 1-m SM percentile maps from all model configurations

in 2012 show much lower drought conditions over the entire

state, while USDM indicates exceptional drought over much of

Kansas. But both V3-LD-FD and V4-LD-FX versions present a

closer spatial resemblance between the model and the USDM

map. This is interesting since, despite slight differences among

all the 4.0.1 versions, they could replicate the majority of

the drought-affected areas in 2018 events. Underestimation of

drought magnitude in the large pocket in the central and west

part of Kansas during the 2012 event is likely associated with

the ability of the model to imitate rapid developing droughts

as in 2012. Overall, the behavior of the gridded SM percentile

is reasonably consistent with the drought categories on USDM

maps in 2018 but there are some differences in case of severe

drought areas.

Sources of uncertainties

Overestimation of evaporation (LE) fluxes in the model

could be ascribed to uncertainties in the MODIS LAI data

and model biases in soil moisture, groundwater storage, or
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FIGURE 10

Comparison of monthly simulated streamflow time series with USGS gauge measurements for selected gauges with (A) maximum average KGE

(Indian Creek, Overland Park, KS), (B) minimum threshold KGE, (Rattlesnake Creek near Zenith, KS), and (C) minimum average KGE value (Big

Creek near Hays, KS).

representation of vegetation within the model. In theory, large

negative or positive biases in the model-predicted storage are

most likely mitigated by overestimation (underestimation) of

both outgoing fluxes (i.e., runoff and evaporation) to close water

balance in long-term averages (Lin et al., 2018). To understand

the possible tendencies in long-term water budget on how

changes in one component affect the estimation of the other

mutually dependent hydrologic processes, we used a simple

water balance equation:

P = E+Q (2)

where P is precipitation, E is evaporation, and Q is runoff.

In this equation, all variables are expressed as an 11-year

average and change in storage is considered negligible under

the assumption that there is no trend in storage change and

that year-to-year variations cancel each other out over a long

period. Since there was no statistically significant difference

among the other version outcomes, the result of V4-LD-

FX is presented here (Figures 12, 13). In Figure 12, each dot

represents one of the 31 selected drainage areas of the USGS

gauges within the study domain. The color scheme presents

11-year average NLDAS-2 annual precipitation. The estimated

average evaporation from all models and water balance is

expected to show a very close relationship, but it is noted that

there are more dispersions around the line with a slope of

unity compared to the model vs. water balance evaporation

(Figure 12). This deviation pattern is even more evident for

basins with drier conditions (average annual precipitation <

900mm), especially in MODIS vs. water balance evaporation

comparison (Figure 12B). It is apparent that both the model

and water budget overestimate evaporation in comparison to

the MODIS data, but the model exhibits the highest level of

prediction accuracy (R2 = 0.80). These results are consistent

with the findings reported by Brunsell et al. (2021). Among all

versions, the V3-LD-FD presents the lowest agreement between

Noah-MP and water balance vs. MODIS evaporation (R2 = 0.73

and R2 = 0.48, respectively).

Figure 13 illustrates the relationship between USGS gauge

measurements with averaged runoff estimations of V4-LD-FX

for the 31 selected drainage areas and the color bar indicates

the difference between water balance and model streamflow.

We observed that the streamflow is reasonable by model

simulations (R2 = 0.49). However, simulated streamflow is

underestimated compared to USGS measurements. The results

of the surface runoff analysis suggest that the overestimation

of evaporation is characterized by the underestimation of

peak-flow magnitudes which indicates more water should

be retained in the soil layers instead of evaporating into

the atmosphere. This might also be attributed to a poor

estimation of the model parameters or due to an interaction

of the model parameters that had a significant effect on

the dominating processes in that flow range. Here again, we

noticed that V3-LD-FD exhibits less agreement between Noah-

MP and USGS gauge measurements (R2 = 0.30) among all

models.
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FIGURE 11

The US Drought Monitor (USDM) and the modeled soil moisture percentile for the top-1 meter of the soil over the state of Kansas on 21 August

2012, and 14 August 2018. Colors indicate drought categories defined by the USDM, from abnormally dry (yellow) to exceptional drought (dark

red).
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FIGURE 12

Scatter plots of V4-LD-FX version (A) Noah-MP evaporation vs. MODIS, (B) estimated evaporation from water budget vs. MODIS, and (C)

estimated evaporation from water budget vs. model for 31 selected basins using an 11-year averaged. The color bar indicates the 11-year

average precipitation (mm) over selected basins within the domain from higher (blue) to lower (green) values.

