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Clean, fresh, and safe drinking water is essential to human health and well-being.

Occasionally, biological contaminants taint surface water quality used for human

consumption and recreation. Microcystins (MCs) and nodularins (NODs) are toxic

monocyclic peptides produced by cyanobacteria in fresh and brackish water. These

secondary metabolites can reach hazardous concentrations, impairing surface drinking

water supplies and thereby increasing the risk of exposure to consumers. Inconsistent

screening of MCs and NODs is not uncommon in drinking water systems and no

provisional guidance value has been established in Florida to protect community and

public health. We performed a case study of two Florida lakes supplying drinking

water to adjacent communities for the purpose of monitoring MCs and NODs over the

potential peak algae bloom season (June-August). An indirect competitive enzyme-linked

immunosorbent assay (icELISA) was employed to analyze concentrations of total MCs

and NODs in environmental water samples from Lake Manatee and Lake Washington.

Toxin concentrations were similar in each lake, averaging 0.19 µg/L. The highest toxin

concentration (0.46 µg/L) was reported in Lake Manatee at Site 15, a location where

other toxin concentrations demonstrated statistical significance with toxins detected at

Sites 6 (p = 0.014) and 8 (p = 0.011). Inferential analyses from the Kruskal-Wallis H Test

revealed a statistically significance difference in toxin concentrations by sampling month

within the two Floridian drinking water systems (p < 0.001). Furthermore, phosphate

and nitrite concentrations strongly correlated with total MCs and NODs in each lake (p

< 0.01). Although results indicate a low probable health risk from cyanotoxins, more

research is needed to understand the intrinsic nature of MCs and NODs by examining

their prevalence, distribution, and dynamics in surface drinking water supplies serving

nearby communities.

Keywords: drinking water, enzyme-linked immunosorbent assay, microcystins, nodularins, cyanotoxin

INTRODUCTION

Potable water is a top priority in community public health. Drinking water quality contributes
to daily activities (bathing, cleaning, cooking) and impacts overall health and longevity. Natural
processes and human actions can alter water composition including chemical, microbiological,
and physical characteristics. Of these water quality parameters, microorganisms such as bacteria
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are considered of high importance as they commonly reside in
drinking water (Levallois and Villanueva, 2019). Lakes supplying
drinking water can become contaminated by cyanobacteria and
their associated toxins (cyanotoxins,) increasing health risks
among consumers. Water pollution from cyanobacteria has
shown to cause human gastrointestinal symptoms and illness
(Kubickova et al., 2019). Ensuring safe drinking water quality free
of cyanobacterial products may protect and improve community
public health.

Cyanobacteria are photosynthetic microorganisms capable of
proliferating as harmful algal blooms (HABs) in eutrophic waters
(Kimambo et al., 2019). In past decades, the frequency, intensity,
and location of HABs have increased worldwide (Anderson,
2014; Backer et al., 2015). HAB occurrences are widespread in
freshwater ecosystems across the United States, including the
Great Lakes, small inland lakes, and rivers (Schmale et al., 2019).
Such phenomena can adversely impact agriculture, drinking
water, fisheries, food and real estate industries, recreation,
tourism, and water quality in general (Cheung et al., 2013;
Watson et al., 2015; Carmichael and Boyer, 2016). When
HAB organisms deteriorate, algal cells excrete cyanotoxins
into surface waters at environmentally relevant concentrations,
posing ecological and human health risks (Codd et al., 2005).

Microcystins (MCs) are heterocyclic peptides produced by
cyanobacteria (Turner et al., 2018). Several toxic cyanobacterial
species can release MCs into the aquatic environment including
Microcystis, Dolichospermum, Hapalosiphon, Nostoc, Oscillatoria,
and Planktothrix (Szlag et al., 2015). The prevalence of MCs
in drinking water is considered a serious health threat (Sakai
et al., 2013). Most human exposure to MCs occurs via
accidental ingestion of contaminated drinking water (Funari and
Testai, 2008). Other relevant exposure pathways include aerosol
inhalation, consumption of contaminated aquatic foods, and
dermal contact (Drobac et al., 2013). The most toxic MC variant
is MC-LR (Lone et al., 2015) and contains the amino acids leucine
(L) at position 2 and arginine (R) at position 4 in the cyclic
heptapeptide (Carmichael, 1992). The recommended guidance
value of acute and chronic exposure to MC-LR in drinking water
is 1.0 and 12.0 µg/L, respectively (WHO, 2020).

