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Farms are a major source of water pollution in the form of nutrient run off that cause

harmful algal blooms and anoxia, both signs of deteriorating water quality. Current policies

that incentivize the adoption of nutrient management practices (NMPs) are insufficient,

especially as climate change increases the frequency and intensity of flooding. To

evaluate the incentives of current policy designs, we implemented a conjoint analysis

on survey data collected in the Missisquoi and Lamoille watersheds of Lake Champlain

Basin in three waves (2013, 2015, 2020). Using panel and cross-sectional observations

over the three waves, we investigate farmers’ willingness to accept (WTA) payment

for NMPs that improve soil health and reduce nutrient runoff. We identified farmers’

WTA for the adoption of three NMPs, cover cropping, conservation tillage, and buffer

strips. The approach quantifies gaps between the incentives offered by the current

federal conservation programs and payments preferred by farmers as well as the relative

importance of NMP attributes. The influence of the payments decreased over the course

of the three survey waves, suggesting the characteristics of NMPs are driving farmers’

preferences for them. Our analysis shows farmers WTA is 1.13–6 times higher than what

existing incentive programs offer. The incentive gaps between WTA and the cheapest

of NMPs offered by EQIP are $55.61 for tillage, $103.60 for cover crop and $37.62

for buffers. Designing policy instruments to reduce this gap, the federal programs and

policies will be more effective at scaling up the adoption of NMPs by farmers as a tool

for sustainable watershed management.

Keywords: incentive designs, conjoint analysis, nutrient management practices, sustainable agriculture,

watershed management

INTRODUCTION

Agricultural practices can drive socio-ecological regime shifts and are emerging as powerful
avenues toward greater sustainability and diversity of life (Altaweel, 2008; Bengochea Paz et al.,
2020; Melchior and Newig, 2021). Farmers are under myriad pressures from both extreme events
and slow-moving impacts of global climate change on the localized deterioration of soil and water
quality vital for their production and socio-ecological wellbeing (Rockström et al., 2017). Growing
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and increasingly affluent populations are driving agricultural
expansion and intensification. This agricultural trend exacerbates
externalities on society and the environment like eutrophication,
hypoxia from harmful algal blooms, water quality deterioration,
and greenhouse gas emissions, problems that are projected to
become more severe in the future (Tilman et al., 2001). The
practices of agriculture present challenges and opportunities in
the socio-ecological systems we rely on.

Agricultural practices offer opportunities for remediation,
mitigation, and adaptation (Poeplau and Don, 2015; Kaye
and Quemada, 2017; Hou et al., 2020; Qi et al., 2020). Best
management practices (BMPs), also known as conservation
agriculture practices, emerged from the criticism of agricultural
practices that contributed to the Dust Bowl of the United States.
BMPs were codified under the financial and technical auspices
of the National Conservation Resource Service (NRCS) as they
evolved into watershed management tools of non-point source
pollution (Ice, 2004). NRCS and United States Department of
Agriculture (USDA) BMPs are widely considered to promote
a multitude of environmental benefits and ecosystem services
including provisioning of water quality and quantity, nurturing
healthy and diverse soils, and carbon sequestration (Bracmort
et al., 2006; Sharpley et al., 2006; Power, 2010; Motsinger et al.,
2016; Li et al., 2017; Lal et al., 2018; Barnes et al., 2019;
Morari et al., 2019; Crystal-Ornelas et al., 2021). These benefits
are not only ecological but also can improve the productivity
and profitability of farms (Kragt and Robertson, 2014). We
focus on three BMP’s, cover cropping, conservation tillage, and
buffer strips, for their contribution to nutrient management in
agricultural fields. Nutrient Management Practices (NMPs) are
integral for sustainable watershed management, particularly with
looming extremes brought on by climate change (Lal et al., 2018).

Even with this array of tangible benefits, adoption of many
of NMPs is low across the United States varying greatly by
crop type as well as geographical location. For example, 64% of
soybean producers in the Southern Seaboard (including parts of
Virginia, Delaware, Maryland, North Carolina, South Carolina,
Georgia, Alabama, Mississippi, Texas, Louisiana, and Arkansas)
adopted conservation till (i.e., no-till and reduced till) practices
(Wade et al., 2015). While in the Northern Crescent (which
includes New England states, New York, New Jersey, parts
of Ohio, Pennsylvania, Michigan, Wisconsin, and Minnesota),
28% of farmed land is conservation tilled (Wade et al., 2015).
Thus, it is necessary to understand the underlying characteristics
of farms and operators that may influence willingness-to-
accept payments.

Demographic characteristics of farmers, such as higher levels
of education and experience, have been shown to positively
influence NMP adoption (Paudel et al., 2008; Burton, 2014).
Conversely, farmer age is negatively associated with adoption
(Chouinard et al., 2016). Farm characteristics like production
type (Arbuckle and Roesch-McNally, 2015), farm size (Ahnström
et al., 2009; Baumgart-Getz et al., 2012), enrollment in
federal conservation programs [NRCS Environmental Quality
Incentives Program (EQIP)] and land tenure (Parker et al.,
2007; Reimer and Prokopy, 2014; Chouinard et al., 2016; Ulrich-
Schad et al., 2016; Varble et al., 2016) have all been shown to

have varying effects on adoption including positive, negative,
and negligible effect. Environmental consciousness and pro-
environmental values have been suggested to be a positive
predictor of NMP adoption (Lubell and Fulton, 2008; Reimer
and Prokopy, 2014; Pradhananga and Davenport, 2019). Higher
levels of trust in technical and information sources are shown
to positively influence adoption (Baird et al., 2016; Daxini
et al., 2019). To summarize, barriers to the adoption of NMPs
by farmers include social psychological issues such as farmer
attitudes, norms and behavioral control (Wilson et al., 2014;
Liu et al., 2018; Doran et al., 2020), poor policy incentives
(Conner et al., 2016), programmatic rules (Del Rossi et al., 2021)
and adverse socio-economic conditions (Schattman et al., 2018).
Some NMPs entail greater operational costs or opportunity costs;
for example, the costs of buffer strips are likely higher compared
to reduced tillage or cover crops (Reimer and Prokopy, 2014;
Natural Resources Conservation Service, 2017).