FIGURE 13

Comparison of V4-LD-FX version vs. USGS gauge streamflow

measurements for 31 selected basins. The color bar presents

the di�erence in simulated and water budget evaporation during

the 11-year average.

The extreme point on the lower-left corner of the scatter

plots (Figures 12A–C) does not follow the same pattern on

the precipitation gradient. This point represents a basin on

the northeastern border of the state that is heavily urbanized.

Despite a relatively high 11-year average precipitation, the

rate of the LE is very low. Significant low evaporation at

this basin is a compound result of the reduction in LAI and

diminishing of transpiration from vegetation and evaporation

lost from canopy interception which promotes wetter soil

conditions and greater surface runoff. This is also noticeable

in the close value of the averaged runoff of all models to the

USGS measurement (extreme upper-right point in Figure 13).

In addition, impervious land covers in urban areas have a

pronounced effect on bare soil evaporation.

Figure 14 compares the ability of themodel in simulating the

LE as a KGE score vs. the 11-year annual average of NLDAS-

2 meteorological forcing [i.e., air temperature, precipitation,

specific humidity, wind speed, downward shortwave (SW),

and longwave (LW) radiation] for the dominant USGS land

cover categories across the model domain. Surface pressure was

excluded from this analysis due to its undetectable impact on

the relationship between LE performance and landcover type.

Due to a similar pattern among all model version outcomes,

the result of V4-LD-FX is presented here. Cropland/grassland

mosaic and grassland land cover types exhibit lower KGE value

in hot and dry conditions (low precipitation and humidity and

high shortwave radiation). The impact of wind speed and air

temperature on the specific land cover type was not very clear.

Only dryland cropland and pasture (DCP) present relatively

lower KGE in response to higher air temperature. Based on

the USGS land-cover category, much of the western part of the

state is classified as cropland/grassland mosaic and grassland

in the model. Irrigated croplands impact the thermodynamics

of the sensible and latent heat fluxes. Moreover, with a high

level of soil water content, the LE becomes independent of

the soil moisture in energy limited ET regime. Evaporation

links the water balance to the surface energy balance with the

heterogeneity of the landscape being accounted for by land cover

type in the model. Therefore, an investigation of land cover–

precipitation feedback and its impact on model performance is

suggested for future studies.

Discussion

The dynamic vegetation scheme in the land surface model

significantly influences the water and carbon budgets of

terrestrial hydrological modeling. In this study, we investigated

the impact of including and excluding Noah-MP dynamic
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FIGURE 14

The variation of the KGE between the model and MODIS LE flux with respect to the dominant land cover and the 11-year mean annual NLDAS-2

forcing components including precipitation, air temperature, specific humidity, downward shortwave (SW) and longwave (LW) radiation, and

wind speed.

vegetation function on key water and carbon budget terms

by comparing six different model configurations against field

measurements. The difference in each version is related to the

calculation of LAI and FVEG. The simulation results reveal

the difference between dynamic leaf model calculation of LAI

estimates (V3-LD-FD and V4-LD-FX) and LAI from MODIS

real-time data (V4-LM-FC, V4-LM-FD, V4-LM-FX) at the

point-scale for two selected study locations and were able to

reasonably capture the temporal variability of the LE component

(i.e., transpiration, Esoil, and Ecanopy) and sensible heat flux. The

Noah-MPmodel requires the conservation of the partitioning of

total net radiation (Rn) energy that reaches the land into sensible

and LE and soil heat fluxes (Pitman, 2003; Niu et al., 2011; Best

et al., 2015). As a result, portioning of Rn could impact the ability

of the model for predicting both sensible and latent heat fluxes.