Nodularins (NODs) constitute other cyanotoxins with similar
chemical and toxicological properties as MCs. The NODs are
primarily synthesized by Nodularia spumigena in brackish
waters and consist of a cyclic pentapeptide structure (Ploug,
2008). NODs depend on an uptake mechanism analogous
to MCs, where organic anion transporting peptides actively
transport biotoxins into hepatocytes, subsequently inactivating
catalytic subunits of serine and threonine phosphatases (Buratti
et al., 2017). Consequently, hyperphosphorylation occurs
within cells and causes severe cytoskeletal deformities and
disturbances in cell cycle control and metabolism (Campos and
Vasconcelos, 2010). However, NODs do not covalently bind
phosphatases in the same degree as MCs due to absence of a
methyldehydroalanine residue (Martins and Vasconcelos, 2009).
NODs have been detected in liver and muscle tissue of mullet
and dietary transfer of these hepatotoxins may present human
health risks (Stewart et al., 2012).

MC poisonings in livestock, pets, and wildlife are well-
documented (Mez et al., 1997; Stewart et al., 2006; Backer et al.,
2013; Wood, 2016). Domestic animals, wildlife, and human
fatalities have resulted from MC intoxications (Lawton and
Robertson, 1999). Upon intake, MCs can inactivate serine and
threonine phosphatases in hepatocytes (Eriksson et al., 1990).
Past animal toxicology experiments revealed abnormal liver
changes after oral MC-LR exposure, including altered serum
enzyme activities and hepatic injury (Fawell et al., 1999; Heinze,
1999; Sedan et al., 2015). Cyanobacteria-impacted drinking water
has shown to cause potential acute health effects, including lower
respiratory and gastrointestinal symptoms (Lévesque et al., 2014).
Epidemiological scholars have linked chronic MC exposure
to liver cancers or diseases on a global scale (Zhang et al.,
2015; Zheng et al., 2017). The most renowned human outbreak
attributed to MC pollution occurred in a Brazilian hemodialysis
center, killing 76 patients (Azevedo et al., 2002). The aforesaid
studies demonstrate the probable health effects of MC exposure
in proximity to contaminated water reservoirs.

Biochemical assays and chemical methods are conventional
methods of MC detection (Shamsollahi et al., 2014; Massey
et al., 2020). Protein phosphatase inhibition assay (PPIA) is a
biochemical assay based on phosphatase 1 (PP1) or 2 (PP2)
inhibition. PPIA is efficient at conveniently testing multiple
samples without extra analyses. The biochemical assay is simple,
feasible, and provides toxicological information on animal
and human health. Major limitations of PPIA include false
positive results, lack of specificity, and matrix effects (Robillot
and Hennion, 2004; Massey et al., 2020). High-performance
liquid chromatography (HPLC) and liquid chromatography-
mass spectrometry (LC-MS) can separate and identify MCs with
high specificity and sensitivity. MC analysis via HPLC involves
stationary and mobile phases of acetonitrile or methanol. HPLC
can confirm MC variants in an unknown sample and generate
qualitative and quantitative data on toxins. The method is
merited for its accurate detection of intracellular and extracellular
MCs. Yet, HPLC demands financial cost, technical expertise, and
extensive sample cleanup (Massey et al., 2020). LC-MS is an
intricate analytic technique used to detect MC variants in water.
MC structure has been detected via LC-MS in other matrices
such as blue-green algae dietary supplements and vegetables
(Heussner et al., 2012; Parker et al., 2015; Qian et al., 2017). LC-
MS detectors are limited by equipment cost, sample processing
time, and technical operation (Ortiz et al., 2017; Foss et al., 2019).