Research on farmers adoption of practices is abundant in the
literature (Greiner and Gregg, 2011; Liu et al., 2018; Prokopy
et al., 2019). This is in part due to the diversity of NMPs
themselves as well as the complexity of the human-natural system
interaction exemplary of agriculture (see Figure 1). Assessing
willingness to accept (WTA) payment for these practices is
important in determining tradeoffs regarding financial barriers
to adoption while offering opportunities to improve design.
Incentive gaps between WTA and what is offered reveals
financial barriers that limit the broader use of NMPs for
sustainable watershed management. A study that uses the same
survey methodology and the first wave of data, found farmers’
willingness-to-accept (WTA) ranged between $35 and $118 per
acre more than the level offered by the EQIP, a voluntary federal
program to financially assist farmers in adoption (Conner et al.,
2016). Helling et al. (2015), found the average cost of cover
cropping to be $129.24/acre while buffer strips were $807.33/acre.
The authors estimated government willingness-to-pay to be $9.79
and $43.65 less than the costs of implementation reported by
farmers (Helling et al., 2015). Local, regional, and national
institutions have long incentivized practices that produces public
services such as clean water with varying effects (Armstrong et al.,
2011).

Watershed management often transcends temporal,
geographic and governance scales through the interconnection
of local actions like NMPs to the mandates of federal statutes
and, at times, transnational agreements (Norman and Bakker,
2009). As required under Section 303 (d) the Clean Water Act
(CWA), the United States Environmental Protection Agency
(EPA) established the Total Maximum Daily Load (TMDL)
for phosphorus in the Lake Champlain Basin in 2016 (Clean
Water Act, 1972). This entails an assessment of sub-waterbodies
that do not meet the water quality standards and establishes
the allocation of pollution loads across different sources, all to
be implemented by the State of Vermont. The tactical basin
of the Missisquoi River emptying into the Missisquoi Bay was
identified as a priority area due to the characteristics of the
basin, the legacy phosphorus in sediment and the dominance
of agriculture in the land use mosaic (International Joint
Commission, 2020). The TMDL requires an 83% reduction
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FIGURE 1 | Conceptual framework of adoption of BMPs. Adapted by Liu et al. (2018) from Greiner and Gregg (2011). The boxes and arrows denote influences; the

rounded boxes denote scales; the ovals represent actions related to BMP adoption; and the dashed boxes denote elements that may or may not be present. (A)

Macro (watershed, regional, national) scale. (B) Micro (farm) scale.

in non-point source phosphorus pollution from agricultural
sources for the Missisquoi watershed (U.S. Environmental
Protection Agency Region 1 New England, 2016). This degree
of reduction demanded is much greater than the Lamoille basin
which drains into Mallet’s Bay at 29% (U.S. Environmental
Protection Agency Region 1 New England, 2016). In light
of these substantial demands on agricultural practices in the
watersheds, the State of Vermont considers NMPs as necessary to
achieve compliance with federally-mandated state water quality
goals (U.S. Environmental Protection Agency Region 1 New
England, 2016). Farmers play a pivotal role accomplishing the
TMDL targets, yet the voluntary cost-sharing and educational
initiatives offered have been slow to encourage NMP adoption
among Vermont farmers (Wade et al., 2015). In this paper, we
focus our attention on assessing farmer incentives for ultimately

scaling up the adoption of NMPs as a watershed management
tool. This is because basin scale hydro-ecological systems models
have identified adoption of NMPs by farmers as a critical policy
goal for improving water quality in freshwater rivers and lakes
in the face of global climate change induced increases in the
frequency and intensity of extreme events (Zia et al., 2016; Hecht
et al., 2022).

Our research question is: (1) What is the willingness to
accept payment for NMPs implementation in the case of the
Missisquoi and Lamoille watersheds of Vermont? Using a ranked
conjoint analysis administered in three survey waves in 2013,
2015, and 2020, we seek to understand farmer stated preferences
regarding NMPs payments and identify if any incentive gaps
exist. In our discussion of the study results, we introduce
possible explanations of farmer preferences and explore how the
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TABLE 1 | Nutrient management practices options and calculated WTA.

Option Nutrient management practices $/acre Offered Aggregate WTA

(2013, 2015, 2020)

Conner et al. (2016) WTA

(different WLS using data

from 2013 wave)

1 Conservation tillage $30 $66.40 $85.99

2 Cover cropping $90* $142.40 $125.16

3 Conservation buffer strips $105 $307.83 $168.33

4 Conservation tillage and cover cropping $120* $208.81 $211.15

5 Conservation tillage and conservation buffer strips $170* $374.24 $254.32

6 Cover cropping and conservation buffer strips $175 $450.24 $293.49

7 Cover cropping, conservation tillage, and conservation buffer strips $205 $516.64 $349.48

The asterisk (*) denotes a 30% premium included in the price offered in the survey.

findings relate to policy design and public discourse around the
provisioning of clean water at the watershed level.

MATERIALS AND METHODS

Conjoint analysis is a widely-used methodology to determine
the influence of attributes, including price, on the preferences of
consumers or participants. It falls under the broader umbrella
of stated preference choice experiments. Of the various stated
preference methodologies, both conjoint analysis (CA) and
contingent valuation (CV) are commonly used yet complex to
design, analyze and interpret. These methodologies often are
incorporated into survey instruments and employed in consumer
market research (Nguyen et al., 2015; Meyerding et al., 2019) and
are increasingly used in the analysis of environmental policies
and practices (Farber and Griner, 2000; Alriksson and Öberg,
2008), healthcare policy (Ryan and Farrar, 2000; Marshall et al.,
2010), and social-ecological systems (Farber and Griner, 2000;
Arifin et al., 2009; Conner et al., 2016).

In the conjoint analysis, hypothetical scenarios with varying
attributes and prices are presented to the study participant
who is asked to rank the scenarios to best match their
preferences. Providing a full list of all options which would
be far more difficult for participants to accurately rank (Sayadi
et al., 2009; Conner et al., 2016). A full profile without
orthogonal design would likely overwhelm participants and
lead to a poor understanding of preference structure (Hair
et al., 2010). For this reason, an orthogonal design is used to
reduce the number of options available to farmers in terms
of Nutrient Management Practices (attributes), the ranges of
incentive payments (price), and the subsequent combinations
of these. We include three individual NMPs (attributes): cover
cropping, conservation tillage, conservation buffer strips. The
listed combinations in the survey instrument are conservation
tillage and cover cropping, conservation tillage and conservation
buffer strips, cover cropping and conservation buffer strips and
cover cropping, conservation tillage, and conservation buffer
strips (see Table 1).

