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The convergence of AI, IoT, and
big data for advancing flood
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S. Samadi*
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Floods are among the most destructive natural hazards that a�ect millions of

people across the world leading to severe loss of life and damage to properties,

critical infrastructure, and the environment. The combination of artificial

intelligence (AI), big data, and the Internet of Things (IoTs), has the potential to

more accurately predict these extreme events and accelerate the convergence

of advanced techniques for flood analytics research. This convergence—so

called the Artificial Intelligence of Things (AIoT)—is transformational for both

technologies and science-based decision making since AI adds value to IoT

through interpretable machine learning (ML) while IoT leverages the power

of AI via connectivity and data intelligence. The aim of this research is to

discuss the workflow of a Flood Analytics Information System (FAIS; version

4.00) as an example of AIoT prototype to advance and drive the next generation

of flood informatics systems. FAIS integrates crowd intelligence, ML, and

natural language processing (NLP) to provide flood warning with the aim of

improving flood situational awareness and risk assessments. Various image

processing algorithms, i.e., Convolutional Neural Networks (CNNs), were also

integrated with the FAIS prototype for image label detection, and floodwater

level and inundation areas calculation. The prototype successfully identifies

a dynamic set of at-risk locations/communities using the USGS river gauge

height readings and geotagged tweets intersected with watershed boundary.

The list of prioritized locations can be updated, as the river monitoring

system and condition change over time (typically every 15min). The prototype

also performs flood frequency analysis (FFA) by fitting multiple probability

distributions to the annual flood peak rates and calculates the uncertainty

associated with the model. FAIS was operationally tested (beta-tested) during

multiple hurricane driven floods in the US and was recently released as a

national-scale flood data analytics pipeline.
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Introduction

The combination of Internet of Things (IoTs), the big

data it creates, and the ability to use it via Artificial

Intelligence (AI) is at a tipping point where significant

changes, transformation, and innovation are poised to take

place (e.g., Samadi and Pally, 2021). This convergence-so called

Artificial Intelligence of Things (AIoT)—has made possible the

development of many intelligent and context-awareness systems

which are able to efficiently monitor and model environmental

systems and provide timely and more accurate forecasts and

decisions. The application of AIoT empowers a systematic

study of domain-inspired architectures to answer fundamental

questions and enable data-driven discovery and problem solving

(Donratanapat et al., 2020). Indeed, AIoT creates intelligent

connected systems to collect and transmit data from multiple

sources–supporting the “learning” process involved in training

AI to assist with decision making. This leads to interoperable

networks and systems that are becoming increasingly more

capable of solving real-time forecasting problems across scales.

AIoT also improves the contextually aware decision-making

process for resolving complex flood operational decisions

enabling the use of machine intelligence to be implemented

more efficiently in real-time. In flood studies, AIoT can provide

insights from both big data and AI to further enhance real-

time forecasts and improve the capabilities of early warning

systems. However, AIoT brings with it the burden of developing

custom interfaces and handling huge amounts of structured

and unstructured data. In flood analytics research, modeling

surface runoff requires linking attributes across river networks,

to hierarchically nested sub-basins and river reaches at multiple

scales. Further, the data characteristics of flood modeling

problems have also grown from static to dynamic and spatio-

temporal, and centralized to distributed, and grow in both

scope and size. The effective integration of big data for flood

forecasting decision-making also requires the advances of data

mining and analytics systems.

To tackle these challenges, many data providers such as

the US Geological Survey (USGS) and the National Weather

Service (NWS) focused on building application programming

interfaces (APIs) to ease data management strategies and deliver

data services via a network connection. Providing information

and services through Web APIs supports interoperability and

openness, and eases access to the data. The ability of APIs to

stream the data and extract valuable attributes for real-time

decision making added an entirely new dimension to flood

forecasting research. When embedded within an AIoT system,

API ensures interoperability between all connected components

to optimize processes and extract valuable insights from big data

provided by the connected IoT devices.