Water treatment facilities are recommended to use an
enzyme-linked immunosorbent assay (ELISA) to quantify MCs
in raw and treated waters (USEPA, 2015). ELISA can track
relative changes in MC concentrations and serve as an indication
to control algae blooms (Guo et al., 2005). The immunoassay
is valued for producing reliable, repeatable, and variable MC
concentration results (Yu et al., 2002; Akter et al., 2017). An
indirect competitive ELISA (icELISA) is widely used to screen
cyanotoxins in the environment (McElhiney and Lawton, 2005).
icELISA is an extension of direct ELISA wherein a secondary
antibody conjugate binds a primary antibody to detect MCs.
While icELISA cannot differentiateMC variants, it recognizes the
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Adda (3S-amino-9S-methoxy-2S,6,8S-trimethyl-10-phenyldeca-
4E,6E-dienoic acid) moiety on MC for quantitation (Kleintech
et al., 2018; Botha et al., 2019). The related NODs have this
same feature, which explains why they are grouped together in
toxin analyses. icELISA can analyze MC concentrations below
World Health Organization’s (WHO) drinking water guidance
value of 1.0 µg/L (Baralla et al., 2017; Botha et al., 2019;
Xu et al., 2020). The ease of operation, inexpensive cost, fast
screening capabilities, and sensitivity of icELISA may represent
a critical step in evaluating drinking water quality for the public
health community.

Toxic HABs constitute a significant problem to surface
drinking water supplies and public health (Burns, 2008).
Eutrophication driven by nutrient loading of phosphorous
and nitrogen can stimulate algae proliferation, resulting in
water blooms (Heisler et al., 2008; Yang et al., 2008). Former
studies examined influences of anthropogenic nutrient loads
of phosphorus and nitrogen on cyanobacterial algal blooms
(Smith et al., 2006; Dodds et al., 2009; Paerl et al., 2011; O’Neil
et al., 2012). An empirical model also supported phosphorus
and nitrogen as critical drivers of cyanobacterial abundance and
dominance in lakes (McCarthy et al., 2009). Limited knowledge,
however, exists on nitrites with algal bloom development and
cyanotoxin production in surface water (Monchamp et al.,
2014; Hampel et al., 2020). Nitrites represent key intermediates
within the nitrogen cycle as denitrifying bacteria convert
nitrate ions to nitrites in water. Nitrites are formed prior to
underlying processes including atmospheric evaporation, plant
uptake, soil immobilization, and waterway contamination (Xia
et al., 2018). Therefore, nitrite analysis might become more
common in water quality research since they can contaminate
drinking water.

Lake Manatee and Lake Washington are two shallow lakes
in Florida and supply drinking water to nearby communities.
Both lakes are surrounded by agricultural lands and housing
developments and have previously experienced cyanobacterial
bloom events. Unfortunately, blooms within these drinking
water systems are rarely sighted or reported to local public
health authorities. However, few anecdotal reports recount blue-
green algae or microcystin toxins in Lake Manatee and Lake
Washington, respectively. In 2017, blue-green algae were the
culprit of unearthly drinking water in Manatee County, Florida.
Despite numerous customer complaints, water treatment officials
proclaimed the drinking water was safe for consumption. Two
years later, the adjacent Manatee River was endured algal
blooms scattered along riverbanks as blue and green hues.
No reports indicated whether algal blooms diffused into Lake
Manatee. Just over two decades ago, surface water in Lake
Washington contained MC levels six times acceptable drinking
water standards.

Based on limited and sporadic reports of cyanobacterial
blooms in the lakes, it seems plausible algal blooms in
Lake Manatee and Lake Washington can release toxins into
the aquatic environment at variable concentrations. To our
knowledge, no case study has been conducted to monitor the
occurrence of total MCs and NODs in Lake Manatee and

Lake Washington over the potential peak algae bloom season.
We employed an icELISA to analyze concentrations of MCs
and NODs in environmental water samples from the drinking
water systems. Due to eutrophication and cyanobacterial bloom
formation in the lakes, nitrites may persist at detectable levels.
Cyanobacteria flourish with adequate sunlight and possibly
impede the nitrifying process, thereby increasing denitrification
in water (Hayden et al., 2014). One study in South Florida
revealed a decrease in nitrogen efficiency as cyanobacteria and
nitrifiers competed for ammonium and urea (Hampel et al.,
2019). Such competition may improve denitrification in the
aquatic environment and facilitate removal of nitrogen back
into the atmosphere. Additionally, nitrite quantification in
water reservoirs with cyanobacterial bloom development remains
understudied. Thus, we also measured the presence of nitrites in
addition to phosphates in Lake Manatee and Lake Washington
to assess their relationship with total MCs and NODs during the
sampling period.

