
ORIGINAL RESEARCH
published: 16 May 2022

doi: 10.3389/frwa.2022.885456

Frontiers in Water | www.frontiersin.org 1 May 2022 | Volume 4 | Article 885456

Edited by:

Tongren Xu,

Beijing Normal University, China

Reviewed by:

Bangjun Cao,

Chengdu University of Information

Technology, China

Ning Ma,

Institute of Geographic Sciences and

Natural Resources Research

(CAS), China

*Correspondence:

Xu Liang

xuliang@pitt.edu

Specialty section:

This article was submitted to

Water and Hydrocomplexity,

a section of the journal

Frontiers in Water

Received: 28 February 2022

Accepted: 29 March 2022

Published: 16 May 2022

Citation:

Zhou X, Lin J-S, Liang X and Xu W

(2022) Rainfall Patterns From

Multiscale Sample Entropy Analysis.

Front. Water 4:885456.

doi: 10.3389/frwa.2022.885456

Rainfall Patterns From Multiscale
Sample Entropy Analysis
Xiangyang Zhou 1,2, Jeen-Shang Lin 2, Xu Liang 2* and Weilin Xu 3

1Colleges of Resources and Environmental Engineering, Guizhou University, Guiyang, China, 2Department of Civil and

Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, United States, 3 State Key Laboratory of Hydraulics and

Mountain River Engineering, Sichuan University, Chengdu, China

Precipitation is a manifestation of many interacting complex processes. How to grasp

its temporal pattern that would reveal underlain dominant contributing factors is the key

objective of the study. For this, we explored the application of multiscale sample entropy

(MSE) in describing the long-term daily precipitation. Sample entropy (SE) adds similarity

measure over the conventional information entropy, and it has been used in quantifying

changing complexity in chaotic dynamic systems. With the further incorporation of

multiscale consideration, the MSE analysis gives the trend of SE changes with scale,

and provides a rich description of participating factors. The daily precipitation time series

studied were taken from 665 weather stations across China that have been recorded

for about 50–61 years. The SE estimates are a function of the length of time series

(n), the dimension of similarity (m), and the match threshold (r). These parameters are

problem-dependent, and through simulation, this study has determined that m = 2,

r = 0.15, and n ≈ 20,000 would be appropriate for estimating SE up to the 30-day

scale. Three general patterns of MSE for precipitation time series are identified: (1)

Pattern A, SE increases with scale; (2) Pattern B, SE increases then decreases and

followed by increase; and (3) Pattern C, SE increases then decreases. The MSE is

found capable of detecting differences in characteristics among precipitation time series.

Matching MSE thus could serve as a metric to evaluate the adequacy of simulated

precipitation time series. Using this metric, we have shown that to embody seasonal

changes one needs to use different monthly two-parameter gamma distribution functions

in generating simulated precipitation time series. Moreover, for dry seasons, one also

needs to consider interannual fluctuations: it is inadequate to use just one single function

for simulating multi-year precipitation data. Finally, for the study region, MSE patterns

show coherence over the distance in that stations that are close, which range from 40

to 80 km, exhibit similar MSE trends. The MSE patterns obtained are also found to be

reflective of the regional precipitation patterns—this has important implications on water

resources management.
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INTRODUCTION

Precipitation is a manifestation of many interacting complex
processes. It is one of the most volatile and unpredictable climate
variables in most parts of the world. The high variability of
precipitation, both in time and space, has tremendous impacts
on agriculture, food security, and the management of water
resources. To improve our understanding of the characteristics
of the precipitation over different regions of the world, it is
critically important to investigate the precipitation variability
and its associated temporal and spatial trends and patterns.
Traditionally, the probability functions are used in describing
the characteristics of the precipitation for locations where
the precipitation time series are often deemed stationary. For
example, the statistical distributions are used for the daily rainfall
to study the rainfall regimes in Europe (Burgueno et al., 2010)
and in Western Orissa (Mangaraj and Sahoo, 2010). Ghosh
(2010) used the copula distribution to study the bivariate rainfall
distribution. However, due to the complexity involved in the
precipitation, there are no explicit conditions under which the
typically known statistical distributions would always perform
well at all locations. Moreover, there are no sets of formulations
with which the precipitation can be perfectly described, especially
with the changing climate where the stationary assumptions
are invalid (Quintero et al., 2018; Lawrence, 2020; Silva et al.,
2021; Slater et al., 2021). Thus, various approximations and
assumptions have to be made, such as independence among
precipitation data in nearby stations within study regions.

