
SYSTEMATIC REVIEW
published: 04 July 2022

doi: 10.3389/frwa.2022.882560

Frontiers in Water | www.frontiersin.org 1 July 2022 | Volume 4 | Article 882560

Edited by:

Reza Kerachian,

University of Tehran, Iran

Reviewed by:

Hamed Khorasani,

University at Buffalo, United States

Martyn Futter,

Swedish University of Agricultural

Sciences, Sweden

*Correspondence:

Yushiou Tsai

yushiou.tsai@gmail.com

Brian Beckage

brian.beckage@uvm.edu

Specialty section:

This article was submitted to

Water Resource Management,

a section of the journal

Frontiers in Water

Received: 23 February 2022

Accepted: 30 May 2022

Published: 04 July 2022

Citation:

Tsai Y, Zabronsky HM, Zia A and

Beckage B (2022) Efficacy of Riparian

Buffers in Phosphorus Removal: A

Meta-Analysis.

Front. Water 4:882560.

doi: 10.3389/frwa.2022.882560

Efficacy of Riparian Buffers in
Phosphorus Removal: A
Meta-Analysis
Yushiou Tsai 1*, Hope M. Zabronsky 2, Asim Zia 3 and Brian Beckage 4*

1 School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, United States,
2Olivewood Gardens and Learning Center, National City, CA, United States, 3Department of Community Development and

Applied Economics, University of Vermont, Burlington, VT, United States, 4Department of Plant Biology, University of

Vermont, Burlington, VT, United States

Efficacious use of riparian buffers (RBs) is a mitigation strategy that can protect water

quality in the face of climate change and agricultural intensification. We investigated the

efficacy of RBs in reducing phosphorus (P) and identified effective RB designs using

two quantitative meta-analytic approaches, i.e., traditional random-effects meta-analysis

and Bayesian mixed-effects regression, to synthesize the results from 36 peer-reviewed

articles. We found that the overall P removal efficacy of RBs is 54.5% with a 95%

confidence interval (46.1, 61.6), as indicated by our traditional meta-analysis, and 51.3%

on average with a 95% confidence level (19.6, 71.2), as estimated by our Bayesian

meta-analysis. The effectiveness of RBs was reduced by soil that was either bare,

water-saturated, or covered by snowmelt. The interactive effect of width and slope on

P removal in RBs varied considerably across different soils, leading to a larger variation

in P removal efficacy, as compared to other studies. Our results show that width is the

predominant determinant for P retention efficiency in clay soil RBs, whereas in sandy soil

RBs, slope is the leading factor. Our findings can provide policymakers and managers

with RB design criteria to maximize P retention.

Keywords: phosphorus, riparian buffer, meta-analysis, Bayes modeling, water quality

INTRODUCTION

Growing human population together with climate change is likely to lead to the degradation
of water quality in lakes, rivers, and oceans. Meeting the caloric needs of expanding human
populations will necessitate agricultural intensification as well as the expansion of the land area
in agricultural production (Keating et al., 2014; Kummu et al., 2017). Agricultural expansion
and intensification are likely to result in increasing flows of nutrients to adjacent water bodies.
Phosphorus (P) is a primary component of agricultural fertilizer, and the leakage of P from
agriculture to adjacent waterways leads to decrease in water quality through eutrophication and
harmful algae blooms (HABs) (Bennett et al., 2001; Scheffer et al., 2001). In addition, climate
change is expected to increase the sensitivity of water bodies to the influx of P; increasing water
temperature over longer periods of time contributes to eutrophication and more frequent and
intensive HABs (Zia et al., 2016; Nazari-Sharabian et al., 2018). The expected effect of climate
change and agricultural intensification and expansion reduce water quality with negative impacts
on ecosystem function as well as human health.
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Riparian buffers (RBs) are a potential mitigation strategy
that can reduce the transport of P to adjacent waterways, thus,
protecting water quality in the face of climate change and
agricultural intensification. In agricultural watersheds, excess P
produced by farms is transported via overland runoff. RBs are
often considered one of the most effective best management
practices (BMPs) to improve water quality in lake systems, as
they can intercept P-reducing transport to adjacent waterways.
As a result, substantial governmental funds are appropriated
annually to establish RBs. For example, as of the fiscal year
2012, the Conservation Reserve Program (CRP) reported that
∼0.35 million hectares of RBs were installed on a continuous
basis either through the Conservation Reserve Enhancement
Program (CREP) or non-CREP in the U.S. (USDA, 2012). On
average, US$326 and US$230 were paid for each hectare of
CREP and non-CREP enrollment, respectively, on a continuous
basis in 2012 across the U.S. This leads to our inquiry into
RBs’ effectiveness in intercepting P through a quantitative
literature review.