MATERIALS AND METHODS

Geomorphological Features of Central
Florida Lakes
The Florida penisula is characterized by distinct geological
and morpholophical features, which provide context into the
formation of Central Florida lakes. Most of Florida is flat and
lacks prominent features seen in other parts of the United States.
In Central Florida, physical features are quite varied and include
coastal marshes, highlands, lowlands, ridges, and upland plains.
Central Florida is comprised of twomajor physiographic regions:
(1) the Central Highlands and (2) the Coastal Lowlands. The
Central Highlands sits approximately 40 to 325 feet above sea
level whereas the Coastal Lowlands form the eastern coastline
of Florida and lie below 100 feet. Central Florida is mainly
composed of limestone and domolite, which are readily dissolved
by rainwater seeping into the subsurface environment. This
solution process is considered the most common origin of
Floridian lakes (Schiffer, 1998).

Study Locations
Lake Washington, located in Brevard County, Florida, (28.1468◦

N, −80.7464◦ W, Figure 1) has a surface area of 17.65 km2

and a surface elevation of 4.9m. Lake Washington, part of the
St. John’s River, is the most critical drinking water source in
Melbourne. The Melbourne Water Treatment Plant is located
on Lake Washington’s eastern side (28.1468 ◦ N, −80.7330 ◦ W,
Figure 1, left).

Lake Manatee, located in Manatee County, Florida (27.4947◦

N, −82.3479◦ W, Figure 1), has a surface area of 4.75 km2

and a maximum depth of 3.4m. Lake Manatee is an artificial
reservoir and a major water source for Bradenton and nearby
municipalities in Manatee County. The Lake Manatee Water
Treatment Plant is located on the western side of Lake Manatee
(27.4896◦ N,−82.3579◦ W, Figure 1, right).

Frontiers in Water | www.frontiersin.org 3 July 2022 | Volume 4 | Article 899572

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Melaram and Lopez-Dueñas Detection and Occurrence of Microcystins and Nodularins

FIGURE 1 | Lake Washington (left) and Lake Manatee (right). Site numbers of environmental samples in Lake Washington and Lake Manatee: = Sites 1–5; =

6–10; = Sites 11–15; = Water treatment plants. Distance of scale bars are expressed in miles.

Sample Collection
A total of 60 environmental water samples were collected across
15 sites in Lake Manatee and Lake Washington between June
22 and August 31, 2019, to assess the occurrence of total MCs
and NODs. During every sampling occasion, which occurred
monthly, four samples were gathered from each of five sites.
Site clusters appeared on days when adverse weather conditions
persisted (Lake Washington) or restricted areas prevented usage
of water vehicles (Lake Manatee). Sampling occurred nearshore
or closest to water treatment plants on such occasions. Time of
collection and field observations were recorded at every sampling
site for all sampling occasions (Supplementary Table 1). Pre-
rinsed 4 fl oz (118.294mL) glass amber bottles stored lake water
for analysis. Pre-rinsed bottles involved submergence within
the upper 12 inches of the water column. Contents emptied
downstream and re-immersed 6–12 inches below the surface
water to obtain a sample volume of 100mL. Samples were stored
in labeled bags and transported on ice to Eastern Florida State
College (Melbourne, FL). Samples were refrigerated at 4◦C up to
5 days.

Sample Extraction
After each sampling occasion, 1mL aliquots from 20
environmental water samples were prepared in glass vials
to extract total MCs and NODs. The Abraxis QuikLyse System
TM rapidly lysed cyanobacterial cells in samples for enumeration
of dissolved, or free, plus bound MCs before ELISA testing. A
volume of 100 µL QuikLyse TM Reagent A was added to samples,
capped, inverted for 2min, and incubated at room temperature
for 8min. The same process was repeated for QuikLyse TM

Reagent B, except a volume of 10 µL was dispensed into samples.

