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Changes in precipitation can have broad and significant societal impacts. A number of

previous studies that analyzed changes in precipitation across the Great Lakes and

Midwest for a variety of time periods and using a range of quality-control standards

and methods observed increased precipitation rates and totals, although there was

considerable site-to-site variability, even for sites in close physical proximity. Biases

and discontinuities in precipitation observations may contribute to this variability. This

study identifies and examines changes in precipitation utilizing a unique approach to

observation series screening over a region encompassing the Great Lakes and broader

Midwestern region of the United States for the period 1951–2019. A multiple tier

procedure was utilized to identify high quality input data series from the Global Historical

Climatology Network-Daily dataset. Annual and seasonal time series of precipitation

indicators were calculated and subjected to breakpoint analysis as further quality control.

Trends were analyzed across a broad range of related indicators, from totals and

frequencies of threshold events to event duration and potential linkages with total

precipitable water. Results indicate that annual precipitation has generally increased

across the region in terms of totals, although there is substantial variation across the

study domain in the significance and magnitude of annual trends by indicator. Annual

trends were spatially most consistent across eastern areas of the study domain while

relatively greater station-to-station variability in trend significance and magnitude was

observed across northern and western portions. Significant trends were generally fewer

in number for seasonal precipitation indicators and less spatially coherent. The greatest

number of significant trends occurred in fall with the fewest in spring. Correlation of

indicator trends with trends of mean total precipitable water suggests weak correlations

annually and moderate correlations at the seasonal scale. The trends of the precipitation

indicators in our study exhibited more coherent spatial patterns when compared with

studies with different quality control criteria, illustrating the importance of quality control of

observations in climatic studies and highlighting the complexity of the changing character

of precipitation.
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INTRODUCTION

Precipitation is the longest observed and most widely reported
meteorological variable and is an essential component of

the Earth’s hydrologic cycle (Legates and Willmott, 1990).
Precipitation is commonly defined as “the amount, usually
expressed in millimeters or inches of liquid water depth, of the

water substance that has fallen at a given point over a specified
period of time” (Huschke, 1959, p. 438). Although precipitation
accumulation at daily, monthly, seasonal and annual scales has

received the most attention in the climatological literature (e.g.,
Contractor et al., 2021), other precipitation characteristics such

as frequency, intensity, and duration are as much, if not more,
of a concern for many natural and human systems (Trenberth
et al., 2003; Bartels et al., 2020). Moreover, changes in one or
more precipitation characteristics can have substantial societal

implications impacting many sectors, including, among others,

agriculture (e.g., Pielke and Downton, 2000; Rosenzweig et al.,
2002; Hunt et al., 2020; Kiefer et al., 2021), transportation (e.g.,
Attavanich et al., 2013; Talukder and Hipel, 2020), and tourism
(e.g., Chin et al., 2018).

Changes in precipitation characteristics are a particular
concern for the Midwest and Great Lakes region of the
United States given the region’s unique hydrology (Gronewold
et al., 2021) and its agricultural importance and contribution
to regional, national and global food security (Angel et al.,
2018; Takle and Gutowski, 2020). Not surprisingly, a number
of studies have investigated temporal trends in precipitation
characteristics either specifically for the region (e.g., Zhang and
Villarini, 2019) or as part of larger analyses of precipitation
trends in the United States (e.g., Kunkel et al., 2020a). For the
most part, these analyses have focused on trends in annual and
seasonal precipitation totals (e.g., Schoof et al., 2010), extreme
precipitation (e.g., Pryor et al., 2009; Walsh et al., 2014), and/or
the frequency of wet days (e.g., Roque-Malo and Kumar, 2017;
Bartels et al., 2020). In general, precipitation frequency and total
accumulation appear to have increased across the region over
the last several decades (Higgins et al., 2007; Dai et al., 2016;
Contractor et al., 2021). In addition, the amount of precipitation
falling during the heaviest events has increased at a greater rate
in the Midwest and Great Lakes region compared to the national
average (Angel et al., 2018). Extended dry periods have become
less frequent, but their intensity (i.e., length) has increased
slightly in recent decades (Groisman and Knight, 2008).

One constraint to comprehensive and accurate analysis of
temporal trends in precipitation characteristics at the regional
scale is the availability and quality of precipitation observations
(Costa and Soares, 2009). Although numerous authors have
examined the homogeneity of time series for various climatic
variables including daily precipitation (Winkler, 2004; Daly
et al., 2007; Wang et al., 2010), many studies employing in-
situ climate observations fail to take data quality, other than
data completeness, into account, even though the magnitude and
sign of temporal trends can be biased by changes in technology,
station siting, observing practices and other inhomogeneities
that are not necessarily captured by station record completeness
or recorded in standard metadata archives (Wang et al., 2010;

Williams et al., 2012; Baule and Shulski, 2014). Recent progress
in the development of spatial and temporal interpolation
schemes and gridded datasets, the integration of radar and
satellite derived precipitation estimates with in-situ observations,
the development of atmospheric reanalysis products, and the
availability of simulations from regional and global climate
models have only partially alleviated concerns about data quality
(Zhang et al., 2011). The limited periods of record for radar
and satellite precipitation estimates constrain their use for
estimating temporal trends, and gridded datasets can inherit
the inhomogeneities of the underlying station observations, with
developers of these datasets often advising against their use
for time series analysis (e.g., Daly et al., 2010). Consequently,
station-based climatologies, in spite of their limitations, remain
the benchmark for the assessment of long-term trends (Kiefer
et al., 2021), although caution in their application is critical to
guard against misinterpreting temporal trends. Earlier studies
of precipitation trends for the Midwest and Great Lakes region
frequently used station-level daily precipitation observations
from the Global Historical Climatology Network-Daily (GHCN-
D) database (Menne et al., 2012) for trend estimation (e.g.,
Villarini et al., 2011; Janssen et al., 2014; Guilbert et al., 2015;
Wu, 2015; Hoerling et al., 2016; Huang et al., 2017, 2018; Roque-
Malo and Kumar, 2017; Kunkel et al., 2020a,b). For the most part,
quality-control procedures have been limited to those applied by
the GHCN-D dataset developers to identify and/or correct for
errors and inhomogeneities in the precipitation data (Durre et al.,
2008, 2010), supplemented by an evaluation of data completeness
(e.g., Kunkel et al., 2020b).