The efficacy of RBs for nutrient mitigation is driven by
multiple factors (Dorioz et al., 2006). Most previous reviews of
RBs are either qualitative (e.g., McDowell et al., 2004; Dorioz
et al., 2006; Hoffmann et al., 2009; Cole et al., 2020) or, if
quantitative, mainly assess the effects of at most four aspects
of RB design and implementation (e.g., Mayer et al., 2007;
Zhang et al., 2010; Sweeney and Newbold, 2014; Land et al.,
2016). We evaluated the effects of a wider spectrum of RB
parameters on P removal efficacy by employing two quantitative
meta-analytic approaches, namely, traditional and regression
meta-analyses. Using two meta-analytic approaches is helpful
in drawing inferences given that a wider spectrum of RB
parameters is assessed in this study than in other studies in the
literature. We considered the effect of seven RB specifications,
including two continuous variables (i.e., width and slope) and five
categorical variables (i.e., soil, vegetation, P application practices
in adjacent fields, on-site infiltration capacity, and P transport
pathway). Traditionalmeta-analysis was used to infer P reduction
levels by considering a categorical parameter one at a time.
We used a regression meta-analysis to infer P reduction levels
given a consideration of all RB parameters simultaneously with
synergistic effects.

In summary, this study expands the existing quantitative RB
reviews by using a larger sample size, accounting for more factors
and their interactions, and using two meta-analytic approaches
for improving statistical inferences. The results of this study can
help guide the design of RBs and maximize the effectiveness of
governmental RB funds to reduce P transport from farms.

MATERIALS AND METHODS

Data Collection
We used three databases, i.e., Web of Science, Science Direct,
and Google Scholar, to locate peer-reviewed studies reporting
the P removal efficacy of RBs. In the scope of this article, we
considered RBs, riparian zones, buffer strips, vegetated filter
strips, and grass strips to be synonymous. We selected studies
(1) that were published within a 25-year time period between

January 1990 and June 2015, (2) in which study sites were located
in the USA or Canada, (3) that had provided P reduction in
the forms of total phosphorus (TP), particulate phosphorus (PP),
dissolved phosphorus (DP), or P in agricultural settings, (4) in
which control experiments were performed, and (5) that are not
review studies. We included studies reporting any of the four P
forms (i.e., TP, PP, DP, and P) to increase the number of potential
studies; TP is assumed to measure both dissolved and particulate
P in a sample in routine P analyses (Sheppard et al., 2006).
Our search strategy for Google Scholar, which was conducted
in June 2015, included setting the publication date of studies
to <25 years and using the phrase “riparian buffer effectiveness
in reducing Total phosphorus or Particulate Phosphorous” in
which “riparian buffer” was also replaced with “riparian buffer
zone,” “vegetated buffer,” “vegetated buffer strip,” “vegetated filter
strip,” and “grass strip” for further search. Our literature search
procedure is summarized in a flowchart (Figure 1) conforming
to the statement of Preferred Reporting Items for Systematic
reviews and Meta-Analyses (PRISMA) suggested by Moher
et al. (2009). A total of 36 peer-reviewed articles were selected
for further review. We assessed the methodological quality of
these 36 studies using “hierarchy of evidence quality (Table 1),”
modified by Pullin and Knight (2003) and commonly used by
system review studies in environmental science. We also assessed
the publication bias of these 36 studies using a funnel plot and
Egger’s test.

We summarized the study design features of these 36 studies
in Table A1. Soil descriptions from these studies were clustered
into four classes using the USDA soil textural triangle (USDA,
1987). These four classes, ordered by ascending grain size, are
clay, silt, loam, or sand. Each class indicates the predominant
soil in an RB, though it is not necessarily the only class present.
This soil clustering introduces uncertainties; however, a collapsed
stratification was necessary for evaluating the effects of RB soil on
P removal.

We used discrete categories to represent on-site infiltration
capacity, because quantitative measurements (e.g., infiltration
rate, rainfall intensity, and runoff velocity) commonly used for
determining this parameter were not often provided by the 36
studies. As shown in Table A1, on-site infiltration capacity was
determined based on runoff source and its relative effects on soil.
This parameter was denoted as low, medium, or indeterminate.
The sites monitored under naturally occurred or simulated
rainfall were denoted as medium-level infiltration capacity.
The sites observed under hydraulically overloaded conditions,
flooded irrigation, or wet rainfall season were coded with low
infiltration capacity. The RBs monitored during snowmelt were
coded as indeterminate infiltration capacity, because additional
measurements for determining meltwater infiltration, such as
thickness of snow cover and timing of snowmelt, were not
available (Iwata et al., 2010).

Discrete levels, i.e., low, medium, or high, were also used to
describe P inputs in the fields adjacent to RBs, because most
studies did not measure P in these fields. Category assignments
were based on nutrient types applied in these fields. Applications
of manure, fertilizer, wastewater, crop residuals, and chemicals in
adjacent fields were considered high P inputs. On-site sediment
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FIGURE 1 | PRISMA flow diagram of our literature search.

and biosolids were regarded as medium P inputs. If nutrients
were not applied in adjacent fields, this was coded as low.