Microcystin and Nodularin Analysis
The congener-independent detection of intracellular and
extracellular MCs and NODs was determined by Abraxis

Microcystins/Nodularins (ADDA) ELISA kit (Microtiter Plate)
PN 520011 (Warminster, PA). The limit of detection for the
assay, based on MC-LR, was 0.10 µg/L. Standards (0, 0.15,
0.40, 1.0, 2.0, 5.0 µg/L), quality control (0.75 ± 0.185 µg/L),
and samples in volumes of 50 µL were pipetted in duplicate
into a 96-well plate (Hercules, CA). Antibody solution (50
µL) was added to individual wells, covered, and mixed for 30 s
on lab bench. The ELISA plate incubated for 90min at room
temperature and washed three times with 250 µL wash buffer.
Enzyme conjugate solution (100 µL) was added to individual
wells, covered, and mixed for 30 s on lab bench. The ELISA plate
incubated for another 30min at room temperature and washed
three more times with wash buffer. Substrate solution (100 µL)
was added to individual wells, covered, and mixed for 30 s on lab
bench. The final incubation time ran for 20min in the dark. The
reaction was halted by 50 µL of stop solution. A Bio-Rad Model
550 microplate reader was used to analyze total MCs and NODs
at 450 nm within 15min of terminating reactions. The mean
absorbance value for each standard was divided by standard
zero to calculate B/B0%. Abraxis standard concentrations on the
horizontal logarithmic axis plotted against B/B0% standards on
the vertical linear axis generated standard curves for total MCs
and NODs determination. Concentrations of total MCs and
NODs were reported in µg/L.

Nutrient Measurement
Colorimetric assays (Phosphate Assay Kit ab65622 and Griess
Reagent Kit ab234044) measured phosphates and nitrites in
environmental water samples, respectively. Abcam (Cambridge,
MA) supplied reagents and standards for use in colorimetric
assays. The colorimetric assays were optimized for nutrient
measurement in biological samples, including algal blooms. They
assessed concentrations between 0.001 and 1mM. A fresh set
of standards were prepared for every use. Reaction components
increased 5X in 1mL cuvettes for duplicate standard and sample
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readings in a Spectronic 200 spectrophotometer. Phosphate
(650 nm) and nitrite (540 nm) measurements occurred under
ambient temperature. Averaged duplicate readings of standards
and samples subtracted from standard 0 resulted in corrected
absorbances. Corrected absorbances plotted against standard
concentrations generated standard curves for nitrite and
phosphate. Phosphate or nitrite concentration (mM) in samples
was determined by dividing phosphate or nitrite (nmol/sample)
from standard curve by sample volume (mL) in a 1mL cuvette.
Final concentrations were converted and reported in µg/L.

Statistical Analysis
Concentrations of cyanotoxins (total MCs and NODs) in Lake
Manatee and Lake Washington were entered in Microsoft Excel
and categorized by month (June–July) and sample site (1–
15). Box-and-whisker plots graphically illustrated variations
in total MCs and NODs in the lakes. Bar graphs displayed
the concentration of nutrients (nitrites and phosphates) of
environmental water samples. Statistical analyses were conducted
in Statistical Package for the Social Science (SPSS) Version
25. Descriptive statistics including sample size, minimum,
maximum, mean, and standard deviation were calculated for
cyanotoxins and nutrients. The Kruskal-Wallis H test examined
whether total MCs and NODs concentrations differed by
sampling month in Lake Manatee and Lake Washington.
Pairwise comparisons were also made between sampling sites
and toxin concentrations. Bar graphs depicted frequency of
phosphate and nitrite concentrations in the lakes. Toxin and
nutrients data were ranked from lowest to highest concentrations
for correlation tests. Two-tailed Pearson correlations measured
the strength of associations between nutrients and cyanotoxins.
Two toxin samples were excluded from analyses due to
concentrations below the limit of detection (< 0.10 µg/L).
For nutrients, 11 samples (nitrite) returned non-detectable
concentrations (< 0.01 µg/L).

RESULTS

Enzyme-Linked Immunosorbent Assay
Calibration
A calibration curve was prepared for every ELISA plate. Each
calibration curve displayed a linear relationship between Abraxis
standard concentrations (0–5.0 µg/L) and B/B0%. A quality
control standard (0.75 ± 0.185 µg/L) was used in each standard
curve to validate quantitation of total MCs and NODs in
environmental water samples. Sample runs produced consistent
R2 values, which ranged from 0.9797 to 0.9964. The average R2

statistic for Lake Manatee and Lake Washington was 0.9929 and
0.9872, respectively. The overall average R2 statistic for ELISA
curves was 0.9901.