Entropy, in contrast, is a good measure of variability when the
probability distribution of a variable is not symmetric (e.g., Singh,
1997; Avseth et al., 2005). It has also been shown that entropymay
be related to higher order moments of a distribution and thus it
offers a closer characterization of a distribution (e.g., Ebrahimi,
1999). As entropy is useful in quantifying randomness of
processes, there are a large number of studies where entropy was
employed to study the rainfall characteristics including temporal
and spatial patterns. For example, Kawachi et al. (2001) used
the average of annual entropies and median of annual rainfalls
to categorize the rainfall stations in Japan and constructed a
water availability map. Maruyama et al. (2005) used the intensity
entropy and apportionment entropy to understand the monthly
rainfall variability around the world. Using entropy to measure
the rainfall variability of different timescales (monthly, seasonal,
yearly, and decadal), Mishra et al. (2009) concluded that the
increasing trends of drought in some regions may continue in
Texas, USA. Brunsell (2010) employed entropy to investigate
the spatial and temporal variability of daily precipitation over
the continental U.S. Brunsell’s results show a breakpoint in the
central plains due to the presence of the Rocky Mountains,
demonstrating the benefits of using entropy to identify features
that are not readily identifiable from the time series data. Hasan
and Dunn (2011) used entropy to quantify the rainfall variability
in Australia in which the long-term average of rainfall amounts
across the months of the year is used. Extending the original
use of entropy by Amorocho and Espidora (1973), Liu et al.
(2013) constructed an entropy model to analyze the large-scale
rainfall distribution in the Pearl River Basin in China based on

monthly rainfall data from 1959 to 2009 over 62 stations. In the
aforementioned studies, the conventional information entropy
is employed and applied to one timescale in each application,
either to daily, monthly, seasonal, or yearly; a few have repeated
the calculation to monthly, seasonal, yearly, and decadal scales
(Mishra et al., 2009).

The concept of sample entropy (SE) has been shown
promising in identifying changes in complexity (Richman and
Moorman, 2000) of a chaotic dynamic system. It has been applied
to study spatial and temporal patterns and trends of precipitation
and runoff (e.g., Khan et al., 2016; Li et al., 2017; Xavier et al.,
2019; Zhang et al., 2020). Zhang et al. (2019) investigated the
spatiotemporal differences of monthly precipitation complexity
in Heilongjiang Province, China and found that the SE is more
suitable for analyzing precipitation complexity than the fuzzy
entropy, wavelet entropy, and permutation entropy as the SE
provided more stable and reliable results. The SE differs from
the conventional information entropy for it has taken into
account the dimensional similarity. Of particular interests is the
evidence showing that the multiscale sample entropy (MSE) can
consistently identify the loss of complexity in a biological time
series (Costa et al., 2005). This finding is the main impetus of the
present study. Li and Zhang (2008) applied MSE to investigate
the possible change in complexity of the Mississippi River due
to human activities such as the practices in land use and land
cover. They showed that there was a loss in complexity in the
Mississippi River flow around 1940. However, the application of
MSE to study the spatiotemporal patterns of precipitation has
been quite limited. Chou (2011) applied MSE to help determine
the number of resolution levels used in wavelet decomposition
analysis. Chou (2014) did a preliminary study of applying MSE
to both the rainfall and streamflow time series in Taiwan where
Chou found that the complexity of rainfall is different from that
of the streamflow. Chou also found that the daily and annual data
in the analysis showed low complexity and high predictability
and thus recommended to use MSE to identify the temporal
scales with low complexity. Alves Xavier et al. (2021) have found
that the MSE can distinguish rainfall regimes between the inland
semiarid and the coastal, tropical humid regions based on 69
meteorological stations from Brazil. The MSE is also shown
capable of revealing the complexity of precipitation time series
that varies spatially in an urban setting (Liu et al., 2018).

So far, the application of MSE to study precipitation data
are mostly based on monthly records and over small regions;
there is a knowledge gap in the fundamental understanding
of whether MSE of precipitation is related to the underlain
factors which impact its shape and behavior. Conversely, a
systematic and comprehensive study of MSE from a large set
of precipitation records allows us to address a long-standing
challenging question, “Could precipitation temporal patterns
reveal underlain dominant contributing factors?”

To the best of our knowledge, this study is the first
of its kind to present a framework to extract essential
characteristics contained in the observed precipitation time
series to systematically generate complex non-stationary
daily precipitation time series, guided by MSE, that
considers interannual variability using precipitation statistical
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distributions. This study addresses the following fundamental
and critical questions: First, are there precipitation patterns one
can readily identify in terms of MSE and associate them with
climates? Second, if there are clear precipitation MSE patterns,
what are the dominate factors leading to such patterns? Third,
would the use of MSE complement the common use of the
two-parameter gamma distribution in providing better ways to
describe precipitation and its simulation?