Two classes representing P removal pathways were assigned
based on sample locations, namely, surface and subsurface. The
surface pathway indicates P transport via surface runoff. The
subsurface pathway encompasses P transport either through
subsurface flow or soil.

P measurements were not consistent across the reviewed
studies. P entering (M0) or leaving (Me) RBs were measured
as mass, flux, or flow-weighted concentration. Some of the 36

studies also provided P removal efficacy, Rd = 100
(

1− Me
M0

)

.

Due to this heterogeneity, we chose to use P removal efficacy,
which is based on the ratio ofMe toM0, rather than the difference
betweenM0 andMe. P removal efficacy of RBs in the scope of this
study, denoted as Rd, is expressed as

Rd = 100

(

1−
Me

M0

)

= 100(1− Rr) (1)

where Rr is termed the P response ratio of RBs.
While the majority of the published studies report that RBs

are generally effective in reducing P, there exists a wide variation
in P removal efficacy estimates in the literature. For example,
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TABLE 1 | Hierarchy of evidence quality.

Category Quality of evidence

I Strong evidence obtained from at least one properly

designed; randomized controlled trial of appropriate size.

II-1 Evidence from well-designed controlled trials without

randomization.

II-2 Evidence from a comparison of differences between

sites with and without (controls) a desired species or

community.

II-3 Evidence obtained from multiple time series or from

dramatic results in uncontrolled experiments.

III Opinions of respected authorities based on qualitative

field evidence, descriptive studies or reports of expert

committees.

IV Evidence inadequate owing to problems of methodology

(e.g., sample size, length or comprehensiveness of

monitoring) or conflicts of evidence.

of the 36 published studies reviewed here (Table A1), Pratt
and Fox (2009) reported P removal efficacy estimates ranging
between −2,400 and 72.2%, while Lim et al. (1998) reported
a range between 75.5 and 94.1%. This wide range of estimates
could be attributed to the variations in the RB specifications,
such as design parameters (e.g., width and vegetation) and
site characteristics (e.g., slope, soil, on-site infiltration capacity,
weather condition during experiments, and nutrient application
practices in agricultural fields). In addition, differences in study
designs (e.g., experimental design, methods, and choice of
observation parameters) may also contribute to the uncertainty
of P removal efficacy of RBs.

Meta-Analysis Frameworks
Meta-analysis is a useful technique for synthesizing information
from various data sources. In traditional meta-analysis,
commonly used by medical, health, and ecological sciences
(Mrozek and Taylor, 2002), statistical details are pooled across
studies by assigning weights to each based on their data sizes
(Hedges et al., 1999; Kulinskaya et al., 2008; Borenstein et al.,
2009, 2010). The overall outcome of an intervention is then
estimated by summing the weighted means of all studies.
However, regression meta-analysis can also be used to conduct
a meta-analysis, e.g., in studies of nutrient removal efficacy of
RBs (e.g., Mayer et al., 2007; Zhang et al., 2010; Sweeney and
Newbold, 2014). In these examples, pooled evidence came from
the original raw data, rather than from each study’s weighted
estimate of interest (e.g., P removal efficacy).

We used two meta-analysis frameworks to assess the effects
of RB design specifications on P removal efficacy, namely,
traditional random-effects meta-analysis and mixed-effects
regression meta-analysis using Bayesian methods. The latter
accounts for both fixed and random effects. We encompassed
random-effects because the idiosyncrasies of the studies reviewed
lead to significant variations from both within- and between-
groups. We evaluated the effects of predictors (shown in Table 2)
on Rr in natural logarithm space and then transformed the results

TABLE 2 | Descriptions of the variables used in our meta-analysis.

Variables Description Unit or classification

Effect Rr P response ratio

Rd P removal efficacy %

Predictors

Numerical W Width Meters

SL Slope %

Categorical V1 Vegetation categorization

scheme 1

Bare, Grass, Tree, Grass+Tree

V2 Vegetation categorization

scheme 2

Bare, Vegetated

SO Soil Clay, Loam, Sand, Silt

PF1 P inputs in adjacent fields

categorization scheme 1

Low: Nutrient was not applied

in the adjacent fields

Medium: on-site sediment or

biosolids was applied

High: manure, fertilizer,

wastewater, crop residuals, or

chemicals was administered

PF2 P inputs in adjacent fields

categorization scheme 2

Low, Medium-or-High

IC On-site infiltration capacityLow: sites were hydraulically

overloaded, flooded irrigated,

or monitored in wet rainfall

season

Medium: naturally occurred or

simulated rainfall

Indeterminate: snowmelt

PW P Removal Pathway Surface: P in surface runoff

was measured

Subsurface: P in subsurface

soil or flow was measured

j Study id 1, 2, …, 36

back to real space, because ln(Rr) can be well-approximated by
normal distribution. This ensures that the confidence intervals of
Rr and Rd resulting from our meta-analyses are reliable (Hedges
et al., 1999).