Bloom Samples
Blooms samples were defined as environmental water samples
with visible algal scum or discolored water. Bloom material was
observed in 21.18% (25/118) of samples. The prevalence of bloom
samples in Lake Manatee was 8.47% (5/59). A small algae bloom
was sighted on June 22, 2019, in a small cove on the north side of

Lake Manatee. All Lake Manatee bloom samples originated from
Site 3. The prevalence of bloom samples in LakeWashington was
33.89% (20/59). LakeWashington endured an algae bloom in July
2019, where discolored water was collected from Sites 6–10.

Microcystin and Nodularin Occurrence
Supplementary Table 2 summarizes concentrations of total MCs
and NODs in Lake Manatee and Lake Washington between
June and August 2019. Reported total MCs and NODs (µg/L)
included the sum of intracellular and extracellular toxins in
environmental water samples. From the 120 samples, 118
(98.36%) contained detectable toxin levels. Two samples, one
from each lake, had non-detectable toxin levels (< 0.10 µg/L).
A total of 42 (35%) samples returned total MCs and NODs
above 0.20 µg/L. The mean concentration of total MCs and
NODs in the lakes was 0.19 µg/L (σ = 0.05). Toxin levels were
highest in August compared to June and July. No sample from
either lake exceeded the recommended WHO drinking water
guidance value of 1.0 µg/L. All samples were categorized as low
(< 0.10 to ≤ 10 µg/L) in terms of the WHO relative probable
health risk.

Over the sampling period, totalMCs andNOD concentrations
ranged from 0.11 to 0.47 µg/L in Lake Manatee (Figure 2).
The sample with a maximum toxin concentration of 0.47 µg/L
was collected from a recreational site (Figure 1, right, Site
15). Pairwise comparisons indicated a statistically significant
difference in toxin concentrations between Site 15 and Sites
6 and 8 (Table 1). The mean concentration of total MCs and
NODs in Lake Manatee was 0.19 µg/L (σ = 0.07). A Kruskal-
Wallis H Test indicated a statistically significant difference
between sampling month and total MCs and NODs in Lake
Manatee, H(2) = 20.5, p = < 0.001 (Table 2). In Lake
Washington, total MC and NOD concentrations ranged from
0.11 to 0.31 µg/L (Figure 3). The sample with a maximum
toxin concentration of 0.31 µg/L was collected from a boat
ramp (Figure 1, left, Site 14). Pairwise comparisons indicated a
statistically significant difference in toxin concentrations between
Site 15 and Sites 8 and 9 (Table 1). The mean concentration of
total MCs and NODs in Lake Washington was 0.19 µg/L (σ
= 0.05). Another Kruskal-Wallis H Test indicated a statistically
significant difference between sampling month and total MCs
and NODs in Lake Washington, H(2) = 28.7, p = < 0.001
(Table 2).

Measurement and Frequency of Nitrite and
Phosphate Concentration
Of the 120 environmental samples collected from Lake Manatee
and Lake Washington, 60 samples (50%) were analyzed
for nitrites and phosphates (Supplementary Table 3). Nitrite
concentrations occurred in 49 (81.66%) samples and ranged from
0.005 to 0.845 µg/L. In Lake Manatee, nitrite concentrations
largely measured at 0.13 µg/L or 0.29 µg/L (Figure 4).
Nitrite concentrations in Lake Washington varied considerably,
with three samples having a concentration of 0.19 µg/L
(Figure 5). Phosphate concentrations occurred in 60 (100 %)
and ranged from 0.12 µg/L to 0.58 µg/L. Most samples had

Frontiers in Water | www.frontiersin.org 5 July 2022 | Volume 4 | Article 899572

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Melaram and Lopez-Dueñas Detection and Occurrence of Microcystins and Nodularins

FIGURE 2 | Occurrence of total microcystins and nodularins in Lake Manatee.

TABLE 1 | Pairwise comparisons of sampling sites and toxin concentrations.

Site comparisons Zkw p

Lake Manatee Site 6-Site 15 −3.824 0.014

Site 8-Site 15 −3.891 0.011

Lake Washington Site 8-Site 15 −3.541 0.042

Site 9-Site 15 −3.726 0.020

*Zkw , standardized test statistic; p, Bonferroni corrected p-values.

TABLE 2 | Summary of independent-samples kruskal-wallis H tests.