To address the preceding questions, the selection of
appropriate parameters for determining MSE is tackled first as
they are problem-dependent and needs to be resolved. Following
that, this study investigates a large set of precipitation data
that have collected over a large area and over a long period
of time, and look for the patterns in MSE and their spatial
variation. Then the focus is on if the MSE could discern the
characteristics embedded in long-term precipitation data, and
on if MSE could serve as a useful measure that allows one
to identify the dominating factors among all the interacting
complex processes that shape the precipitation characteristics
as observed.

MSE

SE in a Nutshell
The SE, as presented by Richman and Moorman (2000), is
an improvement over the approximate entropy (Pincus, 1991)
that was developed to quantify changing complexity in chaotic
systems. In a nutshell, SE introduces a correlation or similarity
dimension into the entropy computation in determining the
“orderliness” contained in a time series. The core of SE
is the conditional probability that two sequences that are
similar for m consecutive points remain similar when each
sequence is extended by one additional point. The SE is
defined as the negative natural logarithm of this conditional
probability. The estimation of SE thus depends on the following
three factors: The length of a time series (n); the length of the
data sequence to be compared (m); and the tolerance (r) for
accepting matches. This r parameter sets the tolerance of match
as r × SDX , known as r-matched, where SDX is the standard
deviation of the time series, X. In a multiscale case, the scale one
standard deviation is used for all scales. A brief description of the
procedure for computing the SE is given below.

From a precipitation time series of length n, Xo =
[x1, x2, ..., xn], a new time series is constructed by taking
continuous m-point samples. Denoting a consecutive m-
point sample starts at xi as a vector Xi, namely, Xi =
[xi, xi+1, . . . , xi+m−1], the resulting new time series, X, can be
expressed as follows:

X = [X1,X2, ...,Xn−m+1] (1)

Two vectors Xi and Xj are considered r-matched if the maximum
differences between their corresponding elements are smaller
than the r tolerance. That is, Xi and Xj are r-matched if
max

∣

∣Xi − Xj

∣

∣ ≤ r × SDXo . For computing the conditional
probability of SE, the probability that two vectors of same length

are r-matched is estimated first. For that, the number of Xj

vectors, with j 6= i, that are r-matched with Xi, is counted and
divided by n –m, the number of pairs compared. This is denoted
as Bim(r). This count is repeated for every Xi, and the probability
that any two vectors of length, m, would match is estimated as
a normalized sum, denoted as Bm(r), which equals 1/(n − m +

1)
n−m+1

∑

i=1
Bmi . In a similar fashion, Bm+1(r) is obtained for vectors

of length, m + 1. The conditional probability of two m-length
vectors that match remain matched when one additional point
is added to each vector thus equals Bm+1(r)/Bm(r). From these
terms, the SE is defined perm and r as follows:

SE(m, r) = lim
n→∞

− ln
Bm+1(r)

Bm(r)
(2)

In applications to a time series of a finite length, an estimate
SE(m, r) is obtained without taking the limit and is written as
SE(m, r, n). The length n that is needed to give a reasonable
estimate of SE depends on the nature of the time series and
the level of r adopted. This is investigated first for the study of
precipitation data.

MSE Essentials
In processing physical and physiologic time series, Lake et al.
(2002) have found that the impact of certain processes underlying
a time series could only be discovered when SE estimates were
viewed simultaneously across a wide range of scales. An upscaling
represents an averaging process or a coarsened view of the
original time series. For the scale k, the time series is averaged
within a non-overlapping contiguous windows of width k, and
has its length reduced to n/k in contrast to the original length of
n at scale 1. Each element in the k-scale time series is obtained as

yki = 1/k
i+k−1
∑

j=i

xj, (3)

The fact that a multiscale SE, or MSE, representation of
a time series could be useful in revealing the underlying
processes involved is illustrated in Figure 1. In Figure 1A, time
series generated by three well-known stochastic processes are
presented: They are a fractional Brownian noise, a 1/f noise
and a white noise. Here, each of the time series at scale one
consists of 20,000 points. Figure 1B presents the MSE obtained
for them, which was computed using m = 2, r = 0.15. For the
white noise, its SE exhibits a monotonic decrease with scale as
expected since the averaging process reduces the randomness and
increases its orderliness. The 1/f noise is self-similar, or fractal,
and by its nature possesses the same characteristics at different
scales. That is clearly reflected in its SE not changing with scale.
The fractional Brownian noise is self-affine. For the fractional
Brownian noise, when Hurst index, H, is <0.5, the Brownian
noise contains short range dependence, whereas when H is >0.5
it has long-range dependence, or long-term memory. Here, it
is used to illustrate the point that that memory or dependence
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FIGURE 1 | (A) Sample time series generated with Fractional Brownian noise, 1/f noise and white noise; (B) Variation of sample entropy with scales of the three time

series; and (C) How the Hurst index of a fractional Brownian noise affects sample entry.

range in a time series affects its trend of the SE with scale. This
can be observed from Figure 1C in which an example of the
MSE of fractional Brownian noises with H varies from 0.1 to 0.9
are presented.