Traditional Random-Effects Meta-Analysis

We followed the traditional meta-analysis procedures suggested
by Hedges et al. (1999) to evaluate the effects of RB characteristics
on ln(Rr). First, we estimated the mean (Lj) and within-study

variance (V̂j) of ln(Rr) for each study (j) using Equations (3) and
(4). Given that the mean of Rr for each study (j) is:

Rrj =
Mej

M0j

, (2)

where M0j and Mej represent the means of M0 and Me (i.e.,

P entering and leaving an RB) within a study; assuming M0j

is non-negative,

Lj = ln(Rrj) = ln
(

Mej

)

− ln(M0j) (3)

and
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V̂j=
SDej

2

nejMej
2
+

SD0j
2

n0jM0j
2

(4)

where SD0j and SDej denote the standard deviations of M0 and
Me, and n0j and nej denote the corresponding sample sizes. The
100 (1− α/2)% confidence interval of ln(Rr) for each study,
accounting only for the within-study variance, was estimated by

Lj ± zα/2

√

V̂j (5)

where zα/2 denotes the Z statistic at two-sided type I error α.
The corresponding confidence interval of Rr was estimated by the
exponential of Equation (5).

Next, we estimated the between-study variance (T̂) based on
the assigned weight of each study (wj) and the heterogeneity
statistic (Q):

T̂ =
Q− (k− 1)

∑k
j=1 wj −

∑k
j=1 wj

2

∑k
j=1 wj

(6)

where k is the number of total studies, wj =
1

V̂j
, and

Q =

k
∑

j=1

wj(Lj)
2
−

(
∑k

j=1 wjLj)
2

∑k
j=1 wj

. (7)

We then estimated the combined weight for each study (w∗
j )

by accounting for both within-study variance (V̂j) and between-

study variance (T̂): w∗
j = 1

V̂j+T̂
. The confidence interval of ln(Rr)

for each study, accounting for both variances, was estimated by
the following equation:

Lj ± zα/2

√

V̂j + T̂. (8)

The mean of ln(Rr) pooled across studies, factoring in both
variances, was then estimated by the following equation:

L∗ = ln(Rr)
∗
=

∑k
j=1 w

∗
j Lj

∑k
j=1 w

∗
j

. (9)

We used a more accurate estimate of standard error of L∗,
because the number of studies included in our review and the
within-study sample sizes were small (Hedges et al., 1999):

SE(L∗)

=

√

√

√

√

√

√

1
∑k

j=1 w
∗
j











1+ 4

k
∑

j=1

1

dfj

(

w∗
j

wj

)2 w∗
j

[(

∑k
j=1 w

∗
j

)

− w∗
j

]

(

∑k
j=1 w

∗
j

)2











(10)

where the degrees of freedom are given as dfj = n
0j
+nej−2. The

confidence interval for L∗ was then estimated by

L∗ ± zα/2 SE(L∗). (11)

The confidence interval of Rr pooled across all studies was
computed by the exponential of Equation (11).

The heterogeneity statistic, Q, in Equation (7) was used to
test the null hypothesis. The null hypothesis was rejected when
Q exceeded 100(1 − α)% of the chi-squared distribution with a
degree of freedom of k-1 and one-sided type I error α. Rejection,
meaning the between-study variance is not zero, suggests that
random-effects must be considered.

Next, to assess the effects of the selected RB characteristics on
P removal efficacy and their variations, we conducted categorical
traditional random-effects meta-analyses with respect to different
categorizations of RB observations. As shown in Table 2, these
categorizations were P inputs in adjacent fields (PF), P removal
pathway (PW), on-site infiltration capacity (IC), vegetation (V1),
and soil (SO). Random-effects assumption was also tested using
Q here.

Mixed-Effects Regression Meta-Analysis Using

Bayesian Modeling

Similar to previous review studies (Mayer et al., 2007; Zhang
et al., 2010; Sweeney and Newbold, 2014), our mixed-effects
regression meta-analysis was developed based on the exponential
decay function

Rr =
Me

M0
= eXβf+Zβr+ε (12)

where βf represents a fixed-effects vector associated with a
known design matrix X, βr is a random-effects vector with a
known design matrix Z, and a random normal variate ε ∼