The preference for each attribute is ascertained by analyzing
participants’ rankings of scenarios. The underlying theory of
utility maximization is assumed for each rank (Kalish and

Nelson, 1991). Conjoint analysis presents an opportunity for
assessing not only the willingness to accept compensation, but
also the influence of attributes (NMPs and compensation level)
in the form of partial worths, which are also known as partial
utilities (Alriksson and Öberg, 2008). This is a decompositional
approach where researchers use the choice sets (based on
ranking) to ascertain the partial worths of the attributes including
compensation level. In this study, the attributes are the NMPs
presented in the survey instrument.

Data Collection
The survey instrument presented a total of seven scenarios
to participants who were instructed to rank from their most
preferred (1) to their least preferred (7). The survey instrument
and model capture observations from all the rankings (1–7),
including the options that may not be as easily ranked due to
indifference points between options. In other words, rankings
should be strictly interpreted to be weak preferences (A � B)
which could be either indifference points between scenarios (A
∼ B) or strong preferences (A ≻ B). This is opposed to solely
using the first ranked-choice or the last ranked in the analysis
of preference (Fok et al., 2012). Weak preferences may increase
or decrease the accuracy of the estimation by not capturing the
ambiguity, thus influencing the determination of willingness-to-
accept and relative importance.

The levels of payment for the choice sets were determined
based both the findings of a literature review and feedback from
the experts of UVM Extension. A 30% premium was calculated
and randomly assigned to three of the seven choice sets presented
in the conjoint survey question. We included these premiums as
prices in a conjoint analysis should be equal or higher than the
current market price (Green and Srinivasan, 1978). The premium
acts as a stimulus set to improve the accuracy and validity of
parameter estimates. There is risk in that if premiums are too
high and beyond reason, validity and predictability of the model
could be compromised. Hence, the determination of incentive
level in the instrument are based on UVM Extension feedback
and existing literature. The choice sets were framed as an annual
payment for implementation and verbal descriptions provided
for those participants unsure of the practices or the terms of
the offer.
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TABLE 2 | Summary of panel participants and cross-section for survey waves.

Sampling 2013 2015 2020

Cross-section 78 57 55

Panel starting in 2013 (N) 55 5

Panel starting in 2015 (N) 16

Total N (Cross-Section + Panel) 78 112 76

We conduct our analysis based on survey data that
was collected in three waves 2013, 2015, and 2020 in
northwestern Vermont (Table 2). The surveys years were
selected as they aligned with the broader data collection
efforts of farmers administered in Vermont through existing
research programs, specifically National Agricultural Statistical
Service (NASS) and Vermont Established Program to Stimulate
Competitive Research (EPSCoR). Farmers that grossed over
$1,000 in agricultural revenues from the Lamoille andMissisquoi
watersheds were included in the study population. A subset
(N = 21) of the first wave participants remained in the panel
throughout all three waves. Each wave consisted of a survey that
included the same questions exploring farm characteristics, farm
management, and production, farmer decision-making, existing
nutrient management, climate and extreme weather perceptions
as well as the experience, education, age, and income of farmers.
The third survey wave includes an expanded questionnaire
investigating, in more depth, the variables of the first and second
waves relating to nutrient management planning, climate risk
perceptions, social, and knowledge networks.

The first survey wave was initiated in March 2013, and was
conducted by the National Agricultural Statistical Service (NASS)
through the selection of zip codes. In the 2013 wave, a screening
postcard was sent to farmers (N = 1,104) in the target watersheds
with annual revenues >$1,000. Of the 220 postcards returned,
52% (n = 114) responded by agreeing to take the survey, the
remaining 48% did not respond, responded “maybe,” left it blank,
or declined to participate. These 114 farmers, as well as those
who had responded to the postcard with “maybe” or not filled out
the field, were sent the survey via mail (N = 128). Around 62%
(N = 78) of surveys were completed and returned. Phone-based
surveys were administered to farmers who did not return the
mailed survey, and are included in the data. The final response
rate from the initial screening postcard population was 7%.

A panel of farmers was established after the completion of a
second survey, conducted in 2015. The second wave included this
panel (N = 55) and additional farmers not included in the first
wave (N = 57). The survey was conducted by mail as part of the
Vermont EPSCoR Research on Adaptation to Climate Change
(RACC) initiative.

The third survey wave was carried out in 2020 by the
Center for Rural Studies (CRS) using phone interviews and
online surveys for the Vermont EPSCoR Basin Resilience
to Extreme Events (BREE) and included a more extensive
questionnaire. The geographic scope in the sampling expanded
beyond the Missisquoi and Lamoille watersheds to the entire
Lake Champlain Basin within Vermont. The survey sample

size for the third wave was N = 76, and it included panel
participants from the first and second waves (N = 21).
Recruitment was conducted through postcard mailings based on
farmer networks and associations (specifically Northeast Organic
Farming Association, Vermont Sheep and Goat Association,
University of Vermont Extension, VermontMaple SugarMakers’
Association, and existing statewide list of dairies), Front Porch
Forum advertisements, and direct communication with farmers
at farmer’s markets. Based on the sampling criteria established
by the Center for Rural Studies, farmers were sent postcard
invitations to complete the survey. The small sample size for all
waves is worthy to note in interpreting the results as it influences
the validity and accuracy of the estimation and subsequent
analysis of WTA. In attempting to address the issue of sample
size, we employ weights to reflect the distribution of farmers
based on management type (organic and conventional) as well
as size of production in acreage. The sample size is large enough
to capture signals that are worthy of analysis, interpretation and
policy recommendations, albeit acknowledging this limitation.