The fact that the MSE could be used in distinguishing time
series from the different processes as shown in Figure 1 is
one of the impetuses for investigating its use in analyzing the
precipitation data. We start the study by first investigating the
parameters to be used for the SE computation.

PARAMETER SELECTION FOR
COMPUTATION OF SE

As per its definition, the SE estimates are affected by the
three parameters m, r, and n as discussed. The appropriate
values for these parameters are problem-dependent. Since there
is no baseline information existed for computing SE for the
precipitation time series, a detailed numerical study is conducted.
The m, r, and n parameter values to be adopted should
result in small errors in the SE estimates. As the first step,
we first determine the precipitation probability distribution
functions using recorded data from weather stations. We then
generated simulated precipitation time series based on the

derived probability distribution function and its parameters.
Then the variances of SE are computed over a range of m, r,
and n values.

Characterization of the Precipitation Data
In this study, the daily precipitation data were obtained from
the Chinese Scientific Data Sharing Network. The long data
time series from 665 weather stations and the corresponding
spatial distribution are shown in Figure 2. The precipitation
time series used are at least 50 years long. Among them,
we have used 61 years of records from 252 stations; 55–60
years of records from 327 stations; and 50–55 years of records
from 86 stations. These data were acquired by recording the
24-h accumulated precipitation at 8 pm each day with an
accuracy of±0.1 mm.

As the first step, we evaluate the goodness of fit of
various probability distribution functions for the whole available
length of daily precipitation data from each station. Among
all the probability distribution functions evaluated, including
but not limited to lognormal, three-parameter gamma, and
generalized Pareto distributions, the two-parameter gamma
distribution fits the data set best of all according to L-moment
statistics as illustrated by the L-Kurtosis vs. L-Skewness
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FIGURE 2 | Map covers only the study area where weather stations are located with contours of average annual precipitation in mm.

plot of Figure 3 (Martinez-Villalobos and Neelin, 2019).
The histograms of the means, µX , and the coefficients of
variation, CVX , from all the data are presented in Figure 4.
It can be observed that the daily mean precipitation varies
over a wide range reflecting the large area over which the
stations span.

The characteristics reflected in the two-parameter gamma
distribution are used in generating data for quantifying variability
ofMSE estimates caused by differences in controlling parameters.
Specifically, simulated precipitation time series are generated
with daily mean, µX , varying from 1 to 11mm and with CVX

varying from 0.5 to 8.

Determining m and r
For each set of µX and CVX , 50 simulated gamma-distributed
time series are generated with each having a length, n = 20,000.
The SE are then computed by varying m from 1 to 6 and r from
0.05 to 0.95. The acceptable m and r values are those that lead
to small CV in SE estimates. In this study, this threshold CV is
set to be 5%. In general, as illustrated in Figure 5, the higher the
values ofm and r are, the larger the CV of SE. From the figure, we
found that the commonly used m of 2 and r of 0.15 (Costa et al.,
2005; Chou, 2012, 2014) to be satisfactory for estimating SE from
precipitation time series. This is consistent with recent findings
(e.g., Li et al., 2017; Liu et al., 2018; Zhang et al., 2020) which

show that stable and/or optimal results were obtained whenm=
2 and r is between 0.1 and 0.25 times of the standard deviation.

Determining the Minimum Length of Time
Series
Our results further show that with a given CVX , the CV of SE
reduces as expected when the length n increases but stabilizes
when n is sufficiently large as shown in Figure 6. Conversely, n
has to be increased to maintain the same CV of SE if CVX of the
time series increases.

As per the requirement, the length, n, needs to be sufficiently
long so that CV of SE is limited to 5%, we found a linear
relationship between n and CVX based on Figure 6 as follows:

n = 1010 · CVX − 810 for 1 ≤ CVX ≤ 10 (4)

For a gamma time series with CVX = 8, a reasonable estimate
of SE requires it to have a length of at least 7,270. However, to
estimate the minimum length required of a time series at a higher
scale, one needs to consider the reduction of the CVX with scale
which can be written readily as CVScale

X = CVX/
√
scale. From

this, at the scale 30,CVX would decrease from 8 to 8/
√
30 = 1.46,

and the length of points required at that scale is around 665. To
satisfy this, the number of data at scale 30 would require the time

Frontiers in Water | www.frontiersin.org 5 May 2022 | Volume 4 | Article 885456

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Zhou et al. Rainfall Patterns

FIGURE 3 | L-statistics of fitted gamma distribution for all 665 records used.