Other studies have investigated the synoptic-scale drivers
of precipitation, particularly those associated with extreme
precipitation, finding that extreme precipitation events across
the Midwest and Great Lakes region are often associated with
a westward expansion and strengthening of subtropical high
pressure across the western Atlantic Basin (Gutowski et al., 2008)
as well as the advection of low-level moisture from the Gulf
of Mexico ahead of slow moving tropospheric waves (Winkler,
1988; Zhang and Villarini, 2019), with the latter being more
prevalent in the western portions of the region and the former in
the eastern areas (Bell and Janowiak, 1995; Konrad, 2001;Weaver
and Nigam, 2008). Consistent with these findings, Kunkel et al.
(2020a) showed that extreme daily precipitation events across
the contiguous United States, including the Midwest and Great
Lakes region, are directly related to total precipitable water.
Specifically, Kunkel et al. (2020b) examined the relationship
between regional trends in total precipitable water and regional
trends in extreme precipitation as calculated from GHCN-D
station-level time series. These large-scale drivers of precipitation
are often amplified or suppressed by regional and local climate
drivers such as topography, water bodies, and land use/land
cover (Myhre et al., 2016; Kunkel et al., 2020a), which can
introduce considerable spatial variability in the temporal trends
of precipitation characteristics, especially in the Midwest and
Great Lakes region with its large water bodies and varied
land use/land cover. For the most part, quality control of the
precipitation observations employed in these studies of the
synoptic, regional and local drivers of precipitation and their
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FIGURE 1 | Study region and the United States Historical Climate Network (USHCN) stations (green circles) within the study region that passed the quality control

checks for data completeness and lack of observer bias as outlined in the methods. Stations that passed the data completeness check but failed at least one of the

tests for lack of observer bias are shown as pink circles. The number of stations that passed the third quality control test (no breakpoints) is given in Table 2.

contribution to temporal trends in precipitation was confined
to an assessment of data completeness of the precipitation
time series.

This study provides a comprehensive assessment of the
temporal trends in precipitation characteristics for the Midwest
and Great Lakes region that focuses on the quality of available
precipitation time series. We employ a three-step quality-control
procedure that evaluates the GHCN-D precipitation time series
for data completeness, possible observer bias, and potential
breakpoints (i.e., discontinuities) with the goal of identifying
those GHCN-D stations in which we have the greatest confidence
for precipitation trend analysis, thereby increasing confidence
in the sign, magnitude, significance, and spatial coherence
of precipitation trends. We include a range of precipitation
indicators that capture the frequency and persistence of high
frequency, low magnitude and low frequency, high magnitude
events. Furthermore, we examine the associations between
temporal trends in the quality-controlled suite of precipitation
indicators and trends in atmospheric moisture. The study
findings provide the region’s many stakeholders with needed
information on long-term trends in precipitation characteristics
of concern to them, greater certainty in incorporating these data
in planning processes and a high-quality baseline for assessing
future trends.

METHODS

Study Region and Precipitation Data
For this study, the Midwest and Great Lakes region was defined
as the states of Pennsylvania, Ohio, Indiana, Michigan, Illinois,
Wisconsin, Minnesota, Iowa, Missouri, Kansas, Nebraska, South
Dakota, New York, and North Dakota (Figure 1).

We analyzed a subset of individual site climate series from
the National Centers for Environmental Information’s (NCEI)
GHCN-D collection (Menne et al., 2012). As a first step in
selecting stations for the analysis, we examined the GHCN-
D database for station series included in the United State
Historical Climatology Network (USHCN; Easterling, 2002)
which had at least 90% data completeness for daily precipitation
during 1951-2019. Only USHCN sites were considered, as these
stations were preselected by NCEI based on record length,
data completeness, and historical stability (Menne et al., 2012).
Data flagged by the GHCN-D quality control procedures as
suspicious were marked as missing (Menne et al., 2012). The
length of the study period allowed for trends in the second
half of the 20th century and the early 21st century to be
assessed while maintaining a relatively large pool of potential
stations and reasonable spatial coverage. This first data quality
control step led to an initial subset of 317 stations over the
study region.

The next quality control step involved using tests proposed
by Daly et al. (2007) to check for observer bias in precipitation
time series, specifically the underreporting of light (1.26mm)
precipitation amounts and the over-reporting of precipitation
amounts evenly divisible by 5 and/or 10 when expressed as
inches. As these tests were designed for data originally measured
in inches, they are described here using inches (in.) in place of
millimeters. The under-reporting check consisted of calculating
the ratio of counts between 0.06–0.10 in. (C6−10) and 0.01–0.05
in. (C1−5) as follows:

RL =
C6−10

C1−5
,
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FIGURE 2 | Histograms from two example stations in the study region showing precipitation frequency (blue bars) over the period from 1951 to 2019 binned in 0.01

increments and a gamma distribution (red line) fit to the data following Daly et al. (2007). (A) Manhattan, KS HCN passes (p ≤ 0.01) the tests for underreporting of daily

precipitation amounts <0.05 in. (1.26mm) and for over-reporting of daily precipitation amounts (in inches) evenly divisible by 5 or 10 despite showing a small divisible

by 10 bias. (B) Lamar 7N, MO HCN fails all three tests (p ≤ 0.01), showing a strong under reporting bias, a strong divisible by 5 bias, and a strong divisible by 10 bias.

where C6−10 is the total observation count in the 0.06–0.10-in.
range, and C1−5 is the total observation count in the 0.01–0.05-
in. range. If the ratio, RL, between C6−10 and C1−5 exceeded 0.60,
the station failed the check (Daly et al., 2007).