With enough soil moisture, the Noah-MP uses the remaining

energy to evaporate water from the soil into the atmosphere

resulting in the unchanged magnitude of the total LE. The

result from performance matrices in Figure 14 also indicates

that a lower KGE score for the simulated LE is connected to

limited incoming shortwave radiation over dominant domain

landcover types. At the site level, V3-LD-FD and V4-LD-FX

simulations captured the observed seasonal trend of GPP, but

they underestimated the GPP during peak growing seasons.

The underestimation of LAI during the growing season is

attributed to less carbon allocation to leaves and lower GPP

during the growing season (Figure 3). This reflects the greater

photosynthetic capacity of dominant C4 grassland with a more

rapid accumulation of green leaf area than C3 plants in the

model (Figure 3).
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In addition to LAI and FVEG, in all model versions,

the stomata are controlled mainly by average soil water

availability (or β factor), leaf maximum carboxylation rate

(Vcmax) and maximum rate of carboxylation by the enzyme,

Rubisco (Vcmax25) which are treated as vegetation type-

dependent constants. The only recognition of hydrodynamic

properties of plants in Noah-MP is the rooting depth. But

rooting depth only indicates which soil layers need to be

incorporated in a single average number of soil moisture that

ends up controlling the stomata. However, Wang et al. (2018)

showed that replacing static root profile with dynamic root

optimization in the default Noah-MP resulted in more realistic

root response to ET between wet and dry seasons. Plant water

use efficiency (WUE) remains a major challenge for simulations

of diurnal dynamics of transpiration (Matheny et al., 2014). Root

zone soil moisture also has a direct impact on baseflow and

streamflow simulations.

A rapid shift in vegetation emergence than the actual plant

coverage implies that current Noah-MP versions are generally

missing in important processes, such as the negative lagged

effect associated with warmer springs which consequently lead

to the buildup of water stress (Wolf et al., 2016; Buermann

et al., 2018; O’Sullivan et al., 2020). Again, mainly due to the

spatial scale difference between satellite observations and model

grids, there is a discrepancy between MODIS observation at

the flux tower and simulated LAI in all the MODIS-LAI-based

model versions.

Implementation of prescribed LAI/FEVG with the same

vegetation values every year can generate abnormally high ET

during dry conditions and exacerbate soil moisture deficits.

To address this issue, enormous efforts have been made

to introduce dynamic growth simulations into Noah-MP

over the last decade. Liu et al. (2016) introduced dynamic

growth simulations and field management for two summer

crops (corn and soybean) into Noah-MP (Noah-MP-Crop).

Additionally, Ingwersen et al. (2018) extended Noah-MP by

a dynamic crop growth component (Gecros; Xinyou, 2005)

for winter wheat and maize. Plants subjected to long-term

or severe drought stress cannot reach the same level of

transpiration after the cessation of a drought which can cause

disagreement between the model and measured LE (Su et al.,

2021).

At the domain scale, the inconsistency in evaporation

between the models andMODIS in the central and western parts

of Kansas shows that all models failed to simulate LE correctly

over this region (Figure 7). This could be largely due to the

discrepancies between prescribed and real land cover classes.

Additionally, this could be attributed to shortcomings in the

irrigation routine in Noah-MP, since irrigated croplands in the

western part of Kansas enhance ET. One must bear in mind

that incorporating an improved land-cover dataset in the model

is crucial to properly representing surface processes on both

meteorological and climatological scales. In addition, previous

studies (Heinsch et al., 2006; Miranda et al., 2017; Pu et al.,

2020) have addressed the tendency of MODIS to overestimate

LAI which may lead to the miscalculation of vegetation cover

fraction and overestimates of evaporation.

Compared to the field measurements, the simulated SM

from all model versions in 2018 shows larger disagreement in the

middle of the growing season when leaves are fully developed,

and the plant is able to transpire water approximately at rates

equivalent to the atmospheric demand. This is accompanied by

overall higher precipitation forcing in the model compared to

2012. Therefore, precipitation differences in the early summer

of 2018 represent a significant source of forcing condition

uncertainty and cause a noticeable divergence between modeled

and measured SM which remains throughout the year. A

rapid shift in the vegetation emergence than the actual plant

coverage implies that current Noah-MP versions are generally

missing in important processes, such as the negative lagged

effect associated with warmer springs which consequently lead

to the buildup of water stress (Wolf et al., 2016; Buermann

et al., 2018; O’Sullivan et al., 2020). Again, mainly due to the

spatial scale difference between satellite observations and model

grids, there is a discrepancy between MODIS observation at

the flux tower and simulated LAI in all the MODIS-LAI-based

model versions.