FIGURE 4 | Histogram for daily (A) µX and (B) CVX of 665 precipitation records studied.

series at scale 1 to be about 665 × 30, or close to 20,000 points.
This has an important bearing for the study as discussed in the
following: As the precipitation data we are studying have CVX

mostly below 8, it follows that we could estimate SE reasonably
well up to a scale 30 from 50 or more years of recorded daily
precipitation data.
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FIGURE 5 | (A–C) Variation of CV of SE with respect to r and m under different CVX levels.

FIGURE 6 | Variation of CV of SE with respect to length and CVX of the time series (m = 2, r = 0.15).

MSE of Gamma-Distributed Precipitation
We computed MSE of simulated precipitation time series: each
has n = 20,000 points and is generated using the gamma
distribution function with a set of daily µX and CVX . Using m
= 2 and r = 0.15, we found that the MSE is sensitive to CVX

but not to µX . This point is illustrated in Figure 7 in which

µX = 3 mm/day. From the figure, it can readily be observed
that when CVX is small, the SE variation with scale is similar to
that of the white noise. On the other hand, when CVX is high,
the trend resembles that of a long memory fractional Brownian
noise. The time series with intermediate CVX give MSE with
trends that lie in-between the preceding two. This demonstrates
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FIGURE 7 | MSE patterns versus CVX of simulated gamma distributed time series with µX = 3.

that the gamma-distributed time series exhibits rich behavior and
explains why it is versatile in fitting precipitation time series. The
discussion that follows further sheds light on the application of
gamma distribution in describing recorded data.

MSE PATTERNS OF PRECIPITATION TIME
SERIES

The daily precipitation MSE is computed for each of the long
records from the 665 weather stations used. Despite individual
variations, three distinct MSE patterns, denoted as Pattern A,
Pattern B, and Pattern C, are identified as shown, respectively, in
Figures 8A–C. The SE variation with scales exhibits the following
characteristics: (1) Pattern A shows a steady increasing trend
throughout the scales with the rate of increase gradually reduces
after the initial fast pace of change and becomes either flat or
with a small upward trend at the end; (2) Pattern B shows a
steady increasing trend which is interrupted by a reduction over
several scales before returned to rise again; and (3) Pattern C
first shows a steady increase trend that is followed by a steady
decrease trend. From this figure, it can also be observed that all
these three patterns show an initial increase in the SE up to about
the scale of 5-day. This rising phase could be shorter and has been
observed for as short as the 1-day scale. This initial rising phase of
SE can readily be explained: Each of the daily precipitation time
series is populated with days of mostly small to no precipitation,
and, as such, they are initially similar. The similarity, however, is
destroyed when more days are combined together in a coarsened

view, which explained the rise in the SE as the orderliness of no
rain in the initial scales is gradually decreased.

These three representative patterns plotted in Figure 8

are obtained on records from stations STA57996, STA58005,
and STA 57972, respectively. It turns out that the preceding
simulation results using gamma distribution summarized in
Figure 7 are not good bases for interpreting the MSE from the
actual records. First of all, all these three sets of data have CVX

lie within a narrow range, and according to Figure 7, they should
all exhibit a similar MSE because of the narrow range of CVX

they encompass as discussed in the following: STA57996 record
(Pattern A) hasµX = 4.28mm/day,CVX=2.65; STA58005 record
(Pattern B) has µX =2.98 mm/day, CVX = 3.12; and STA57972
record (Pattern C) has µX = 2.95 mm/day, CVX = 3.3. For this
range of CVX , from 2.65 to 3.3, the simulated gamma-distributed
precipitation per Figure 7 would give Pattern C MSE. However,
the results show that in comparison with the simulated results,
Pattern A is similar to the one with high CVX (e.g., CVX = 5 and
CVX = 8) and exhibits a higher rate of change at small scales;
Pattern C is similar to the one with low CVX (e.g., CVX = 3 or
smaller), while Pattern B has no corresponding correspondence.
It is clear that the precipitation characteristics as contained in the
multiscale is not captured by a single gamma distribution fit of a
long-term record.

A question thus arises: Why the simulated gamma-distributed
time series do not capture MSE of real precipitation data? We
think it is because the time series so generated do not contain the
seasonal change information contained in the real precipitation
record. The fact that the real data do show seasonal precipitation
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FIGURE 8 | Typical MSE patterns and a comparison with those from simulated precipitation: (A–C) represent MSE patterns A, B, and C; (D–F) are the monthly µX

and CVX of the time series where these patterns were obtained; and (G–I) include MSE from time series generated in two different ways.
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FIGURE 9 | The days without rain of the dry seasons over 61 years (A) from STA57996 records, (B) from simulated data using monthly gamma distribution shown in

Figure 8D.

characteristics change is illustrated in Figures 8D–F, where the
monthly µX and CVX of each of the three records are computed
by lumping monthly data together over all the recorded years.
They clearly show that the precipitation undergoes changes
between rainy seasons and dry seasons. To circumvent this
drawback of simulating a precipitation time series based on
a single gamma distribution function, we further generate
simulated time series with monthly variation introduced.