(0, σε
2) models the effects of unobservable influences. βr was

assumed to arise from a distribution withmeanµβr and variance-
covariance matrix 6βr . We assumed that a linear combination
of RB characteristics correlates with ln(Rr). The fixed-effects
vector X consisted of both numerical and categorical variables
(Table 2). The numerical variables were width (W) and slope
(SL), and the categorical variables were vegetation (V2), soil
(SO), P inputs in adjacent fields (PF2), on-site infiltration
capacity (IC), and P removal pathway (PW). The mixed-effects
regression meta-analysis simultaneously fitted a curve to each
subset of data grouped by the categorical variables. Observations
in these data subsets were mutually exclusive. Using Equation
(1), multiple non-linear curves were derived to explain the
effects of continuous predictors (e.g., width) on P removal
efficacy (Rd) given different subsets of data. We used Bayesian
model averaging (Raftery et al., 2015) to select several fixed-
effects models with high posterior probability; then, we used
stepwise regression based on Akaike information criterion (AIC)
to identify the most parsimonious and plausible mixed-effects
model. The use of Bayesian model averaging and AIC for
model selection are well-illustrated by Hoeting et al. (1999) and
Bolker et al. (2009), respectively. We estimated the confidence
intervals of both random- and fixed-effects using Stan, a
probabilistic programming language for Bayesian inference and
optimization (Gelman et al., 2015). Berger and Berry (1988)
provided detailed explanations concerning the advantages of
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TABLE 3 | Methodological quality assessment of all studies included in this article.

Hierarchy of evidence quality Number of studies

I 18

II-1 6

II-2 11

II-3 1

using Bayesian analysis over traditional hypothesis test when
pooling multiple data sources.

RESULTS

The methodological quality of the 36 studies included is fair
(Table 3) according to the assessment of hierarchy of evidence
quality (Pullin and Knight, 2003). The relatively symmetrical
funnel plot (Figure 2) indicates that publication bias is absent,
which was also confirmed by Egger’s test (Egger et al., 1997) with
a p-value of 0.45.

Overall P Removal Efficacy Estimated by
the Traditional Meta-Analysis
Generally, RBs are effective P removal interventions (Figure 3).
The overall mean of P removal efficacy (Rd) pooled across 35
studies was 54.5% with a 95% confidence level (46.1, 61.6), while
the means of Rd for each study ranged from −128.2 to 94.7%.
Of the 36 studies reviewed, 35 were included in the traditional
random-effects meta-analysis. Wagner et al.’s (2008) study was
excluded because it only provided one observation, making the
estimation of within-study variance impossible.

P removal efficacy varied not only across studies but also
within a study (Figure 3). The hypothesis test on Q (Equation
8) further confirmed that the between-study variation of P
removal efficacy was too large to be overlooked. The within-
study variations of some of these 35 studies (e.g., Clausen et al.,
2000; Tate et al., 2000; Sheppard et al., 2006; Ryder and Fares,
2008; Duchemin and Hogue, 2009; Lemke et al., 2011) were so
large that P removal efficacy of RBs was statistically not different
than zero.

Riparian buffers were most likely to be ineffective in P removal
under four conditions, namely, (1) RBs were installed next to
fields with low P input, (2) RBs were installed to mitigate
P transport through subsurface pathways, (3) the infiltration
capacity of RB soil was low or intermediate, and (4) RBs were
not vegetated (Figure 4). The RBs planted with grass plus trees
were generally less effective than the grass or tree-only RBs. The P
removal efficacy of RBs varied given soil compositions; generally,
the clay RBs were the most effective, followed by silt, sand, and
loam RBs.

P Removal Efficacy Given Predominant RB
Features: The Results of Mixed-Effects
Regression Meta-Analysis
A total of 283 RB observations collected from 30 studies
were included in the mixed-effects regression meta-analysis

after we excluded the incomplete records. We applied Bayesian
model averaging and a stepwise procedure to select the best-fit
regression model that can be explained by physical P removal
mechanisms (Table 4). The fit of the best model had an R2 =

0.66, meaning that the predictors explained 66% of the variation
of the P response ratio to RBs (Rr). The intercept, of this mixed-
effects model, represents that the average P removal efficacy of an
RB can achieve under the condition that the RB is adjacent to a
field where “above medium level of P” is applied. The variables
modeled as having random effect include study (j), vegetation
(V2), P inputs in adjacent fields (PF2), and flow pathway (PW),
as described in Table 2.

In this mixed-effect model, the intercept represents the
average P removal efficacy an RB can achieve under the condition
where an RB is adjacent to a field where “above medium level of
P” was applied. The variables modeled as having random effect
include study (j), vegetation (V2), P inputs in adjacent fields
(PF2), and flow pathway (PW).