In the past few years, the use of APIs for extracting flood

images and data produced via social media and river cameras

in the context of flood crises has opened a new avenue and

opportunities for developing new AIoT systems. The potential

of AIoT for providing connectivity between IoTs and big data

along with high-speed data transfer capabilities can be used to

implement real time image processing and machine learning

(ML) systems for flood studies. Both image processing and ML

algorithms are powerful methods of image data exploration

that can be embedded with river cameras for monitoring

flood conditions (Donratanapat et al., 2020). Recently, image

processing and ML algorithms have been used to label time

lapse camera imagery, crowdsourcing and tabular data, and user

generated texts and photos to extract road flooding condition

and inundation extend (De Albuquerque et al., 2015; Starkey

et al., 2017; Feng and Sester, 2018). In addition, ML algorithms

such as natural language processing (NLP) have been used to

extract and analyze social media geodata and provide actionable

intelligence for real-time flood assessment. In many flood

situations, big data from other sources such as USGS, NWS,

National Hurricane Center (NHC), in situ sensors, existing

authoritative geographic data, etc. are also available which can

profitably be leveraged upon in order tomake the real-time flood

situational assessment more efficient and successful.

Despite the importance of using AIoT in flood related

research, few studies have focused on its application in flood

monitoring and modeling approaches. For example, Demir

et al. (2018) investigated a web-based platform- the Iowa

Flood Information System (IFIS)- as the next-generation

decision support systems for flood studies. IFIS provides

real-time information on streams and weather conditions

that incorporates advanced rainfall-runoff models for flood

prediction and mapping. Fries and Kerkez (2018) used water

level sensors across the state of Iowa and outputs from the

National Water Model (NWM) to dynamically map large-

scale models to site-scale forecasts for flood warnings. In

a consequence, Barker and Macleod (2019) developed a

prototype as a real-time social geodata pipeline for flood data

collection and visualization across Scotland. Ning et el. (2019)

implemented a prototype system to screen flooding photos

driven from social media for Hurricanes Harvey (August 2017)

and Florence (September 2018) using Convolutional Neural

Networks (CNNs) algorithms. Their analysis revealed that

CNNs on average can detect 46% to 95% of flood objects in

an image.

This study aims to discuss the workflow of a Flood Analytics

Information System (FAIS version 4.00; Donratanapat et al.,

2020) as an example of AIoT system. FAIS can be utilized

for real-time flood data analytics and situational awareness

as well as post flood impact assessment. FAIS workflow

includes collecting and visualizing data from various sources,

analyzing the potential at risk areas to flooding using Twitter

geotagged data, providing image-based data analytics models

for floodwater depth and inundation area calculation, as well as

flood frequency analysis (FFA) for the USGS gauging stations.

FAIS proved to be a robust and user-friendly tool for both
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real-time and post-event analysis of flooding at regional scale

that could help stakeholders for rapid assessment of real-time

flood situation and damages.

This paper is intended for researchers and developers

engaged in the areas of AIoT and software development in

flood related research and is organized as follows. Section

Methodologies discusses different components of an AIoT

system followed by a discussion on multiple algorithms used in

the FAIS workflow design. Section Application presents FAIS

implementation results including data collection, at-risk area

calculation, data analytics and FFA. Finally, the conclusions and

future work of this study is presented in Section Discussion and

Future Works.

Methodologies

In this section, a general approach about AIoT system

is presented along with the algorithms used to design the

FAIS workflow.

Components of the AIoT system

Three main components of an AIoT system including IoT

data analytics system, APIs, and AI/ML systems are explained.

As shown in Figure 1, having the capability to monitor and

collect real-time data through IoT devices can provide a solution

for flood forecasting process and decision making. With an

AIoT, AI is embedded into infrastructure components, such

as programs and data analytics, all interconnected with IoT

networks. APIs are then used to extend interoperability between

components at the device level, software level, and platform

level. In this way, AIoT acts as software-as-a-service (SaaS) to

collect and analyze the data and provide timely assessment. SaaS

enables data and model provision as a service and provides

controlled access to data through APIs. Each component of

AIoT is discussed briefly below.