Weighted Least Square Regression
A weighted least square (WLS) regression is used to model
the conjoint analysis. The weighting procedure includes
characteristics of the sampling population at the Lamoille and
Missisquoi watershed scale and assigns weights them based
on the USDA Agricultural Census of 2017 (US Department
of Agriculture National Agricultural Statistics Service, 2019).
Final weights used for the WLS model include farm size (acres)
and management type (organic, conventional). Income is not
included in the weighting, as it is not collected in the USDA
Census. Farm income is likely correlated with farm size which
is included in the weighting (Rada and Fuglie, 2019). Each
survey wave has weights calculated separately and ascribed
to each particular case. This estimation method is used to
control for the farm size and management type which likely
influence NMP preferences as well as WTA. WLS has been
shown to be a robust estimation when assigned to subjects in
conjoint analysis for categorical variables (Sanchez and Gil,
1997; Næs et al., 2001; Wang et al., 2015; Kaijie and Min, 2016).
Using an Ordinary Least Squares model the assumption must
hold that the errors unobserved errors are homoscedastic and
normally distributed, the use of WLS attempts to address these
concerns in model specification bias. Due to the nature of data
collected being de-identified, we are not able to use geolocation
to determine the relation of farms in the watershed, specifically
in terms of elevation and hydrological relation (i.e., upstream vs.
downstream farms). The WLS model is as follows:

Rij = β0 + β1X1ij + β2X2ij + β3X3ij + β4X4ij + eij (1)

where Rij is the ranking given by individual i for each choice
j, the β0 is the intercept and ß1 is the coefficient for the incentive,
X1ij. Each individual ranking is weighted based on the criteria of
farm size andmanagement type. The three conservation practices
are coded as dummy variables: conservation tillage, X2ij, cover
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crop, X3ij, and conservation buffers, X4ij. To test the model
robustness, we include demographic and farm characteristics in
an expanded model. The partial worths represent the proportion
of the utility that an attribute or level of an attribute (ith)
contributes to the overall utility of a choice set. The partial worths
sum to a total of 1, meaning that, by a standard assumption
of ranked conjoint analysis, 100% of the utility of the choice
set modeled is represented. The advantage of calculating partial
worths is that the relative importance of an attribute can be
attributed to the price (in this case incentive payment). With
the partial worths, relative importance is calculated using the
summation function (Halbrendt et al., 1995).

RIith attribute = 100×
URi

∑n
j=1 URj

(2)

Relative importance (RI) presents a method of interpretation
of the WLS regression, showing the importance of an attribute
compared to that of the other attributes. The relative importance
of the ith attribute (RIithattribute) is calculated by first ascertaining
the range of the partial-worth coefficients of the ith attribute
(URi). This range is imputed by taking the difference between the
highest and lowest values of each attribute. The denominator of
the second term sums the ranges of all attributes.

The relative importance is a weighted percentage of the ith
attribute, thus it is multiplied by 100 (in the first term). The
relative importance of an attribute is interpreted as a linear
proportion. For example, when price has a relative importance
of 10%, and different attribute has a relative importance of 5%,
then price is two times more important in determining the
preference of the participant (i.e., consumer or farmer). The
relative importance of attributes due to their relationship with
partial worths sum to a total of 100%.

Using partial worths, the willingness to accept is estimated
using a Compensation Equivalence Index (CEI) (Payson, 1994).
Compensation Equivalence Index a form of the Expenditure
Equivalence index (EEI), is the summation of the change in the
ith attribute (dci) for the ith attribute coefficient (βi). Where y is
the estimated coefficient of price and P is the base price level. This
index indicates the proportional change of incentives needed to
for participants to be indifferent between given choice sets. For
example, an NMP with a CEI of 1.1 is interpreted as farmers are
willing to accept a payment 10% higher than the reference profile,
which is the lowest level of incentive.

CEI = 1−

∑k
i=1 βidci

yP
(3)

The CEI calculates the incentive (price) level that changes the
preference of the participants to be indifferent between the
baseline and the alternatives presented in the conjoint analysis.
Due to the lack of baseline included in the survey instrument,
the intercept (βo) used in this analysis as the baseline. This lack
of baseline may influence the estimation through truncation if
the most preferred option for a farmer is equivalent to $0 and

not implementing any NMP. Although this differs from reality,
the assumption of a baseline is needed to determine willingness
to accept. Due to the additive properties of the partial worths,
the WTA for the combination of the practices (Option 4–7) is
determine by adding WTAs together. These methods have been
used in previous literature investigating the WTA of NMPs by
farmers using the 2013 survey wave (Conner et al., 2016).

RESULTS

Descriptive Statistics
The three survey waves conducted in 2013, 2015, and 2020 are
presented in Table 3. Demographic characteristics of farmers
include age, years of farming, and education. In order to protect
the identity of farmers in a relatively small geographic area with
low populations, farmers’ year of birth is coded into decades of
birth. The 2013 sample average birth decade is 1940–1949 coded
as 3, where the 2015 mean birth year is 1950–1959. The 2020
survey samples younger farmers with the being the decade of
1970–1979. All survey waves (2013, 2015, 2020) present similar
means for the years of farming of 26.86, 30.87, 31.07 years,
respectively. Similar to age, education was coded not in years,
but by attainment. In this variable, attainment is coded ranging
from some high school (1) to graduate degree (6). The three
survey waves differ in the average educational attainment. The
2013 sample and the 2015 sample had average educations closer
to some college, while the 2020 sample had more educated
respondents. Total acres owned is a variable included in the
descriptive statistics and between the three waves, there are some
differences in the standard errors. The 2013, 2015, and 2020
waves means for total owned acres are 219.74, 195.07, 240.02
acres, and the standard deviations are 218.65, 276.45, 417.94
acres, respectively. The 2020 survey standard deviation of total
owned acres shows a much larger scale of farm production (in
terms of acreage) than the other two previous survey waves.
This may be due to the broadened geographic scope of the latter
survey into the Lake Champlain Plain. The means of leased land
is also reported in Table 3, with some consistency across the
survey waves. The 2015 wave skews toward more land leased
(87.54 acres), while the 2013 survey samples farmers that relied
on less leased land (67.09 acres). Similar to the age and education
variables, both net and gross income were collected in a manner
to protect the identities of farmers as well as obtain accurate
self-reporting. The descriptive statistics present a range of net
and gross incomes for each survey wave. Gross income means
range from $50,000 to $74,999 in the 2013 and 2015 waves,
while the mean moves into a higher range in 2020 at $75,000–
$99,999. Easements, which are legally protected for a particular
conservation use in perpetuity for example grasslands, is coded
as a dummy variable. For the three waves of 2013, 2015, and 2020
35, 16, and 23% of participants reported having easements on the
land they managed, respectively.

The farmers sampled in the three waves reported their
participation in federal conservation programs including the
Environmental Quality Incentive Program (EQIP), Conservation
Reserve Enhancement Program (CREP), Wildlife Incentives
Program (WIP), among others. Over the three survey waves,
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TABLE 3 | Descriptive statistics of survey waves.