The coefficients of these variables add to the intercept term,
namely, P inputs in adjacent fields (at low), width interacting
with soil (clay, silt, loam, and sand), and slope interacting
with soil. A negative coefficient indicates that an increase in
a predictor improved the P removal efficacy of RBs, while a
positive value means that an increase in the predictor reduced
P removal efficiency. Multiple non-linear curves (Table 5) were
derived from the regression results (Table 4) to explain the
interactive effects of width and slope on P removal efficacy given
different subsets of data. The RBs that were installed adjacent to
the fields applied with an above medium level of P injections
regardless of soil, vegetation, and flow pathway were generally
effective in removing P (Figure 5). The P removal efficacy of
these RBs was averaged at 51.3% with a 95% confidence level
(19.6, 71.2), when both width and slope were approaching zero
(Table 5). Here, 51.3% was derived from 100(1− e−0.72), where
the intercept was estimated at −0.72 (Table 4). Conversely, the
low P-input RBs that were the neighboring fields applied with
a very minimal level of P regardless of soil, vegetation, and
pathway were generally not effective in reducing P from already
low levels. The P removal efficacy of those low P-input RBs was
averaged at −51.6%, equal to 100(1− e0.42), when both width
and slope were zero (refer to Tables 4, 5 for detail). The value of
0.42 is the sum of intercept (−0.72) and P inputs as low (1.14).
At low levels of P input, RBs can sometimes act as sources of
P. However, P flux leaching from such RBs, when in weight
or concentration, was very small because the denominator of
the percentage was infinitesimal (i.e., P transporting from the
adjacent fields where P level is low). Moreover, a 1m increase
in buffer width of a clay RB significantly improved P removal
to 52.4 from 51.3% (p < 0.01). A 1% increase in the slope
of a sandy RB significantly improved P removal to 65.4 from
51.3%. However, width increase in silt, loam, or sand RBs did
not significantly increase P removal efficacy from its base level
of 51.3%. Similarly, slope variation in clay, silt, or loam RBs
had minimal impact on adjusting P removal efficacy. Vegetation
(V2), pathway (PW), and on-site infiltration capacity (IC) were
dropped from the best model because their effect on P removal
was insignificant. However, some models that were not selected
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FIGURE 2 | Funnel plot with the 95% confidence interval region.
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FIGURE 3 | Plot showing the mean and 95% confidence interval of P removal efficacy (Rd ) for each of the 35 studies. The P removal efficacy pooled from these 35

studies is shown in the “Summary” row. N represents the number of RB observations of a study or, for the case of “Summary,” the number of studies pooled.

FIGURE 4 | Plot showing the mean and 95% confidence interval of P removal efficacy (Rd ) given multiple categorization schemes. Here, N represents the number of

studies included in each category. * indicates between-study variance is significant.
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TABLE 4 | The best regression model.

Predictor Best model

Variable Level Coefficient Avg. P removal

(%)

Width

(m)

Slope

(%)

Note

Fixed-effects Intercept P inputs in adjacent fields Medium-or-High −0.72* 51.3 0 0 Any soil

P inputs in adjacent fields Lowa 1.14** −51.6 0 0

Width and soil Claya −0.023** 52.4 1 0 P input in adjacent fields at

Silt −0.0028 51.5 1 0 Medium-or-High

Loam −0.010 51.8 1 0

Sand 0.0025 51.2 1 0

Slope and soil Clay −0.030 52.8 0 1

Silt −0.042 53.3 0 1

Loam 0.045 49.1 0 1

Sanda −0.34** 65.4 0 1

Residual variance, σε
2 0.782

Random-effects Variance of the intercept

random-effects, σZ
2

0.38

N 283

AIC 792.25

R2 0.66

**p < 0.01, *p < 0.05, aadds significant adjustment to intercept.

using our model selection criteria indicated that bare RBs hinder
P removal efficacy, while vegetated RBs reinforce P removal
efficacy. The power of vegetation in removing P, i.e., ranking
from high to low, is grass, trees, and grass + trees, although the
within-group difference was not statistically significant.

DISCUSSION

Riparian buffers are generally effective in retaining P. As shown in
Figure 3, the mean P removal efficacy of RBs is 54.5% with a 95%
confidence interval (46.1, 61.6). However, Figure 3 also suggests
that the variations of within- and between-studies are large.
While the large within-study variation of P removal efficacy rises
from a wide spectrum of RB characteristics within a study, the
large between-study variation is contributed by the idiosyncrasies
of individual studies. For example, the studies investigating the
P removal of RBs from both surface and subsurface pathways
often reported a large difference in P removal between surface
and subsurface pathways (Clausen et al., 2000; Duchemin and
Hogue, 2009). Moreover, some studies reported large variations
given that a small number of RB observations were collected (e.g.,
Marton et al., 2014).

The RBs with certain characteristics are more effective in
removing P (Figure 4 andTable 5). P is removed through RBs via
different mechanisms depending on the design and specifications
of RBs. The soil of the RBs that were adjacent to the fields
without nutrient applications and ineffective in further reducing
low levels of P from surface runoff was predominantly clay or
loam (Table 5). Dissolved P eroding from clays in such RBs may
have eclipsed P removal (Sheppard et al., 2006). Moreover, such
RBs were planted with trees of ∼25 years old. These mature

TABLE 5 | Functional forms of the best regression model that explain the

relationship of P retention effectiveness (Rd ), slope, and width of riparian buffers.