The tests for errant reporting of values divisible by 5 or 10
were conducted by binning precipitation into 0.01 in. bins, fitting
a gamma distribution to the data between 0.03 and 1.00 in., and
comparing the predicted (P) and observed (O) frequency of the
binned observations with the residual (R) calculated as:

R = 100∗(P − O)

The test for biases in amounts divisible by 5 and amounts only
divisible by 10 were carried out separately. For the divisible by
5 test, the first residual mean was calculated by averaging the
residuals over all amounts except those divisible by 5 (R1) and
the second residual (R5) consisted of the mean of residuals for
only amounts divisible by 5 as follows:

R1 =

∑n1
i=1 R1i
n1

; R5 =

∑n5
i=1 R5

n5

where n1 and n5 are the number of ones and fives bins and R1

and R5 are residuals calculated from equation 2. The means for
the divisible by 10 bias were calculated similarly, instead using
values only divisible by 10. The means were compared using a
two-tailed t-test with an alpha level of 0.01.

Examples of output from the second quality control
procedures are shown in Figure 2 for two locations, Manhattan,
KS HCN which passed all the bias tests at p ≤ 0.01 or RL ≤ 0.6
despite showing a small divisible by 10 bias, and Lamar 7N, MO
HCNwhich failed the bias tests showing a strong under reporting
bias, a strong divisible by 5 bias, and a strong divisible by 10

bias. Stations that failed any of the tests were removed from the
analysis, leaving a subset of 114 long-term climate series across
the Midwest and Great Lakes region for the period from 1951 to
2019 for precipitation indicators.

The third quality control step involved checking the time
series of the precipitation indicators for breakpoints. Possible
sources of discontinuities in the time series include, among
others, instrument changes, station moves, and changes in
observation protocols including time of observation (Winkler,
2004). Following Mallakpour and Villarini (2016), the Pettitt test
(Pettitt, 1979) was applied to identify years when a breakpoint is
likely, indicating a non-homogenous time series. A breakpoint
was considered significant at p ≤ 0.01, and the time series for
that station was excluded from further analysis. This resulted in
a variable number of stations per indicator, with the number of
excluded stations ranging from none to a maximum of 17. The
description of the Pettitt test, following Jaiswal et al. (2015) is: a
method that detects a significant change in the mean of a time
series, where the exact time of the change (i.e., breakpoint) is
unknown, According to the Pettit test, if x1,x2,x3,. . . xn is a series
of observed data which has a break point at t so that x1,x2,x3,. . . xt
has a distribution [F1(x)] which is different from the distribution
[F2(x)] of the second part of the series xt+1,xt+2,xt+3,. . . xn.
The non-parametric test statistic is described
as follows:

Ut =

t
∑

i=1

n
∑

j=t+1

sgn(xi − xj)

sgn
(

xi − xj
)

=







1, if
(

xi − xj
)

> 0

0, if
(

xi − xj
)

= 0

−1, if
(

xi − xj
)

< 0
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TABLE 1 | Precipitation indicators included in the analysis.

Index name ID Definition Units

Accumulation/simple intensity

Annual total wet day precipitation PRCPTOT Total precipitation on wet days (PRCP ≥ 1.26mm) mm

Simple daily intensity index SDII Total precipitation divided by the number of wet days mm day−1

Duration

Consecutive wet days CWD Maximum number of consecutive days with PRCP ≥1.26mm days

Consecutive dry days CDD Maximum number of consecutive days with PRCP < 1.26mm days

Percentile (Percentile values were calculated for the period 1951–1980)

Precipitation on very wet days R95pTOT Total precipitation on days when PRCP ≥ 95th percentile mm

Precipitation on extremely wet days R99pTOT Total precipitation on days when PRCP ≥ 99th percentile mm

Threshold

Number of days with measurable precipitation R1.26mm Number of days with PRCP ≥ 1.26mm days

Number of heavy precipitation days R10mm Number of days with precipitation ≥ 10mm days

Number of very heavy precipitation days R20mm Number of days with precipitation ≥ 20mm days

Number of days with consecutive days with measurable

precipitation

WW Annual count of days when PRCP ≥ 1.26mm on consecutive

days

days

Number of days with consecutive days without measurable

precipitation

DD Annual count of days when PRCP < 1.26mm on consecutive

days

days

Absolute

Maximum 1-day precipitation* Rx1day Maximum 1-day precipitation mm

Maximum 5-day precipitation* Rx5day Maximum consecutive 5-day precipitation mm

All indicators were calculated annually and seasonally except those marked with an asterisk(* ). These were only calculated annually.

The test statistic K and the associated confidence level (ρ) for the
sample length (n) is described as:

K = Max |Ut|

ρ = e
( −K
n2+n3

)

When ρ is smaller than the specified confidence level (p), a
breakpoint is considered significant.

Precipitation Indicators
This study included a range of precipitation indicators. Several
indicators were used to characterize the frequency of non-
extreme precipitation, including the number of days with
measurable precipitation (e.g., Pryor et al., 2009) and the
probabilities of wet-wet day and dry-dry day sequences (e.g.,
Ines et al., 2011). A wet day was defined as a precipitation
total ≥ 1.26mm (0.05 in) (Groisman et al., 1999). Extreme
precipitation was represented in the analysis by indices developed
by the Expert Team on Climate Change Detection and
Indices (ETCCDI) (Donat et al., 2013) and annual values
were calculated using the software packages provided by the
ETCCDI Working Group (available at http://www.climdex.org).
The extreme precipitation indicators include 10 wet indices and
1 dry index that can be further grouped into percentile-based
indices (2), threshold indices (3), absolute value indices (2),
duration indices (2), annual accumulation, and “simple” intensity
(annual total precipitation divided by the number of wet days).
For the percentile-based indices, the base period for defining
the percentile value was the 30-year climate normal period of

1981–2010. Descriptions of each of the non-extreme and extreme
precipitation indicators are provided in Table 1.

All precipitation indicators were also defined for the
climatological seasons of spring (MAM), summer (JJA), fall
(SON), and winter (DJF). This is in contrast to most previous
studies where precipitation indicators were calculated for
annual time steps, with less attention paid to the seasonal
variations in the precipitation indicators beyond the frequency
of high intensity daily precipitation events (e.g., Mallakpour and
Villarini, 2017). Given the importance of precipitation timing
and sequencing for numerous regional applications, such as soil
moisture and nitrogen movement in agricultural systems (Riha
et al., 1996; Bowles et al., 2018) and plant disease risk (Komoto
et al., 2021), this study extended the precipitation indicators
to the seasonal time step. Additionally, the seasonal analyses
provides greater context to more clearly interpret annual trends.