Variable 2013 Survey 2015 Survey 2020 Survey

N Mean (SD) N Mean (SD) N Mean (SD)

Age (Decade) 77 3.73 (1.26) 109 4.06 (1.47) 67 6.18 (1.63)

Year farming 76 30.87 (14.56) 108 31.07 73 26.86 (48.54)

Education (by degree) 28 3.10 (1.91) 107 2.79 (1.50) 67 4.55 (1.28)

Total owned in acres 72 219.74 (218.65) 109 195.07 (276.45) 58 240.02 (417.94)

Total leased in acres 32 67.09 (62.03) 49 87.54 (148.21) 27 70.57 (111.15)

Net income ($) 62 1.16 (1.74) 100 3.83 (4.25) 66 3.17 (2.32)

Gross income ($) 74 3.42 (3.29) 105 3.23 (3.47) 66 4.56 (2.99)

Easement on land (dummy) 75 0.35 (0.58) 108 0.16 (0.436) 75 0.23 (0.42)

Enrolled in federal conservation program

(dummy)

19 0.244 56 0.50 15 0.195

TABLE 4 | Aggregate of the three survey waves.

Variable Coefficient t-score P-value

(Beta)

Constant 6.404 35.191 –

Incentive offered −0.007 −1.327 0.185

Conservation tillage −0.399* −1.703 0.089

Cover crop −0.889** −2.310 0.021

Buffer strips −1.375** −2.514 0.012

R2 0.301

Adjusted R2 0.297

Standard error of estimate 1.691

***p < 0.01; **p < 0.05; *p < 0.10.

TABLE 5 | Bootstrap aggregate of the three survey waves.

Variable Coefficient (Beta) P-value

Incentive offered −0.007 0.231

Conservation tillage −0.399 0.163

Cover crop** −0.889 0.030

Buffer strips** −1.375 0.022

***p < 0.01; **p < 0.05; *p < 0.10.

the percentage of farmers sampled that are enrolled in voluntary
federal conservation programs differs with 24.4% enrolled in
2013, 50% enrolled in 2015, and 19.5% enrolled in 2020. This
disparity may be due to selection bias in the recruitment process.
The tests conducted to control for this found no statistically
significant correlation between ranking and enrollment in federal
conservation programs.

Of the 78 participants in the first survey wave, 30 completed
the conjoint question fully. This entails ordering preferences
from 1 to 7 without ranking option as equal (e.g., multiple
options ranked third) and without options missing a ranking
(i.e., leaving options blank). For the second wave (N = 112)
and third wave (N = 76), we included 37 and 42 participants,
respectively, who completed the conjoint question on the survey

correctly as described above by ranking all options (1–7). The
observations with multiple options ranked the same, and the
observations missing ranking for some options were removed
from the conjoint analysis sample.

Conjoint Analysis
The results from the conjoint analysis show that the most
preferred of the available options presented is $205/acre for
cover crop, conservation tillage, and conservation buffers (see
Figure 1). With 55% ranking this option as first and 12%
ranking it as last. The least preferable option for participants
is the $30/acre for conservation tillage (66% ranked it last, 5%
ranked it first). The most and least preferred NMPs of each
survey wave individually and comparatively are reported in the
Supplementary Figures 1–3.

Using IBM SPSS 28, a weighted least square regression model
is conducted with the aggregated survey data from all three
waves (see Table 4). The three NMP practices were found to be
marginally significant with conservation tillage (p= 0.089), while
a higher threshold of significance was found with cover crop (p=
0.021) and buffer strips (p= 0.012). The incentive variables were
found to be not significant (p = 0.185). The variables included
in the model (incentive, conservation tillage, cover crop, and
conservation buffer) account for 30.1% of the variation in the
ranking of preference by the participating farmers. The model
was run using the SPSS bootstrap module (n= 1,000) at the 95th
percentile (see Table 5).

The expanded full model initially included the variables of
farmer education, years farming, climate risk perception, size of
farm, land tenure, and income (see Supplementary Material).
The constrictedmodel for our analysis included dummy variables
for incentive and the three conservation practices, as the control
variables did not substantially change the outcomes of interest
and the restricted model had the best fit, based on it having
the highest adjusted R-square. From this WLS regression, partial
worths of each attribute is for each set of choices are calculated by
multiplying the coefficient of that attributes by the value of each
base incentive levels of the three NMPs (e.g., $30 for conservation
tillage ∗-0.36).
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TABLE 6 | Three survey waves regression results.

Variable 2013 2015 2020

(p-value) (p-value) (p-value)

Constant 5.340 7.938 5.641

Incentive offered −0.010 (0.368) −0.013** (0.012) 0.002 (0.867)

Conservation tillage 0.537 (0.266) −0.796*** (0.001) −0.759* (0.097)

Cover crop −0.286 (0.718) −1.286*** (0.001) −0.987 (0.189)

Buffer strips −0.454 (0.687) −1.970*** (0.001) −1.506 (0.158)

R2 0.167 0.755 0.130

N 30 37 42

***p < 0.01; **p < 0.05; *p < 0.10.

TABLE 7 | Partial worths of aggregated survey waves.

Variable Partial worths

Incentive ($30) −0.021

Incentive ($90) −0.063

Incentive ($105) −0.735

Incentive ($120) −1.575

Incentive ($170) −1.19

Incentive ($175) −1.225

Incentive ($205) −1.435

Conservation tillage −0.399

Cover crop −0.889

Buffer strips −1.375

The WLS regression conducted on the individual survey
waves and found substantial differences between the 2013
wave compared to the 2015 and 2020 waves (Table 6). The
survey waves showed the high significance of the NMPs (p
< 0.001) and marginal significance of the incentive variable
(p < 0.1) in 2015. While these variables 2013 present no
significance. The survey wave of 2020 presents conservation
tillage as a marginally significant variable (p = 0.097). From the
regression coefficients, the partial worths are calculated (Table 7).
These partial worths were calculated for the aggregate of all
three survey waves (Table 7) as well as for each survey wave
(Supplementary Material) (Tables 8–13). For the purposes of
our analysis, we assume farmers receive $6.404/acre regardless of
whether any of the NMPs were implemented in the field.

In interpreting the coefficients, positive coefficients suggest
a less preferred management practice, while the negative
coefficients suggest a more preferred practice. This is due to the
larger incentives being ranked higher in the preference order. In
terms of the utility regarding the ranking of practices, a positive
coefficient indicates less utility than the negative coefficients.
When controlling for each wave by adding year fixed effects,
we found no significant difference in the regression results
(see Supplementary Material) (Table 14). We controlled for net
income and education (Supplementary Material) (Table 15),
with minimal change to the regression coefficients; the
significance of the NMPs increased when adding these controls.