N H d.f. p

Lake Manatee 59 20.5 2 < 0.001

Lake Washington 59 28.7 2 < 0.001

a concentration of 0.19 µg/L, with two samples attaining a
maximum concentration of 0.52 µg/L (Figure 6).

Associations Between Nutrients and
Cyanotoxins
Associations between nutrient and cyanotoxin concentrations in
Lake Manatee and Lake Washington were measured by two-
tailed Pearson correlations. Correlation results indicated strong
associations between total MC and NODs and nutrients in the
drinking water systems (p < 0.01). Correlation coefficients were
higher for associations between nutrients and total MCs and
NODs in Lake Manatee (Table 3).

DISCUSSION

HABs are pervasive incidents of vast microbial populations in
surface waters and vary in distribution, magnitude, and severity
worldwide (Anderson, 2014; Backer et al., 2015). Some HABs can
release toxic secondarymetabolites into the aquatic environment,
presenting hazards to local ecology, wildlife, and human health
(Cheung et al., 2013; Watson et al., 2015; Carmichael and
Boyer, 2016). For instance, cyanobacterial HABs are becoming

FIGURE 3 | Occurrence of total microcystins and nodularins in Lake

Washington.

more prevalent in water reservoirs and may comprise potentially
toxigenic species capable of releasing cyanotoxins. The MCs
represent the largest class of cyanotoxins, which share chemical
and toxicological properties with NODs. These monocyclic
peptides inhibit PP1 and PP2 in hepatocytes of vertebrates with
different affinities, classifying them as hepatotoxins (Martins
and Vasconcelos, 2009). Research has identified both toxins as
potential carcinogens and tumor promoters (Humpage, 2008).
While cyanotoxins typically persist at low concentrations in
water, detection of such compounds is a priority for preserving
drinking water quality and minimizing human exposure.

There is no recommended guidance value for cyanotoxins
in Florida’s drinking water albeit the number of cyanobacterial
bloom episodes annually. Additionally, community water
treatment plants do not perform routine analyses on cyanotoxins
to ensure drinking water quality. Water treatment officials may
send a sample or two of raw water from the source of intake
to an independent lab with cyanotoxin expertise to ascertain
toxin measurements. However, limited data on few samples
provides little to no information about the potential health risks
of cyanotoxins. Thus, a rapid and sensitive method is needed
to screen multiple samples of toxins in community lakes. We
implemented an icELISA to monitor the occurrence of total MCs
and NODs in Lake Manatee and Lake Washington over the
potential peak algae bloom season.

Historically, cyanotoxins may have occurred in the lakes
although never analyzed for biomonitoring practices. Toxin
data on MCs and NODs are scarce or not readily accessible,
making it difficult to understand the persistence and behavior
of cyanotoxins in bloom-forming lakes. The results of our case
study revealed detectable toxin concentrations in Lake Manatee
and Lake Washington. The average concentration of total MCs
and NODs between the lakes was 0.19 µg/L, indicative of a
low probable health risk. This does not mean communities are
safeguarded from cyanotoxins but may experience a low level of
exposure over time.

Also, sampling month had significantly influenced toxin
concentrations during the study. In each lake, concentrations
of total MCs and NODs remained higher in June than in July
and increased from July to August. Environmental conditions
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FIGURE 4 | Measurement of nitrite in Lake Manatee.

FIGURE 5 | Measurement of nitrite in Lake Washington.

may have been relatively conducive for cyanotoxin production
in June and became very promising in August. Phosphorus
and nitrogen are major nutrient drivers of cyanobacterial
blooms (Heisler et al., 2008; Yang et al., 2008) and have been
associated with MC production in water reservoirs (Oh et al.,
2001). We measured the presence of nitrites and phosphates in
environmental water samples and related their levels with total
MC and NOD concentrations. Nitrites represent a minoritarian

form of nitrogen and have not been well-studied relative to
algal bloom development (Monchamp et al., 2014). Strong
positive associations occurred between nutrient and cyanotoxin
concentrations in each lake, suggesting increased nitrite and
phosphate concentrations influence increased total MC and
NOD concentrations. The observed associations supported
multiple studies on nutrients and cyanobacterial growth (Smith
et al., 2006; Dodds et al., 2009; Paerl et al., 2011; O’Neil et al.,
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FIGURE 6 | Measurement of phosphate in Lake Manatee and Lake Washington.