Following the lead of numerous recent studies (e.g., Alexander
et al., 2006; Pryor et al., 2009; Shulski et al., 2015; Dai
et al., 2016; Roque-Malo and Kumar, 2017), non-parametric
statistical methods were employed to estimate the significance
and magnitude of temporal trends in the precipitation indicators
at the study locations. While a number of potential non-
parametric methods were available (e.g., Sneyers, 1990; Sen, 2015;
Onyutha, 2021), we chose the two-tailedMann-Kendall trend test
(Mann, 1945; Kendall, 1955, 1975) to test for the significance
of potential temporal trends due to its prevalence in previously
mentioned studies across the region to allow for intercomparison
of results. A strength of the Mann-Kendall method is its ability
to assess the significance of trends that are monotonic but
not necessarily linear in character. For those locations with
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significant trends as identified by theMann-Kendall test, the non-
parametric Kendall’s tau-based slope estimator (Sen, 1968) was
used to obtain a numerical estimate of the temporal trend. All
analyses were conducted using three significance levels (p≤ 0.05,
p ≤ 0.10, and p ≤ 0.20) to examine how significance level affects
the number of significant trends and their spatial representation.
The equations describing the Mann-Kendall test are as follows:

S =

n
∑

i=1

i−1
∑

j=1

sgn(xi − xj)

where n is the total length of data, xi and xjare two generic
sequential data values, and the following function assumes
the values:

sgn
(

xi − xj
)

=







1, if
(

xi − xj
)

> 0

0, if
(

xi − xj
)

= 0
−1, if

(

xi − xj
)

< 0

The mean of S is E[S]= 0 and the variance σ
2 is

σ 2 =
1

n

[

n (n− 1) (2n+ 5) −
∑

t

t(t − 1)(2t + 5))

]

where n is the length of the time series and t is the extent of any
given ties andΣt denotes the summation over all tied values. The
statistic S is approximately normally distributed provided that the
following Z-transformation is employed:

Z =







S−1
σ

if S < 0
0 if S = 0
S+1
σ

of S > 0

The Sen’s (1968) slope was calculated as follows: first, a set of
linear slopes is calculated

dk =
Xj − Xi

j− i

for (1 ≤ i < j ≤ n), where d is the slope, X denotes the variable, n
is the sample length, and i, j, and k are indices. Sen’s slope is then
calculated as the median from all slopes (dk).

Total Precipitable Water
Daily values of total precipitable water (TOTPRCPWAT) were
obtained from the NCEP/NCAR I Reanalysis (Kalnay et al., 1996)
at a 2.5 x 2.5◦ spatial resolution. The daily values were used to
calculate mean daily annual and seasonal total precipitable water
for each year during the 1951–2019 study period for a bounding
box ranging from 106 to 69◦W longitude and 34–54◦N latitude.
Only grid cells that contained observing sites used in our analyses
were subjected to analysis. Pearson correlation coefficients (r)
and non-parametric Kendall rank correlation coefficients (τ )
were calculated between the trend value of four representative
precipitation indicators (WW, PRCPTOT, R1.26mm, R95pTOT)
at each station considered previously and the trend of total
precipitable water of the nearest reanalysis grid cell. Pettitt tests

were conducted on the NCEP NCAR time series of precipitable
water for each grid cell to examine for potential heterogeneities
prior to the satellite era (e.g., Kunkel et al., 2020b). Significant
breakpoints (p < 0.01) were evident at some grid cells, however
they were not clustered in time. Given the noted strength of the
NCEP-NCAR reanalysis in areas where radiosonde observations
are available (Trenberth et al., 2005), as in our study region, we
deemed the data appropriate for our analyses.

RESULTS

Trends in Precipitation Indicators
Annual Indicators

For the annually-derived precipitation indictors, the number of
stations with statistically-significant (p ≤ 0.10) trends varied
substantially among the different indicators, ranging from 67%
of the station sites for annual total precipitation (PRCPTOT) to
only 20% of the stations for the maximum number of consecutive
wet days per year (CWD) (Table 2). With the exception of
the maximum number of consecutive dry days (CDD) and the
number of dry-dry day sequences (DD), more than 90% of the
statistically significant trends over time when summed across
the indicator variables are positive, indicating a generally wetter
climate. The negative trends observed for CDD and DD are
also indicative of a wetter climate. In addition to PRCPTOT, the
majority of the locations display significant upward trends for
the simple intensity index (PRCPTOT divided by the number
of days with precipitation ≥ 1mm; SDII), the number of days
per year with precipitation ≥ 10mm (R10mm), the number
of days per year with precipitation ≥ 20mm (R20mm), and
the total precipitation on days with daily precipitation ≥ 95th

percentile (R95pTOT). A majority (54%) of stations also have
statistically significant negative trends for DD, whereas only
39% of the locations have statistically significant positive trends
in the annual number of wet-wet day sequences (WW). A
considerably smaller number of stations displayed significant
trends for several of the other indicators, with the fraction of
stations with significant trends falling below 30% for CDD,
CWD, total precipitation on days with daily precipitation ≥

99th percentile (R99pTOT), maximum one-day precipitation
amount (Rx1day) and maximum consecutive 5-day precipitation
(Rx5day). With the exception of CDD and DD, statistically
significant negative trends were infrequent for the various
indicators, ranging from no significant negative trends for CWD,
SDII, R95pTOT, R99pTOT, SDII, Rx1day, and Rx5day to 6%
of the locations for WW. The number of stations exhibiting
significant breakpoints was greatest for PRCPTOT (14) and
R.126MM (17). Rx1day, Rx5day, CDD, and CWD showed no
significant breakpoints.

A subset of indicators that encompass the range of
precipitation characteristics included in the analysis, namely
PRCPTOT, WW, the number of wet days with precipitation ≥

1.26mm (R1.26mm), and R95pTOT, is used to illustrate the
spatial variability across the study region in the temporal trends
for the annual indicators (Figure 3). For all four indicators,
statistically significant positive trends are distributed across the
study region, although the magnitude of these trends is generally
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TABLE 2 | Number of stations exhibiting statistically significant trends (Mann Kendall, p ≤ 0.05 two-tailed, p ≤ 0.10 two-tailed, p ≤ 0.20, two-tailed) from 1951 to 2019 in

the annual precipitation indicators.