TABLE 8 | Aggregate regression results with wave dummy variable.

Variable Coefficient (Beta) t p-value

Constant 6.392 30.508 <0.001

Incentive offered −0.007 −1.326 0.185

Conservation tillage* −0.399 −1.702 0.089

Cover crop** −0.889 −2.308 0.021

Buffer strips** −1.375 −2.512 0.012

Wave 2013 0.016 0.112 0.911

R2 0.302

Adjusted R2 0.296

Standard error of estimate 1.693

**p < 0.05; *p < 0.10.

TABLE 9 | Aggregate regression results with net income and education variables.

Variable Coefficient (Beta) t–score p–value

Constant 6.695 22.526 <0.001

Incentive offered −0.006 −1.003 0.316

Conservation tillage** −0.673 −2.552 0.011

Cover crop** −1.092 −2.522 0.012

Buffer strips*** −1.631 −2.651 0.008

Net income 0.00 0.00 1.00

Education 0.00 0.00 1.00

R2 0.355

Adjusted R2 0.296

Standard error of estimate 1.693

***p < 0.01; **p < 0.05; *p < 0.10.

Farmer socio-demographic characteristics included initially in
the model are income, experience, and education were shown
to not improve the estimation of the WLS model. Including
farm characteristics of farm size, land tenure (proportion acres
owned/leased), and the presence of an easement on the farm, did
not improve the estimation.

The relative importance when investigating the aggregate of
all survey waves shows that incentives and buffers are of equal
influence in determining the most preferable NMP (Figure 2).
Cover crops at 22% relative importance, account for over twice
as much compared to tillage (10%) in this determination.

Figure 3 shows a trend over the course of time revealing
more nuanced preferences than the aggregate. In 2013, incentives
accounted for 58%, a stark majority compared to the 18% of
tillage, 9% cover crop, and 15% buffer. By 2015, the variables
begin to equalize more, with incentives still being the majority
influencer at 36%, albeit by a small margin compared to buffer
crops (31%). The relative importance of the other two NMPs of
cover crop and tillage are 20 and 13%, respectively. The 2020
survey wave shows dramatically different motivations regarding
the ranking of the preferences. Conservation buffers with a value
of 41% is the most important attribute in determining preference,
while tillage and cover crops are calculated to 22 and 27%,
respectively. Incentives, with a value of 10%, are over four times
less influential than conservation buffers.
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TABLE 10 | 2013 survey wave regression results.

Variable Coefficient t–score p–value

(Beta)

Constant 5.340 14.278 <0.001

Incentive offered −0.010 −0.903 0.368

Conservation tillage 0.537 1.116 0.266

Cover crop −0.286 −0.362 0.718

Buffer strips −0.454 −0.404 0.687

R2 0.167

Adjusted R2 0.149

Standard error of estimate 1.866

TABLE 11 | Part–worths of 2013 survey waves.

Variable Part–Worths

Incentive ($30) −0.3

Incentive ($90) −0.9

Incentive ($105) −1.05

Incentive ($120) −1.2

Incentive ($170) −1.7

Incentive ($175) −1.75

Incentive ($205) −2.05

Conservation tillage 0.537

Cover crop −0.286

Buffer strips −0.454

TABLE 12 | 2015 survey wave regression results.

Variable Coefficient t–score p–value

(Beta)

Constant 7.938 45.011 <0.001

Incentive offered −0.013** −2.521 0.012

Conservation tillage −0.796*** −3.505 0.001

Cover crop −1.286*** −3.400 0.001

Buffer strips −1.970*** −3.719 0.001

R2 0.755

Adjusted R2 0.751

Standard error of estimate 0.997

***Significance of p-value of less than 0.01, **Significance of p-value of less than 0.05,

*Significance less than 0.10.

The relative importance of the individual survey waves
presented in Figure 3. The willingness to accept payment is
calculated using the Compensation Equivalence Index (CEI). A
base price is assumed as the intercept of themodel (6.404) and the
parameter of price is for the model (−0.007). This makes up the
denominator of the CEI equation. The change of the coefficients
of the ith attribute is the absolute value of the ith coefficient
with the base being zero. For example, to calculate the WTA
for the least preferred option, $30/acre for conservation tillage,
we take the coefficient for the price (−0.021) and simply add
the coefficient for the attribute of tillage (−0.399). This is the
numerator of the CEI equation.

TABLE 13 | Part–worths of 2015 survey waves.

Variable Part–worths

Incentive ($30) −0.39

Incentive ($90) −1.17

Incentive ($105) −1.365

Incentive ($120) −1.56

Incentive ($170) −2.21

Incentive ($175) −2.275

Incentive ($205) −2.665

Conservation tillage −0.796

Cover crop −1.286

Buffer strips −1.970

TABLE 14 | 2020 survey wave regression results.

Variable Coefficient (Beta) t–score p–value

Constant 5.641 15.941 <0.001

Incentive offered 0.002 0.167 0.867

Conservation tillage −0.759 −1.666 0.097

Cover crop −0.987 −1.319 0.189

Buffer strips −1.506 −1.417 0.158

R2 0.130

Adjusted R2 0.114

Standard error of estimate 1.923

TABLE 15 | Partial–worths of 2020 survey waves.

Variable Part–worths

Incentive ($30) 0.06

Incentive ($90) 0.18

Incentive ($105) 0.21

Incentive ($120) 0.24

Incentive ($170) 0.34

Incentive ($175) 0.35

Incentive ($205) 0.41

Conservation tillage −0.759

Cover crop −0.987

Buffer strips −1.506

The minimum WTA is determined for the aggregate and
compared to the findings of Conner et al. (2016), which utilize the
2013 survey data. Conner et al. (2016) employ a weighted least
square estimator based on the ranking order. The WLS used in
our study assigns weights based on farm size (a proxy for income)
and management type (specifically organic and conventional
practices). Our analysis shows that farmers’ willingness to accept
for all NMPs is higher than the offered payments in the conjoint
question (see Table 1). The difference between the offered price
and the WTA calculated is substantial. The difference between
the conjoint options and the WTA for conservation tillage is
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TABLE 16 | Comparison of aggregate WTA to 2021 EQIP payments for

implementation of nutrient management practices.