Groups of mutually

exclusive RB

observations

N Relationship between RB width

(W), slope (SL) and the mean of P

removal efficacy (Rd)

P inputs in

adjacent fields

Soil

Medium-or-high Clay 84 Rd = 100(1− e−0.72−0.023 W−0.030SL)

(PF2 = 0) Silt 90 Rd = 100(1− e−0.72−0.0028W−0.042SL)

Loam 48 Rd = 100(1− e−0.72−0.010W+0.045SL)

Sand 12 Rd = 100(1− e−0.72+0.0025W−0.34SL)

Low (PF2 = 1) Clay 32 Rd = 100(1− e0.42−0.023 W−0.030SL)

Silt 5 Rd = 100(1− e0.42−0.0028W−0.042SL)

Loam 11 Rd = 100(1− e0.42−0.010W+0.045SL)

Sand 1 Rd = 100(1− e0.42+0.0025W−0.34SL)

General relationship:

Rd = 100(1− e−0.72+1.14 PF2−(0.023Clay+0.0028Silt+0.01Loam−0.0025Sand)W

−(0.03Clay+0.042Silt−0.045Loam+0.34Sand)SL)

Where PF2 is either Medium-or-High (=0) or Low (=1); soil in a RB is either

Clay (=1 or 0), Silt (=1 or 0), Loam (=1 or 0), or Sand (=1 or 0) subject to

Clay + Silt + Loam + Sand = 1.

forested RBs may have become sources of dissolved P leaching
from vegetation and soil, because plant and microbial uptakes
are generally considered transient P pools (Hoffmann et al.,
2009). Our inference that RBs are effective in removing P in the
overland runoff but have a very less quantitative impact on P
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FIGURE 5 | The contours of P removal efficacy (mean and the 95% confidence interval) given RB width, slope, and soil type for the RBs installed adjacent to the fields

with at least medium level of P application.
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retention through subsurface pathways (Figure 4) is supported
by Hoffmann et al. (2009). Figure 4 also suggests that the RBs
covered by snowmelt or with saturated soil are ineffective in
Uusi-Kämppä (2005) also found that the RBs during snowmelt
were ineffective in P removal. Frozen and dormant vegetation
during snowmelt may have accelerated the release of dissolved
P (Sheppard et al., 2006) or are biologically inactive, causing
RBs to be ineffective in P removal. Saturated soil may impede
runoff infiltration and sedimentation and accelerate erosion
within RBs, reducing the amounts of dissolved P infiltrated and
particulate P trapped and remobilizing particulate P from soil.
Lastly, the inefficacy of bare RBs in P removal (Figure 4) may
be due to the increasing risk of erosion during rainfall events,
making such RBs act as P sources. Some alternative regression
models (with poorer goodness-of-fit) also support these findings
regarding the effect of the pathway, on-site infiltration capacity,
and vegetation.

The soil of RBs greatly affects their P removal efficacy
(Figure 4). In an RB, P is removed through different
combinations of P removal mechanisms depending on the RB
soil properties, such as particle size and chemical composition.
While both runoff infiltration and P sorption may be active
simultaneously in an RB, infiltration that reduces sediment
mobilization may be the dominant mechanism in larger particle
size soil (Hay et al., 2006; Sheppard et al., 2006; Al-wadaey
et al., 2012), whereas P sorption may be the major P removal
mechanism in smaller particle size soil, such as clay (Abu-Zreig
et al., 2003). In addition to soil clay content, many studies also
suggested that P sorption and desorption also depend on pH,
other chemical compounds (e.g., Fe, Ca, or Al), and organic
matter (e.g., Khalid et al., 1977; Vadas et al., 2005; Leader et al.,
2008; Idris and Ahmed, 2012).

The interactive effect of width and slope on P removal in
RBs varies across soil types (Figures 5, 6). Figures 5 and 6 show
that the complexity of P retention in RBs can be captured
by a non-linear functional form (Table 5). The motivation of
fitting a non-linear functional form to complex data is driven
by the concept that P retention in RBs is dictated by a specific
physical process, which can be rendered in nuanced expressions
given varied combinations of parameters. Table 5 shows that
the use of discrete variables dissects the complex system into
multiple subsystems with respect to environmental conditions
(e.g., soil, P inputs in adjacent fields). The interactive effect
of width, slope, and soil indicates that the balance between
P sorption, desorption, sedimentation, and remobilization may
vary depending on the combination of width, slope, and soil,
respectively. If sorption is the primarily P removal mechanism in
the clay RBs, then our finding that increasing width significantly
improved P removal in clay RBs suggests that sorption by
clay may be improved by increasing residence time in such
RBs. It is worth noting that our results suggest that sandy
RBs with steeper slope are more effective in reducing P
(Table 4). This inference is heavily weighted by the three RBs
with the steepest slope (i.e., 5%), which are also the most
effective in reducing P in shallow groundwater. The other 10
RBs in this group only reduce P minimally to moderately
in surface flow. While this conclusion is counterintuitive

for surface flow transport, a steeper slope with sandy soil
can increase retention time for infiltrated water before the
soil is saturated, thus increasing P absorption through roots.
This also shows that three outliers of a small sample size
(N = 13 for sandy RBs in Table 5) can greatly influence
the outcomes.