Precipitation

indicator

Total number of

stations after

breakpoint

analysis

Number of

stations with

significant positive

trends (p ≤ 0.05)

Number of

stations with

significant

positive trends

(p ≤ 0.10)

Number of

stations with

significant

positive trends

(p ≤ 0.20)

Number of

stations with

significant

negative trends

(p ≤ 0.05)

Number of

stations with

significant

negative trends

(p ≤ 0.10)

Number of

stations with

significant

negative trends

(p ≤ 0.20)

PRCPTOT 100 47 75 79 1 1 1

R1.26mm 97 42 53 61 1 3 5

SDII 112 42 52 62 0 0 3

CWD 114 17 23 36 0 0 0

CDD 113 0 2 2 16 28 44

WW 105 27 44 51 5 7 9

DD 107 2 3 3 41 61 65

R10mm 104 42 60 72 0 1 1

R20mm 101 35 58 59 1 1 1

R95pTOT 104 38 62 63 0 0 0

R99pTOT 108 11 33 39 0 0 0

Rx1day 114 13 29 43 0 0 0

Rx5day 114 23 33 47 0 0 2

Indicators where more than 50% of stations analyzed showed a significant trend are shown in bold. See Table 1 for definition of the abbreviations for the precipitation indicators.

larger in the eastern two-thirds of the study area, including in
the vicinity of the Great Lakes. In the western third of the study
region, although the trends in the selected indicators are generally
positive, the magnitude of the trends is smaller with relatively
fewer stations meeting the threshold for statistical significance.
Regardless of precipitation indicator, negative trends are evident
for only a few stations and are insignificant. Significance of
the same indicators but with a weaker significance threshold
(p ≤ 0.20) is shown in Supplementary Figure 1. When the
significance level is lowered, the number of significant positive
trends increases substantially with no or very little increase in
the number of significant negative trends and the stations with
significant positive trends are more spatially coherent. When
a stricter (p ≤ 0.05) threshold is used, the number of stations
exhibiting significant trends decreases when compared to the
moderate (p ≤ 0.10) and weak (p ≤ 0.20) thresholds. Spatially,
when the strict threshold is used, the largest groupings of sites
with significant trends are in the central and eastern portions
of the study region (Supplementary Figure 2). The number and
spatial coherence of significant positive trends in the western
areas of the study region are reduced under the strict criterion.

We also evaluated the ratio of the trend estimates for the
annual indicators of R95pTOT and PRCPTOT for stations
with a significant positive trend in PRCPTOT, as an indicator
of the relative contribution of precipitation on very wet days
to trends in total precipitation (Supplementary Figure 3). In
general, precipitation on very wet days has contributed the
most (ratios >0.60 and at some locations >1.0) to annual
total precipitation in eastern New York/Pennsylvania, Indiana,

southern Wisconsin/eastern Iowa, and eastern Nebraska/Kansas,

compared to elsewhere in the study region. The modest

(<0.60) ratios at many locations elsewhere suggest that the
overall increase in total precipitation is not exclusively, or even

primarily, tied to increases in the frequency of higher intensity
events. Rather, changes in the frequency of lighter accumulations
are also contributing to the trends in total precipitation.

To better understand the consistency at individual locations
of the trends across precipitation indicators, a four-sided Venn
diagramwas used to plot the number of significant positive trends
and the percentage of significant positive trends for all possible
combinations of the four representative precipitation indicators,
PRCPTOT, WW, R1.26mm, and R95pTOT, recognizing that
the number of available stations varies among indicators due to
differing frequency of breakpoints identified in the time series
(Figure 4). The number of locations with significant positive
trends for multiple indicators is substantial, with 16.3% of the
stations with positive trends for all the indicators considered and
19.8% stations with positive trends for the two accumulation
indicators PRCPTOT and R95pTOT. The number of stations
with significant trends for the three variable combinations and
the other two variable combinations is relatively small.

Seasonal Indicators

For brevity, seasonal results are shown only for PRCPTOT,
R95pTOT, WW, and R1.26mm, which capture the breadth
of the different precipitation indicators. As for the annual
precipitation characteristics, we observe that in all seasons the
number of significant positive trends at all significance thresholds
considered substantially exceeds the number of significant
negative trends for the selected indicators (Table 3). However, the
proportion of stations with significant trends varies by season.
The seasonal trends for PRCPTOT indicate that no single season
is solely responsible for the annual increase in precipitation
observed at the majority of the stations. Significant (p ≤ 0.10)
positive trends are observed at over 35% of the stations in fall
and winter, 30% of the stations in summer, and 20% of stations
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FIGURE 3 | Trends for 1951–2019 in representative annual indicators of precipitation characteristics at locations in the Midwest and Great Lakes region that passed

the quality control checks described in the methods section: (A) annual counts of wet-wet day sequences (ANN WW; days; count year−1; upper left), (B) annual total

precipitation on wet days (PRCPTOT; mm year−1; upper right), (C) number of days with precipitation ≥ 1.26mm (R1.26mm; days year−1; lower left), and (D) total

precipitation on days when precipitation is ≥ 95th percentile (R95pTOT; mm year−1; lower right).

in spring. With the exception of one location in winter, no
significant negative trends in seasonal PRCPTOT are evident.
For R95pTOT, significant positive trends are evident at 33% of
the stations in fall but at only approximately 20% of stations
in the other seasons. For WW, over 24% percent of the station
locations have significant positive trends in summer, fall, and
winter, whereas only 15% of all stations observed in spring
have positive trends. When the threshold for significance is
weaker (p < 0.20), the number of significant trends increases
substantially for most indicators in most seasons. Almost all of
the additional significant trends that emerge by lowering the
threshold are positive in sign. The number of significant trends
in any one season is typically less than the number of significant
trends for the corresponding annual indicator. Under the weak
(p ≤ 0.20) threshold, no individual seasonal indicator presents
significantly positive trends at more than 50% of stations,
with the exception of R1.26mm in fall Similar to the annual
indicators, when the threshold for significance is stricter (p ≤

0.05), fewer stations exhibit statistically positive trends, while

the number of statistically significant negative trends remains
largely unchanged.