2012). Total phosphorus demonstrated a weak relationship with
MC concentrations in the Harris Chain of Lakes in Florida
(Bigham et al., 2009), contradictory of the observed relationship
between soluble phosphorus and total MCs and NODSs in Lake
Manatee and Lake Washington.

Our study results differed from other research identifying
MCs in water reservoirs. Cyanotoxins detected in water sources
of Haimen and Fusui, China remained generally low (0.062–
0.292 µg/L) over the sampling period (Ueno et al., 1996).
Detectable toxin concentrations in Lake Manatee and Lake
Washington ranged from 0.11 to 0.46 µg/L. A Brazilian
water treatment contained MC concentrations of 1.5, 2.1, and
0.60 µg/L between June and August (Oliveira et al., 2019).
Such concentrations exceeded the maximum concentrations
within the Floridian drinking water systems. Perhaps climatic
factors and geography contributed to elevated toxins in Brazil.
In 2007, annual cyanotoxin production was measured in
recreational sites of the St. John’s River, including Lake
Washington (Williams et al., 2007). Yet, individual data on
MCs or NODs in Lake Washington were not published within
the study. Two years later, low MC concentrations occurred
in 187 Florida lakes, with 7% of samples exceeding the
WHO’s drinking water guidance value of 1.0 µg/L (Bigham
et al., 2009). We did not detect a concentration greater than
1.0 µg/L which alludes to some important factors. Toxins
concentrations in lakes are variable and change in response
to weather events and resultant water quality conditions.
Differences in toxin concentrations of the lakes may have been
attributed to sampling locations (open water vs. shoreline,
bloom vs. near bloom) and sampling method (depth, repeated
samples, sample volume). We confirmed detectable cyanotoxins
within two drinking water systems in Florida that may

TABLE 3 | Correlation coefficients for nutrients and total microcystins and

nodularins.

Statistic Nitrite Phosphate

Lake Manatee r 0.955 0.986

Total microcystins and nodularins N 24 30

p < 0.01 < 0.01

Lake Washington r 0.876 0.988

Total microcystins and nodularins N 25 30

p < 0.01 < 0.01

pose a health risk from low level exposure through the
oral route.

LIMITATIONS

Several limitations were inherent within the case study.
Foremost, we utilized an immunoassay (icELISA) for the
detection of cyanotoxins in lake water samples. Though icELISA
is practical for variable measurements of many samples in a
single run, the assay is limited by cross-reactivity. In other
words, false positives can result from antibodies targeting
other antigenic substances within the sample matrix. Another
limitation of ELISA is the inability to differentiate specific
congeners of toxins. More sophisticated methods, such as HPLC
and LC-MS, are required to identify the most common variants
and their associated concentrations. This suggests that other
cyanotoxins (cylindrospermopsins, anatoxins, saxitoxins) were
present in the lakes. Additionally, this study was limited by
the sole measurement of a minoritarian nitrogen component,
nitrite. Oftentimes, nitrate and ammonia are measured, but
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we opted to quantify nitrite due to its understudied nature
and role in cyanobacterial blooms and drinking water quality.
Lastly, temporal dynamics of cyanotoxins and nutrients were not
evaluated as the study was short in duration. This was a case
study of two important drinking water systems in Florida to raise
awareness on cyanotoxins and human health. Study results may
prompt future research in water reservoirs throughout Florida.

FUTURE DIRECTIONS AND
CONCLUSIONS

MCs and NODs are cyanotoxins produced by cyanobacteria in
fresh and brackish waters. Cyanobacterial HAB development
in surface water presents hazardous risks to ecological and
human health. The current study explored the occurrence
of total MCs and NODs in two Floridian drinking water
systems during the potential peak algae bloom season.
The study results may extend upon biomonitoring studies
on cyanotoxins by providing a benchmark for total MCs
and NODs in community drinking water systems. Future
studies can regularly test for MCs and NODs on a broader
scale to evaluate their occurrence in surface drinking water
supplies. Longitudinal studies can offer valuable information
on cyanobacterial abundance, dynamics, and toxicity. More
field studies of the lakes may pinpoint the major environmental
influences of cyanobacterial bloom formation and cyanotoxin

production. Consistent and routine biomonitoring efforts of
Florida lakes can maintain quality drinking water and prevent
human exposure.
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