The overall results show that there is a major impact

of rainfall forcing on all model versions. From simulations,

it is evident that NLDAS-2 precipitation forcing significantly

impacts the simulated LE fluxes of all model versions. The

discrepancies in precipitation between NLDAS-2 forcing and

gauge measurements exert a great impact on the general

performance of the simulated compared to the observed LE

and SM. At both sites, there is a clear response trend between

the magnitude and timing of daily gauge-based precipitation

and measured LE. Investigating the cumulative gauge-measured

and NLDAS-2 precipitation of selected drought years indicates

that not only is there a difference in terms of timing and

magnitude of each event but also the total depth of the annual

rainfall. Furthermore, the gradual decline of water content

in the topsoil layer results in a dramatic decrease in LE,

especially during the drought years. However, the drought had

little impact on LE simulation whenever there is sufficient

water input from large precipitation events at the beginning

of the growing season. The relative insensitivity of the model

LAI to the overall LE suggests that the evolution of LSMs

has focused more on obtaining correct surface fluxes instead

of accurate reproduction of SM products (Entekhabi et al.,

2010). We should note that while NLDAS-2 may provide the

most realistic retrospective forcing data, aggregating reanalysis,

radar data, and rain gauge measurements into a grid, tends to

crucially smooth precipitation in space and time (Luo et al.,

2003). In North American mesic grasslands, precipitation is

a strong driver of C4 grass productivity during the growing

season (Brunsell et al., 2014; Wagle et al., 2015), which is
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reflected in a higher degree of carbon uptake, especially at the

KON site.

In particular, this study shows that the difference in

land-cover type has the potential to affect couplings

between carbon and water fluxes at the land surface and

alter land model simulations. It is also important to note

that Noah-MP features four vegetation carbon pools

(leaf, stem, root, wood), and two soil carbon pools (fast

and slow) (Niu et al., 2011; Yang et al., 2011). Hence,

updating the surface exchange coefficients and parameters

specifically related to the dynamic vegetation components

also plays a significant role in the determination of the

vegetation impact.

Conclusion

Multiple vegetation physical options available in the

Noah-MP LSM were evaluated on the overall skill of their

model predictions over various landcover types. This study

demonstrates the response of carbon and water fluxes to

vegetation components (i.e., LAI and FVEG) based on 11

years of Ameriflux observations, particularly during two

major drought events over the midwestern United States.

Decomposing LE flux components reveals that the apparent

insensitivity of simulated LE to LAI and dynamic vegetation

process can be attributed to the tradeoff between soil

evaporation and transpiration. The Noah-MP employs a

closed energy budget. In the presence of adequate soil

moisture, the incoming net radiation limits ET, and both

the sites are generally operating in an energy-limited regime.

With high surface and root zone soil moisture, water can

be extracted from the soil for evaporation and the total

amount of ET from each model remains similar which

reflects constraints associated with the Noah-MP that could

be linked to the forcing. Overestimation of LE resulted in

underestimation of runoff, especially over heavily cultivated

basins that cover much of the western and central parts of

the state.

Although the Noah-MP LE and GPP differ from

the observation datasets at the selected sites, it is still

considered a satisfactory proxy of water and carbon

fluxes in the absence of better estimates like flux tower

measurements. Recent work by Kumar et al. (2019) and

Mocko et al. (2021) have found that data assimilation of

LAI into the dynamic vegetation scheme of Noah-MP

improves the simulation of ET and GPP, particularly in

the agricultural areas of the United States. LSMs include a

myriad of surface processes and vegetation parameters that

ideally would be regionally tuned, leading to difficulties

in vegetation specification and uncertainties in their

outputs, especially under extreme climate conditions

like drought. Promising future model enhancements will

potentially improve the ability of the model to capture

vegetation dynamic behavior, especially under extreme

climatic conditions.
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