Seasonal variations in the spatial patterns in trends over
time are shown for PRCPTOT, R95pTOT, and WW. The
spatial distributions for R1.26mm are not shown as they are
similar to those for WW. Large between season differences in
the spatial variability of the temporal trends are evident. For
instance, locations with significant (p ≤ 0.10) positive trends
in seasonal PRCPTOT are distributed across the study area in
fall but are largely confined to the vicinity of the Great Lakes
(Wisconsin, the Lower Peninsula of Michigan, northeastern
Ohio, western Pennsylvania, western New York) in winter
(Figure 5). In spring, most of the significant positive trends are
found in the western two thirds of the study region with few
significant trends in New York, Pennsylvania, and Ohio, whereas
in summer the greatest density of significant trends along with
the largest trend magnitudes are found in the eastern and
central portions of the study region. For most stations, significant
positive trends are observed in only one or two seasons. A
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FIGURE 4 | Venn Diagram of the number of stations with significant positive

trends for all possible combinations of four representative annual precipitation

indicators: the probability of wet-wet days (WW), total annual precipitation

(PRCPTOT), the number of wet days (R1.26mm), total precipitation on days

with precipitation ≥ 95th percentile (R95pTOT). Percentages are relative to

largest number of significant positive trends which was 86. Percentage of

significant (p ≤ 0.10) positive trends falling in each category is shown in

parentheses.

significant negative trend across all seasons is observed at only
one location.

The seasonal trends of R95pTOT display less spatial
coherence when compared to seasonal PRCPTOT and to
annual R95pTOT, with locations with significant positive trends
often surrounded by locations with insignificant positive, and
sometimes insignificant negative, trends (Figure 6). The number
of locations in winter with significant positive trends is relatively
small and these locations are mostly found in the vicinity of the
western Great Lakes. The spatial extent of significant positive
trends expands in spring to include most of the southern and
eastern portions of the study area, with few significant trends
evident in the northwestern portion of the study area. In summer,
locations with significant positive trends are clustered in New
York/Pennsylvania, Ohio/Indiana, and southern Wisconsin. The
largest magnitude trends in R95pTOT are generally observed
during the summer months. Significant positive trends are
evident in fall across much of the area except for the extreme
western portion of the study region and in the Lower Peninsula
of Michigan. Although negative trends are evident for a number
of locations in all seasons for R95pTOT, these trends are
significant at only one location in spring and two locations
in winter.

Significant trends in seasonal WW are less spatially coherent
than the annual WW indicator (Figure 7). As with seasonal
R95pTOT, significant positive trends are often surrounded
by insignificant trends or in a few cases significant negative
trends. In general, stations with significant positive trends
are more clustered for WW than for seasonal R95pTOT but
less so than for seasonal PRCPTOT. The number of stations
with significant positive trends is small in spring, and there

are several (5) significant negative trends. The stations with
significant positive trends are relatively dispersed, although some
clustering is evident near the center of the study region. A
more distinct spatial pattern is present in summer. Stations with
significant positive trends are concentrated in Iowa, Indiana,
Wisconsin, Ohio, Pennsylvania, and New York. In contrast,
mostly insignificant trends are evident throughout the Plains
states and east across Minnesota and northern Wisconsin, and
the few significant trends in this area are negative. In fall,
significant positive trends in WW are found across the northern
half of the study region, whereas mostly insignificant trends of
mixed sign are observed for the southern half of the region with
the exception of Illinois. Little spatial coherence is evident in
the wintertime trends of WW, other than some clustering of
significant positive trends in the central and extreme northeast
sections of the study region.

When compared to annual indicators, the Venn diagrams of
seasonal indicators show that the groupings of indicators are
more dispersed among the possible combinations of the four
representative indicators (Supplementary Figure 4). In fall and
winter the three-indicator combination of PRCPTOT, WW, and
R1.26MM and the two-indicator combination of PRCPTOT and
R95pTOT aremore frequent, while in summer themost common
combination is PRCPTOT and R1.26MM. In spring, locations are
less likely compared to the other seasons to experience significant
positive trends for two ormore of the representative precipitation
indicators, in part a reflection the smaller number of significant
trends. For all seasons except spring a substantial number of
stations display a significant trend only for R95pTOT. Venn
diagrams can also be used to assess whether individual locations
are likely to experience significant trends in a particular indicator
duringmore than one season. Our results indicate that, regardless
of the indicator type, significant positive trends are most likely to
be observed during only one season (Supplementary Figure 5).

Total Precipitable Water
Trends in annual daily mean TOTPRCPWAT during the 1951–
2019 study period are positive in sign and significant over
the southern two-thirds of the study region (Figure 8). The
largest trends are in the south-central portion of the study
region with the smallest trends located over the central and
western Great Lakes. A significant increase in TOTPRCPWAT
is also evident over the Great Plains, with the magnitude of
the trend decreasing from south to north. Correlations between
the trends in annual TOTPRCPWAT and the trends in the
annual values of the four representative precipitation indicators
are weak to moderate (Table 4 and Supplementary Figure 6),
as indicated by the parametric Pearson’s r and non-parametric
Kendall’s τ correlation coefficients. Correlations for the annual
trends are insignificant (p ≤ 0.05) and negative for WW and
R1.26mm, and insignificant but positive for PRCPTOT. Only the
correlation between the annual trends in TOTPRCPWAT and
those in R95pTOT is significant, with the sign of the correlation
indicating a positive association between the annual trends of
these two variables.

Assessment of the possible contribution of seasonal trends
in TOTPRCPWAT to seasonal trends in the representative
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TABLE 3 | Number of stations exhibiting statistically significant trends (Mann Kendall, p ≤ 0.05 two-tailed, p ≤ 0.10 two-tailed, p ≤ 0.20, two-tailed) from 1951 to 2019 in

four representative seasonal indicators: total seasonal precipitation (PRCPTOT), the number of wet days (R1.26mm), the count of wet-wet days (WW), and the total

precipitation on days with precipitation ≥ 95th percentile (R95pTOT).