Nutrient management practices ($/Acre)

Conservation tillage∧ $66.40

Reduced till* $10.79

No till/strip till* $12.15

Cover cropping∧ $142.40

Basic (organic and non-organic)* $38.8

Multiple species* $47.45

Basic organic* $61.85

One acre or less* $175.62

Conservation buffer strips∧ $307.83

Contour buffer introduced species, foregone

income (organic and non-organic)*

$270.21

Contour buffer wildlife/pollinator, foregone

income*

$285.96

Contour buffer introduced species, high value

cropland*

$985.59

∧Conjoint analysis WTA.

*Calculated with 75% cost-share EQIP vermont payment schedule 2021.

Bold text indicates the WTA.

FIGURE 2 | Aggregate relative importance of attributes.

$36.5, cover cropping is $52.5, and $202.83 for conservation
buffers. Farmers’ willingness to accept payment for buffer strips is
almost three times higher (2.93) than that offered in the conjoint
question, whereas conservation tillage WTA is over twice as high
for farmers than offered in the conjoint question. The willingness
to accept payment for cover cropping is over 1.5 times higher
than the amount offered per acre in the conjoint question. As one
moves down the table into the combination of NMPs, due to the
additive nature of the calculation, WTA ranges between 74 and
150% higher than that which is offered in the survey. Our findings
show that buffers are substantially higher (45%) than found by
Conner et al. (2016), while conservation tillage is lower (−23%),

and the cover crop variable is higher (12%). Conner et al. (2016),
use a different weighted least square (WLS) model based on
assigning greater weights to the higher ranked options than the
lower ranks. Our approach of weighting the sample population
based on farm size and production type opposed to weighting the
rank offers more insightful inferences at the watershed scale.

DISCUSSION

Encouraging NMPs among farmers is a key strategy of the NRCS
for sustainable watershed management under the pressures of
climate change. The incentive structures are determined at the
state-level. In the case of Vermont, NRCS will cover up to
75% of costs of implementation. With this structure, farmers
are expected to pay upfront costs and 25% is not recouped.
In our analysis, we include the cost-share amounts at 75% for
conservation practices for purposes of comparison (Table 16).
The incentives offered to farmers by the NRCS Environmental
Quality Incentive Program (EQIP) differ by type of agriculture
practice and management type (see Table 16). All practices
documented in the NRCS Payment Schedule have a separate
category with a price premium for historically underrepresented
groups but due to the number of options, all the payment levels
are not reported for comparison. Due to the paucity of publicly
available data on the NRCS schedule of payments, only 2017
and 2021 payment data are presented in Table 16. To assess
if any incentive gaps exist, we compared the WTA calculated
with the level of payments offered from the array of options
through EQIP.

EQIP and NMPs
In the EQIP Schedule of Payment 2021, conservation tillage
is not listed. In lieu of this, we identified Residue and Tillage
Management, Reduced Till ($10.79/acre) as closely related.
We also categorized No-till practices as a conservation tillage
practice. The EQIP payments for No-till ranges from $12.15
to $14.58/acre.

Cover crops have a substantially larger number of options
(30) in the 2021 Payment Schedule. For purposes of comparison,
three incentive options are selected: Basic (organic and non-
organic) Cover Crop at $38.8/acre, Multiple Species (organic
and non-organic) cover crop at $47.45/acre, and Basic (Organic)
cover crop at $61.85/acre. Those farming on one acre or less are
compensated more ($175.62).

As with cover cropping, conservation buffer strips not
explicitly named in the EQIP document. We have selected
multiple practices that are closely related to conservation
buffer strips for purposes of comparison. Farmers that adopt
contour buffer strips that are titled Introduced Species, Foregone
Income (Organic and Non-Organic) are compensated at
$270.21/acre whereas it is $285.96/acre for contour buffers that
are Wildlife/Pollinator, Foregone Income (Organic and Non-
Organic). The Foregone Income component of this combination
is substantially lower compared to Introduced Species, High-
Value Cropland where the compensation is $985.59/acre. The
menu of EQIP payments is detailed and diverse in terms of
the range of payment, characteristics of a NMP, and farm
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FIGURE 3 | Relative importance by the three survey waves in determining WTA.

management types. We attempt to represent heterogeneity in our
assessment the gaps between WTA and EQIP payments.

The results of the analysis show that willingness to accept
payment to implement the three NMPs is much higher than the
incentives offered by NRCS EQIP (Figure 3). When accounting
for the cost-sharing criteria of the program of payment of up
to 75%, the difference between willingness to accept and the
willingness to pay by NRCS is notably large. The incentive gaps
between WTA and the cheapest of NMPs offered by EQIP are
$55.61 for tillage, $103.60 for cover crop and $37.62 for buffers
(Figure 3). This suggests that the incentives offered by NRCS are
lower than the WTA. Specifically, six times less for conservation
tillage, 3.6 times less for cover crop and 1.13 less for buffers.

Comparing the NRCS Schedule of Payment published in
2017–2021, there are substantial changes in incentive levels
offered. The incentive for cover crops (Basic) decreased by
roughly 17%, while Residue and Tillage Management, Reduced
Till payments decreased 10% and buffer strips that are Introduced
Species, Foregone Income (Organic andNon-Organic) decreased
22% (Natural Resources Conservation Service, 2017, 2021). These
decreases in payments coupled with rising rates of inflation at
5.5% based on the Consumer Price Index between 2017 and 2020,
illuminates possible financial barriers to adoption (US Bureau of
Labor Statistics, 2022).

Untangling Motivation
In our model, incentives were shown to be less significant
in the model specification and partial worths less influential.
These findings offer insight into aspects motivating farmers to
adopt NMPs aside from incentives. The relative importance
calculations (Figure 4), suggest a trend toward the NMP
practices themselves influencing farmer preference thus their

characteristics acting as a motivation for implementation. In an
earlier study, using a different weight least square model found
the coefficients of incentives to be significant, and the coefficients
for NMPs suggest that cover crops were the most preferable
(Conner et al., 2016). In our analysis, conservation buffers
presented the most relative importance, while all three NMPs
were significant. This suggests incentives were not as important
as a determinant of farmer preferences and further research is
needed to understand the role of payments vs. practices in terms
of motivation.