Improved Simulated Time Series by
Incorporating Seasonal Changes
To address the effects of the seasonal changes in precipitation,
we simulate precipitation for each month of the year using its
corresponding µX and CVX of the base record and generate
gamma-distributed daily precipitations for the number of days

of that month. This is carried for each month of the year in
the calendar order until the number of years targeted is reached.
We denote the present procedure as “monthly” based, and the
single gamma distribution as “yearly” based. Comparisons of
MSE from these monthly-based simulated time series as well
as those from the recorded data, denoted as “data,” are given
in Figures 8G–I for Patterns A, B, and C, respectively. These
monthly-based times series give MSEs that match reasonably
well with those computed from the recorded data. The most
dramatic improvement is for the case with Pattern B, in which
the “monthly” simulated data resulted in an excellent MSE
match with that from the “data,” while the “yearly” simulated
data perform rather poorly. As for Pattern A, the trend is also
preserved better with the “monthly” simulated precipitation,
whereas for Pattern C both the “monthly” and the “yearly”
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FIGURE 10 | Real data MSE is better matched after introducing into simulation inter-annual variation of the precipitation in dry season.

simulated precipitation perform about the same with similar
levels of deviation from the real records.

On further investigation, we found that the slight mismatch of
MSE of “monthly” simulated data with real data (see Figure 8G)
is due to the highly year-to-year variation of the precipitation of
STA57996 record in the dry seasons from October to December.
Figure 9A depicts the total number of days without rain for these
3 months over the 61 years of records. The data clearly show
that there is high variability of dry days from year-to-year. In
contrast, the simulated data using the same monthly distribution
for each year give a small fluctuation as shown in Figure 9B.
The overall statistics of the no-rain days in the dry season gives
some indication of the differences observed here: The data give
a mean of 71.4 days, with a standard deviation of 7.5 days,
while the simulation gives a mean of 67.4 days and a standard
deviation of 4 days. The data give about twice as much of the
standard deviation. What this implies is that the year-to-year dry
season characteristics, i.e., inter-annual variability, needs to be
incorporated in studying the orderliness in the precipitation time
series. Indeed, this is the case. A new simulation is thus carried
out considering inter-annual variation of the precipitation in

dry season, in which the precipitation of the 3 months of dry
season is simulated using the monthly means and standard
deviations for each individual month of each year, while the
other months of the wet season still use the individual monthly
distribution for all years without considering any inter-annual
variability. Figure 10 demonstrates the improvement of such an
undertaking. Specifically, without considering the year-to-year
changes, the MSE starts to drop with scale, albeit slightly, after
about the 6-day scale. However, by just considering the dry
season’s year-to-year (i.e., inter-annual) variability, the MSE so
obtained agrees rather well with the raw data after initial phase.

Thus, it can be concluded that the MSE reveals the orderliness
information in the precipitation that is not possible to grasp by
simply fitting monthly or yearly probability distribution function
to a time series without accounting for inter-annual variability,
and the MSE could be valuable in guiding how simulated data
should be generated. This is especially important for generating
precipitation for a given designed level by considering non-
stationary impacts due to climate change, as pointed out by
researchers (e.g., Serinaldi and Kilsby, 2015; Serinaldi et al., 2018;
Lawrence, 2020; Marra et al., 2020, and Slater et al., 2021).
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TABLE 1 | Monthly daily µx (mm/day) for different climates.

Climate Month

1 2 3 4 5 6 7 8 9 10 11 12

Wet 2 2 3 4.5 6 7 7 6 4.5 3 2 2

Semi-arid 0.3 0.3 1 2 2.75 4 3.54 2 1 1.25 0.3 0.3

Arid 0.2 0.2 0.6 1 1.5 2 2 1.5 1 0.6 0.2 0.2

FIGURE 11 | The shift of MSE patterns per the variation of µX and CVX : (A) wet climate, (B) semi-arid climate, and (C) arid climate. Three cases of variation in daily

CVX : Case 1, asterisk, constant CVX = 3; Case 2, square, CVX = 6 for dry season and 3 for the rest; Case 3, circle, linear CVX = 1 to 6, inversely proportional to

monthly µX .