Precipitation

indicator

Season Total number of

stations after

breakpoint

analysis

Number of

stations with

significant

positive trends

(p ≤ 0.05)

Number of

stations with

significant

positive trends

(p ≤ 0.10)

Number of

stations with

significant

positive trends

(p ≤ 0.20)

Number of

stations with

significant

negative trends

(p ≤ 0.05)

Number of

stations with

significant

negative trends

(p ≤ 0.10)

Number of

stations with

significant

negative trends

(p ≤ 0.20)

PRCPTOT

Annual 100 47 75 79 1 1 1

Spring 112 12 21 31 0 0 5

Summer 111 20 31 49 0 0 2

Fall 114 34 42 50 0 0 0

Winter 104 22 32 44 0 0 1

R1.26mm

Annual 97 42 53 61 1 3 5

Spring 114 10 15 21 4 6 12

Summer 113 21 31 37 0 1 3

Fall 111 25 33 66 0 0 1

Winter 110 23 27 35 1 2 5

WW

Annual 105 27 44 51 5 7 9

Spring 113 8 17 26 4 5 9

Summer 111 16 24 35 4 6 9

Fall 111 18 27 41 0 1 1

Winter 106 18 25 39 0 0 1

R95pTOT

Annual 104 47 62 63 0 0 0

Spring 111 12 22 37 0 0 0

Summer 114 15 22 37 0 0 3

Fall 114 28 38 56 0 0 0

Winter 111 15 22 37 0 0 0

Indicators where more than 50% of stations analyzed showed a significant trend are shown in bold.

precipitation indicators is complicated by seasonal variations
in the significance of the TOTPRCPWAT trends, although in
general correlation coefficients at the seasonal time scale are
larger than those at the annual scale. Significant (p ≤ 0.05)
positive trends in TOTPRCPWAT (Supplementary Figure 7)
are evident during spring, summer, and fall for portions of
the study area, although insignificant trends are observed
for a substantial number of the reanalysis grid cells, with
the location of the insignificant trends varying by season.
In contrast, trends in TOTPRCPWAT are insignificant for
all grid cells in winter. Most of the significant (p = 0.05)
correlations between the seasonal trends in TOTPRCPWAT
and the season trends in the precipitation indicators are
positive, although the significance of the trends varies by season
and indicator. Correlations between the seasonal trends are
significant in spring (PRCPTOT, R1.26mm, R95pTOT), summer
(WW, PRCPTOT, R1.26mm, R95pTOT), and winter (PRCPTOT
and R95pTOT), although the significant winter trends should
be treated cautiously given the weak trends in TOTPRCPWAT
at this time of year. No significant correlations were observed
in the fall under Pearson’s r. When Kendall’s τ is used,

correlations for fall are significant and negative for PRCPTOT
and R95pTOT.

DISCUSSION/CONCLUSION

The impact of the additional quality control measures on the
number of stations available for precipitation trend analysis is
striking. Of the 317 stations in the Midwest and Great Lakes
region that met the initial criterion of 90% completeness, 203
stations were removed at the second step because they failed
the tests for observer bias (underreporting of precipitation ≤

1.26mm and over-reporting of precipitation amounts divisible
by 5 or 10 when precipitation is recorded in inches). In contrast,
the breakpoint analyses, which were conducted separately for
each precipitation indicator in recognition that discontinuities
can impact the indicators differently, removed only a small
portion of the remaining stations (17 or fewer, depending
on the indicator). This is a somewhat surprising result given
the well-documented discontinuities in observations from the
United States Cooperative Observer Network (Karl et al., 1987;
Winkler, 2004; Menne et al., 2010), which is the largest source
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FIGURE 5 | Trends (mm year−1) in seasonal total precipitation (PRCPTOT) for: (A) spring, (B) summer, (C) fall, and (D) winter.

of precipitation data for the United States in the GHCN-D
database (Menne et al., 2012). One interpretation is that many
of the precipitation time series were affected by both observer
bias and discontinuities and were removed following the tests
for observation bias. The number of stations with breakpoints
was largest for the “accumulation” and “threshold” precipitation
indicators, suggesting the tests for observation bias did not
remove all afflicted time series for these indicators. The final
suite of quality-controlled time series has a much coarser station
density than the datasets used in previous studies, and, while not
suitable for investigating local-scale variations in precipitation
trends, provides high confidence in the estimation of regional-
scale variations. The quality-control routines implemented here
also allow for more confidence in trends across the range of
indicators from high frequency light events to low frequency
extreme events, as observer bias affects various indicators
differently and may not be captured in studies relying solely on
data completeness and documented changes for data screening.

One finding from the use of the carefully quality-controlled
time series is that the estimated trends for 1951–2019 in the
Midwest and Great Lakes region are predominantly positive
for all the “wet” precipitation indicators and negative for the

“dry” precipitation indicators. In fact, there is a near absence of
significant negative trends across the region for all indicators,
with the exception of DD and CDD, and for all seasons and at
all three significance levels included in the analysis. On the other
hand, the proportion of stations with significant positive trends
varies by precipitation indicator, season, and significance level. In
general, significant trends at the moderate (p≤ 0.10) significance
level are most likely for the indicators involving precipitation
accumulation and counts of days with precipitation above
specified thresholds, and less likely for indicators of maximum
reported precipitation and the indictors defined in terms of the
sequencing of precipitation. Thus, users need to be cautious
of inferring from significant trends in common precipitation
characteristics, such as total precipitation, that significant trends
are also occurring in other precipitation characteristics at a
particular location. The larger number of significant positive
trends for the “wet” indicators under the weak (p ≤ 0.20)
significant level obviously need to be interpreted cautiously
because of the greater probability of a Type I error (rejecting the
null hypothesis of no trend when it is true). However, the greater
spatial coherence of the locations with significant trends for the
weak significance level compared to the moderate and stringent
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FIGURE 6 | Trends (mm year−1) in the seasonal amount of total precipitation falling on days with precipitation ≥ 95th percentile (R95pTOT) for (A) spring, (B) summer,

(C) fall, and (D) winter.

levels is consistent with a regional-scale trend toward a wetter
climate that is emerging from interannual variability.

Our results also confirm that precipitation indicators that
are defined annually often mask strong seasonal variations in
the temporal trends of both high frequency, low magnitude
events and low frequency, high magnitude events. For almost
all locations, one cannot assume based on the trends in an
annual precipitation indicator that a location is experiencing
similar trends seasonally. Instead, a significant trend in a
particular precipitation indicator typically is observed during
only one season.