Grass, grass mixed with tree, and tree RBs are equally effective
in removing P (Figure 4). Moreover, our regression analyses
show that bare RBs remove less P, while vegetated RBs remove
more P. Although grass has the largest increase in P removal
capacity, followed by trees and then by grass + trees, the within-
group differences are very small. These findings contradict those
reported by Zhang et al. (2010) but agree with those reported
by Hoffmann et al. (2009). Zhang et al. (2010) suggested that
the RBs planted with trees are more effective in retaining P
than those with grass or grass plus trees. Overall, our traditional
meta-analysis showed that the mean of P removal efficacy
pooled from all RB observations was 54.4%. Our regression
results suggest that P removal efficacy was 51.3% for the RBs
adjacent to the fields applied with medium to high P when
width and slope were approaching zero. These estimates (54.4
and 51.3%) are higher than the value of 30.5% estimated by
Zhang et al. (2010) for grass RBs and mixed grass and tree
RBs. However, our estimate is similar to their estimate of 59.8%
for tree RBs. We found that all vegetated RBs, i.e., grass, grass
mixed with trees, and trees, are equally effective. Our results
suggest that the effect of RB width on P removal efficacy for
baseline clay RBs is −0.023, which is similar to −0.03 reported
by Zhang et al. (2010), in which the effect of RB soil type
was not investigated. However, our estimates of the effect of
width in the loam, silt, and sand RBs (ranging from −0.010
to 0.0025) are smaller than −0.03. In summary, our results
suggest that P removal efficacy (Rd) of RBs is dictated by a
complex process that involves the interaction of width, slope,
soil, and P level in the adjacent fields. The determinants of
RB efficacy involve more factors than that suggested by Zhang
et al. (2010). The number of RB observations included in our
regression meta-analysis is larger (N = 283) than that of Zhang
et al. (2010) (N = 52) and Mayer et al. (2007) (N = 88). Our
model also gives better goodness-of-fit (R2 = 0.66) than that of
Zhang et al. (2010) (R2 = 0.48). Our results suggest that the
effects of width and slope on P removal in RBs vary with soil
type, rather than a simple positive correlation between width
and P removal efficacy. These large variations in the effects
of width and slope for the silt, loam, and sand RBs give rise
to large uncertainty in the P removal efficacy of specific RB
designs. In addition, soil type may be the key to better control
the uncertainty.

CONCLUSION

This study provides not only the effect size of P removal efficacy
of RBs but also its uncertainty using two approaches to meta-
analysis, namely, traditional random-effects meta-analysis and
mixed-effects regression meta-analysis with Bayesian modeling.
Our traditional random-effects meta-analysis indicates that
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FIGURE 6 | The contours of P removal efficacy (mean and the 95% confidence interval) given RB width, slope, and soil type for the RBs installed adjacent to the fields

without P application.
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generally, P removal efficacy of RBs is 54.5% with a 95%
confidence interval (46.1, 61.6). Our mixed-effects regression
meta-analysis suggests that the RBs that were installed adjacent
to the fields applied with at least a medium level of nutrients can
achieve an average of 51.3% of P removal with a 95% confidence
level (19.6, 71.2), while width and slope are approaching zero.
By accounting for the effects of soil, we are able to provide P
removal estimates given specific soil and evaluate the effects of
soil combined with RB width and slope on P removal. Our results
suggest that the effects of RB width and slope on P removal vary
substantially given RB soil type. This indicates that dominant
P removal mechanisms in RBs vary given the interactions of
the influential RB specifications, such as width, slope, soil, and
P application practice in adjacent fields. Moreover, compared
to other qualitative P efficacy reviews, this study suggests a
larger variation in P removal efficacy of RBs and of the effects
of RB width and slope on P removal. This finding cautions
both policymakers and practitioners that optimal RB width and
slope for P removal depend on on-site soil and the level of
nutrient additions in adjacent fields. Moreover, policymakers
should consider the large variations in both P removal efficacy
and the effect of width and slope, when designing government
programs for encouraging the implementation of RBs. Our
analyses were limited by the low number of RB with trees
present, hindering our assessment of vegetation effect. We hope
this study will lead to future studies that further investigate
the complex set of characteristics that determine P removal
by RBs.
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