Factors That Affect MSE Patterns
A further investigation of the MSE trend is conducted by varying
the combination of monthly µx and CVX . For this purpose, we
define three climate patterns, they are, “wet,” “semi-arid,” and
“arid.” For the wet climate, we consider it to have an annual
precipitation of 1,470mm, have two heavy rainymonths, and that
the precipitation increases gradually from dry season to reach
its peak. The “semi-arid” climate is set to have less than half of
the precipitation of its wet counterpart with annual precipitation
reaching 621mm. The “arid” climate is set to have relatively
uniformly low precipitation throughout a year, and its rainy
season is only slightly wetter resulting in an annual precipitation
of 330mm. The daily µx of each month in mm/day of these three
climates is summarized in Table 1.

For further studying the impact of CVX , we set out three
scenarios as to how CVX changes monthly (see Figure 11). Case
1 considers constant monthly CVX of 3 (asterisk) for all three

climates. Case 2 follows case 1 but increases in CVX from 3 to 6
for dry months (square). As for case 3, it was set to reflect that the
higher the precipitation, in general, the smaller the CVX . As such,
monthly daily CVX is set inversely proportional to its monthly
daily µx, and is scaled to lie between 1 and 6 (circular). A 61
years of simulated time series are generated for each scenario with
inter-annual variability accounted, and as such the particular
month in which a rainy season starts is irrelevant. The results
obtained are summarized in Figure 11.

On examining the results as summarized in Figure 11, some
observations can be made. For wet climate, Figure 11A shows
that if CVX stays constant (asterisk), i.e., case 1, the MSE
follows Pattern C. However, as the CVX is increased for dry
season (square), i.e., case 2, the MSE moves toward Pattern
A, and the larger contrast in CVX per case 3 (circular) only
increases the MSE in magnitude without altering its pattern.
Figures 11B,C show that the semi-arid and arid climates give
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similar MSE trends. For cases 1 and 2, they exhibit Pattern B
MSE, and for case 3, Pattern A. Neither case exhibits Pattern C
MSE. These results also demonstrate that using strong contrast
in CVX as in case 3, the dry season precipitation variability
is also amplified, and that is how it leads to Pattern A MSE.
This is consistent with the observation made in the preceding
section that additional variability is needed to produce Pattern A
MSE when using monthly distribution in generating long-term
precipitation time series.

SPATIAL DISTRIBUTION OF MSE
PATTERNS

It turns out that the simple construct of Figure 11 explains the
MSE patterns from the stations well. The MSE computed for
each of the stations are presented in Figure 12 according to its
location in the study area within China. It can readily be observed
that the MSE of the same patterns appear in spatial clusters.
To understand the underlying reasons of how these clusters are
formed, the characteristics of the precipitation of the study region
are examined. In addition to the annual precipitation over the
study area presented in Figure 2, the spatial distributions of the
monthly daily µx and CVX are examined. For this, the drier
winter months, i.e., from October to February, and the rest of the
year, i.e., from March to September are plotted separately.

The stations with Pattern A MSE are located mainly in in
the northwestern region and the areas close to the southern
coastal region. The former includes the western Inner Magnolia
as well as the southwestern and northern Tibetan Plateau. In the
winter months, this northwestern region has µx mainly in the
range of 0.01–0.66 mm/day and has the value of CVX from 2 to
>10. For the rest of the year, its µx values mainly vary between
0.05 and 2.67 with CVX remaining highly variable to be in the
range between 1.57 and 11.14. This reflects that the region is of
arid climate, and with highly varying CVX throughout the year.
It is not surprising that the stations from this region exhibits
primarily the Pattern A MSE. For the southern coastal region, in
the winter months, it has µx in the range of 1.21–1.89 mm/day,
while its CVX value lies between 3.01 and 8. For the rest of the
year, the southern region hasµx between 4.11 and 10.83mm/day,
corresponding CVX mainly ranging from 1.57 to 3.35. The high
variation of CVX from the winter months to other months, as
demonstrated by Figure 11, is the reason why the precipitation
of this region also exhibits Pattern A MSE.

The stations that exhibit Pattern B MSE dominate the studied
area and span spatially from northeast toward southwest which
covers the Northeastern region, North Plateau, Sichuan Basin,
East and mid-east of Tibetan Plateau. Generally, these are semi-
arid and semi-humid regions. The precipitation characteristics
of these regions can also be roughly divided into two parts, an
upper part and a lower part. The upper part of these regions
has low winter precipitation, with µx in the range of 0.01–0.27
mm/day as denoted by the dark green dots in Figure 12B, with
corresponding CVX mainly lying within the range of 3–8. For the
rest of the year, µx are in the range mostly between 1.31 and 2.67
mm/day with CVX scattering within the range of 2.57–4.51. The
lower part of the region is wetter as per the specifications given