While the low spatial density of the stations that met
all three of the quality control criteria somewhat constrains
inferences regarding subregional variations in precipitation
trends, our results, especially those using the weaker and
moderate significance levels, suggest that the character of
precipitation is not changing uniformly across the Midwest
and Great Lakes region. In terms of the annual values of four
representative precipitation indicators (PRCPTOT, R1.26mm,
WW, R95pTOT), significant positive trends are observed across
the central and eastern portions of the study region for all

four indicators, whereas in the west there is a notable absence
of significant positive trends for R1.26mm events. Seasonal
differences in the spatial distribution of significant trends are
also evident, particularly for winter when significant trends for
the four representative indicators are largely confined to western
Great Lakes portion of the study region. The smaller number of
significant trends present under the strict criteria, highlights the
strength and relative cohesiveness of trends in precipitation in
the central and eastern portions of the region, where most of the
significant (p ≤ 0.05) trends are located.

The quality-controlled time series are also useful for
evaluating relationships between trends in the precipitation
characteristics and physical processes potentially contributing to
these trends. Expanding on the intriguing findings of Kunkel
et al. (2020b) who found a significant positive correlation
between regionally-averaged trends in extreme precipitation and
trends in precipitable water for the contiguous United States,
we correlated, at annual and seasonal temporal scales, the
trends in PRCPTOT, R1.26mm, WW, and R95pTOT for the
quality-controlled station time series with trends in average
daily precipitable water at a 2.5◦ latitude x 2.5◦ longitude
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FIGURE 7 | Trends (days year−1) in the seasonal count of wet-wet-day sequences (WW) for (A) spring, (B) summer, (C) fall, and (D) winter.

FIGURE 8 | (A) Significance (p ≤ 0.05) and (B) Sen’s slope (kg m−2 yr-1) of the trend in annual mean daily total precipitable water for the study region from 1951 to

2019. The stations with quality-controlled precipitation time series are shown on both maps as dots.

resolution from the NCEP/NCAR reanalysis (Kalnay et al., 1996).
The correlations for R95pTOT support for the Midwest and
Great Lakes region the coarser-scale findings from Kunkel et al.
(2020a) that the trend in extreme precipitation increases with
an increasing trend in precipitable water, but also point to
a more complex interpretation of the relationship between in

trends in precipitation characteristics and trends in precipitable
water for the study region. In particular, significant (p ≤

0.05) correlations are evident during spring and summer for
PRCPTOT and R1.26mm and in summer for WW, suggesting
that increases in precipitable water may also contribute to
positive trends in high frequency precipitation events and even
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TABLE 4 | Pearson correlation coefficients (r) and Kendall rank correlation

coefficients (τ ) between annual and seasonal trends from 1951 to 2019 in

precipitation indicators and total precipitable water.

Indicator Season r pr τ pτ

WW Spring 0.11 0.26 0.062 0.33

Summer 0.37 <0.01 0.23 <0.01

Fall −0.18 0.06 −0.10 0.13

Winter 0.036 0.71 0.03 0.68

Annual −0.089 0.37 −0.023 0.73

PRCPTOT Spring 0.33 <0.01 0.21 <0.01

Summer 0.4 <0.01 0.26 <0.01

Fall −0.14 0.15 –0.13 0.05

Winter 0.25 0.01 0.18 0.01

Annual 0.13 0.20 0.097 0.15

R1.26MM Spring 0.2 0.04 0.15 0.02

Summer 0.42 <0.01 0.27 <0.01

Fall −0.086 0.36 −0.04 0.55

Winter 0.058 0.55 0.01 0.85

Annual −0.076 0.45 −0.015 0.82

R95pTOT Spring 0.19 0.05 0.06 0.33

Summer 0.26 0.01 0.17 0.01

Fall −0.13 0.16 –0.16 0.014

Winter 0.32 <0.01 0.22 <0.01

Annual 0.21 0.03 0.15 0.03

Significant correlations (p ≤ 0.05) are noted in bold. P-values for Pearson’s r are noted in

pr and Kendall’s τ are noted under pτ .

to the sequencing of wet days. Also, the correlation between the
trend in R95pTOT and that for precipitable water is insignificant
in fall for the parametric correlation coefficient and significant
but negative for the non-parametric correlation coefficient,
suggesting that changes in atmospheric lifting mechanisms (e.g.,
fronts, extratropical cyclones) rather than increased atmospheric
humidity may be more important for explaining the positive
trend in R95pTOT in the Midwest and Great Lakes region in
fall. Our findings of insignificant trends in precipitable water
for large portions of the study area, especially in winter when
the precipitable water trends are insignificant for the entire
NCEP/NCAR grid over the study area, point to the need for
cautious interpretation of the relationship between trends in
precipitable water and trends in precipitation characteristics.

We have demonstrated the usefulness of quality-controlled
precipitation time series for evaluating trends in precipitation
characteristics and for investigating their relationship with
processes. However, the limitations of the quality-controlled
dataset should also be considered in interpreting the findings
presented here and when applying the time series in future work.
A key limitation is the coarse spatial resolution of the quality-
controlled time series, limiting their usefulness in investigating
potential contributions of local-scale features such as lake
surfaces or topography on trends in precipitation characteristics.

Another concern is that identified breakpoints in the time series
that are attributed to changes in instrumentation, station moves
or observation protocols may instead be caused by changes in
circulation regimes. Also, some types of precipitation indicators
may be less sensitive to observer bias than others, and a less
stringent protocol for removing time series for consideration
would be appropriate. Moreover, for any quality control routine
that is not manual, there are almost always time series with
data issues relevant to a particular analysis that pass through
filters and checks and those without data issues that are
incorrectly removed.

In sum, our analysis focused on quality control of station
time series to improve the quality of data prior to analysis.
As a result of this effort, the trends in our study tended to
exhibit a more cohesive spatial and temporal similarities
when compared with studies with different quality control
criteria, illustrating the importance of quality control of
observations in climatic studies. Also, our results indicate,
at least for the Midwest and Great Lakes region, that not
only is extreme precipitation increasing but the entire
distribution of precipitation has been shifting upward
over time.
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