Identifying the particular reasons for the change in observed
stated preference is challenging. Individual motivations and
macro-factors (social, policies, and economics) may have
influenced farmers’ choice sets and willingness-to-accept. Policies
including Total Maximum Daily Load as well as federal and the
State of Vermont-led programs may have influenced perceptions
that more generous than current levels of incentives were
to be offered in the near future. In 2015, the TMDL was
revised. The public discourse around this initiative may have
influenced the ranking of the participants who were hopeful in
the opportunities of incentive schemes. Increasing awareness of
NMPs among farmers and the public may contribute to these
trends as well (Gedikoglu and McCann, 2012; Gao and Arbuckle,
2022). Previous literature has shown that farmers participating
in EQIP are motivated not by the incentives themselves but by
the environmental impact of the practices (Baumgart-Getz et al.,
2012; Reimer et al., 2012). Incentives can address the unforeseen
costs, associated risk and uncertainty of implementation on
productivity and profitability (Reimer and Prokopy, 2014; Palm-
Forster et al., 2017; Piñeiro et al., 2020). Although risk aversion
was found to be not significant for no-till practices and significant
for cover cropping in Tennessee (Campbell et al., 2021), this may
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FIGURE 4 | Quantifying incentive gap comparing WTA and EQIP payments

with 75% cost-share. Incentive gaps of calculated WTA and cheapest EQIP

NMP option.

play a role in determining farmers’ preferences of NMPs and was
not fully captured in our analysis.

Farmer socio-demographic characteristics included initially
in the model are income, experience, and education are
shown to not improve the estimation of the WLS model.
Similarly, including farm characteristics of farm size, land
tenure (proportion acres owned/leased), and the presence of an
easement on the farm showed to not improve the estimation.
When perceptions of climate change and the effect of extreme
weather were included the R-square was not higher nor p-
value lower. These aspects relating to farm characteristics as
well as socio-demographic and cultural identities may influence
decision-making through the mediating factors of beliefs which
in turn drive the implementation of NMPs (Januchowski-Hartley
et al., 2012; Ulrich-Schad et al., 2016; Sok et al., 2021). To our
knowledge there is no research investigating these intersections
around climate change, beliefs and NMPs. Understanding some
of the farmer motivations whether financial or socio-cultural
relating NMP adoption and WTA are key to improving the
plethora of benefits including productive agriculture, clean
water, vibrant, and connected ecosystems which extend beyond
the watershed.

Broad Implications and Policy Relevance
The Missisquoi and Lamoille watersheds are emblematic of
the challenges for sustainable management of watersheds that
drain agricultural landscapes. As reliance on NMPs to address

water quality increase in the face of climatic extremes of
temperature and precipitation, incentive structures and policies
need to be designed so they are compatible with both farmers’
and society’s needs. The current mandates of the EPA under
the 2016 TMDL for Lake Champlain, have catalyzed the
political pressure on farmers to reduce their nutrient budgets
around phosphorus. The current policies of the NRCS that
are purported to usher in the transition toward sustainable
agriculture may be insufficient. Increasing direct incentive
payments is one approach to increase adoption of NMPs,
while alternatives like tax credits and specialized insurance
have also been shown to increase willingness (Palm-Forster
et al., 2017). These alternatives carry their own challenges
of implementation; particularly political barriers, land tenure,
and transactions costs for farmers and institutions (Palm-
Forster et al., 2016; Duke et al., 2020; Del Rossi et al.,
2021).

Incentives are fundamentally connected to the distribution
and access to information among and between actors
in the systems (farmers, regulators, and consumers) as
well as the heterogeneity of land (Fraser, 2009; Denny
et al., 2019). As farmers are motivated by the nature of
particular NMPs in producing benefits both to the public
in the form of ecosystem services as well private in the
form of economic efficiencies of increased productivity,
information regarding NMP performance is fundamental
to their decision-making (Savage and Ribaudo, 2016).
Not only is the access to knowledge integral, but the
transparency of their actions is becoming increasingly
more granular and public. The technological innovation
(e.g., AI and satellite imagery) in the private and public
sectors provides opportunities to address some of the
historically challenging aspects of governing non-point source
water pollution.

The information age may offer opportunities to shift
incentives away from the poor performance of existing programs
and enable farmers to be flexible in nutrient management
practices in achieving pollution goals while being appropriately
compensated for the costs (Ahnström et al., 2009). There is a need
for further research into incorporating reflexivity of individual
farmers’ behavior and knowledge around the performance of
practices and the institutional mechanisms encouraging their
adoption (Yoder et al., 2019). A greater understanding of
how knowledge, both indigenous and technical as well as
individual and aggregated data could be paired with incentives
offers avenue of new research. The incorporation of site-
specific knowledge could improve adoption and increase the
participation in federal programs or the emerging markets of
ecosystem services. Our findings quantifying WTA at 1.13–6
times higher than what is offered is integral for crafting better
policies necessary to manage water quality. These findings are
applicable for design of policies at the local level like the State
of VermontWorking Group on Payment for Ecosystem Services,
and the Pay-for-Phosphorus program, as well as programs
targeting transboundary watersheds under the stressors of
climate change.
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CONCLUSION

In our analysis, we investigated the average willingness to accept
of farmers in the Lake Champlain Basin of Vermont using
conjoint analysis. We found farmer’s willingness to accept for
all three different nutrient management practices (conservation
tillage, cover crop, and buffer strips) to be (1.13–6 times) higher
than existing federal cost-sharing program (Environmental
Quality Incentive Program). The relative importance of the
incentives diminishing while the importance of the NMPs
themselves increased over the three survey waves. From these
findings, it is evident that farmers’ willingness to accept is
higher than what is currently offered. Thus, farmers are saddled
with deciding to either bear the costs of providing clean water
(subsidizing public services) or maximizing their private gain
through production. These localized decisions are vital promote
sustainable watershed management and further research is
needed in quantifying incentive gaps in implementing nutrient
management practices across the diversity of geographies, scales
and farming systems. From these findings, policies designed to
manage water quality sustainably will have to close the incentive
gap to meet the rising social, ecological, and global pressures.

Agriculture is at a pivotal moment in history as the practice
has led to drastic changes in our climate, ecological systems,
and human wellbeing at the cost of planetary sustainability.
With this weight of the past, comes the opportunity of the
future. Current incentives to transition agriculture toward greater
sustainability have yet to be designed to best meet farmers and
society’s collective needs in the present and for what is to come.
Although incentives are one aspect of motivating sustainable
agriculture and provisioning clean water, there are a suite of
factors that may be more potent if they were to be paired with
monetary compensation.
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