FIGURE 12 | The spatial distribution of precipitation MSE patterns over the

studied area (A) the spatial patterns; (B,C) are the daily µX and CVX,

respectively, from October to February; (D,E) are the daily µX and CVX,

respectively, for the period from March to September. Maps cover only the

study area.
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as follows: Its winter precipitation µx are in the range between
0.28 and 1.20 mm/day, and its CVX lie in the range between
3 and 8. For the rest of the year, µx are in the range mostly
between 1.31 and 5.68 mm/day and have CVX scattering between
1.57 and 4.51. As Figures 11B,C demonstrate that for arid and
semi-arid climates, when the variability in CVX is not particularly
high, the precipitation would exhibit Pattern B MSE. This not
only explains the trend observed but also explains why it is the
dominant pattern observed among all the stations studied.

The stations with Pattern CMSE are located in the middle and
downstream regions of the Yangtze River. This region has very
high winter precipitation, and the variability in the precipitation
remains more or less constant all year round. Its µx mainly lie
in the range of 1.90–5.55 mm/day, and its CVX are in the range
of 2.04–5. For the rest of the year, µx are in the range of 4.11–
10.83 mm/day, and the corresponding CVX are in the range of
1.57–3.35. The region is typical of wet climate with more or
less uniform variability throughout the year, and as Figure 11A
attests, the precipitation of the region exhibits Pattern C MSE.

It is clear that the spatial distribution of MSE patterns reflects
the nature of precipitation in terms of monthly daily µx and
CVX distribution as discussed here. Moreover, not only that the
MSE patterns for precipitation are similar for the stations that
are close but also their magnitudes often lie within a narrow
band. Figure 12 gives examples showing the similarity among the
MSE patterns for the stations that are close; that is, the stations
which are within 40 to 80 km distance apart. Such coherence over
the distance may have important implication in water resource
management planning.

CONCLUSIONS

MSE, through the introduction of scales and with the
incorporation of similarity measures, shown in this study is
capable of manifesting the changing complexity and it could
serve as a useful tool for studying precipitation time series. This
study has carried out basic groundwork in applying MSE to
analyze complex precipitation time series. In this respect, we
have confirmed the adequacy of using 2 for the dimensionality
parameter,m, and 0.15 for the matching criterion, r. An equation
is also presented for determining the required length, n, of
the precipitation time series in terms of the desired scale. For
obtaining the MSE up to a scale of 30-days, which is the case
of this study, daily precipitation data of about 20,000-point long
are needed.

The study has found that MSE can capture essential
characteristics contained in a precipitation time series that are
otherwise hard to detect. Above all, MSE is found sensitive
to the interplay of the mean and CVX , the seasonal cycle,
and year-to-year changes (i.e., interannual variability) in arid
climates. As a result, the MSE can be an effective tool
for detecting differences associated with complex time series
and for exploring factors affecting these differences. This
capability is profoundly important especially with the gradual
but continuously changing climates where the parameters (e.g.,
mean and standard deviation) associated with the underlying
probability distributions are constantly changing. With the
analysis framework presented in this study using the MSE, one

can identify whether a stationary or a non-stationary time series
would be a good candidate for the precipitation of the study
region and how to best represent its non-stationary changing
nature by adjusting the parameter values of its probability
distribution. In our effort to generate the simulated precipitation
time series, we also find that the MSE with those obtained
from the actual recorded precipitation could serve as a powerful
metric of evaluating the simulated results. It is shown that
the conventional method, in which one distribution is used
to generate a multi-year precipitation time series or even with
one different distribution per calendar month is inadequate,
because seasonal change can be important and such change
may also have high interannual variability. We look into
high interannual variability in dry season precipitation and
find that MSE is able to discern the failure of a simulation
procedure that incorporates different monthly gamma functions.
We also find that such shortcomings can be amended by
adopting different monthly gamma functions annually (i.e.,
considering interannual variability) for the dry seasons as
illustrated by Figure 11. By making these changes, the two-
parameter gamma distribution model is shown to work very
well in terms of yielding the same MSE for the precipitation
dataset studied.

Three main MSE patterns are identified based upon the
precipitation data taken from 665 stations across China that
have been continuously recorded for at least 50 years. In Pattern
A, the SE increases with scale; in Pattern B, the SE increases
initially with scale which after an interruption by a reduction
continues to increase; and in Pattern C, the SE increases then
reduces. Moreover, the spatial distribution of the MSE patterns
over the studied area is found to reflect the spatial characteristics
of precipitation. By partitioning the precipitation into dry winter
season and the rest of the year, we found that the MSE patterns
obtained can be interpreted properly. The MSE patterns also
show coherence over distance in that stations that are close,
which range 40–80 km, exhibit similar MSE trends. This could
have important implications in using MSE for water resources
management and planning.
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