IoT analytics systems

Devices and technology connected over the IoT can

monitor and measure big data in real time. These data

can offer valuable insights to simulate flooding events across

large drainage system. Around 80% of big data are image-

based data (Donratanapat et al., 2020) that can be collected

through IoT sensors and commercial devices such as the USGS

river cameras, Department of Transportation (DOT) traffic

monitoring devices, and weather tracking systems. The data can

then be transmitted, saved, and retrieved at any time. The huge

amount of data that IoT sensors and devices generate must be

processed before the information can be used in flood related

studies. However, because the data often come in different

formats, there are several steps that users must take before

processing or applying any type of analytics to the real-time data.

These steps are:

1. Standardize or transform the data to a uniform

format, ensuring that format is compatible with flood

forecasting models.

2. Store or create a backup of the newly transformed format.

3. Filter any repetitive, outdated, or unwanted data to help

improve forecast accuracy.

4. Integrate additional structured (or unstructured) data

from other sources to help enrich flood data sets.

Flood related dataset can greatly benefit from several types

of data analytics procedures including (i) Time series analytics

which are based on time-based data, and data are analyzed

to reveal any anomalies, patterns, or trends, (ii) Streaming

analytics, referred to as event stream processing, facilitates the

analysis of massive “in-motion” datasets necessary for real-

time streaming and forecasting, and (iii) Spatial analytics which

can be used to analyze location-based dataset to reveal various

geographic patterns, determining any type of spatial relationship

between various parameters in flood forecasting. The best

example of spatial analytics is using geospatial patterns and data

to track and map flood inundation areas in real-time.

Application programming interface

The inherent programmability and the extended use of

open APIs enable innovation in areas related to monitoring,

modeling, and overall operational management of flood

forecasting research. APIs are used by modelers/developers

for implementing various features in flood modeling tools.

Developers simply use an API call within their software to

implement complex features and interact one piece of code

with other portions. The goal is not only to collect real-time

flood dataset, but also to monitor and forecast these extreme

events. To perform any flood modeling and analytics study,

a data retrieval approach is required to collect data from

various sources before modeling set up. The interfaces of these

application programs convey data in the form of Web Feeds,

such as Really Simple Syndication (RSS), Web Services and

Screen Scraping. Many APIs can be accessed over the Web

using the HTTP protocol based on RESTFUL or Streaming

services. Web API can be used in a web server or a web

browser. The speedy collection and transmission offered by

various APIs provided a seamless data integration within any

AIoT system.

AI systems

AI and its sub fields, machine learning and deep

learning approaches, have been recently used to solve many
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FIGURE 1

Di�erent components of an AIoT system.

environmental related modeling problems. These intelligent

systems provide new possibilities for flood studies as more

data becomes available and computing power increases. New

advances in these intelligent systems provide new methods to

simulate time series data (see Samadi et al., 2021) as well as

image-based data (Pally and Samadi, 2022). Among many AI

algorithms, deep learning methods have been recently applied to

flood analytics research such as flood image label detection and

recognition. In flood image processing research, deep learning

methods such as CNNs can be used to extract visual information

from images. CNNs are formed by layers of convolutional

filters, fully connected layers, and non-linear operations (Pally

and Samadi, 2022). Typically, the first layers contain filters that

detect simple features like edges or color, while filters in deeper

layers detect more complex features (e.g., complex shapes,

objects, etc.).

FAIS structure

FAIS is an example of AIoT application for flood analytics

research. The prototype is inspired by the needs to assess

the impacts of successive hurricane events in the south and

southeast United States. Given the massive amount of data,

an automated big data and crowd sourced information system

is needed to collect real-time data and create a map-based

dashboard to better determine at-risk locations to flooding.

These needs and discussion along with existing difficulties in

gathering massive data across various Web services provided a

comprehensive roadmap for the FAIS development.

FAIS is designed as both a Python package as well as

a Web Python platform to collect the data during historical

and real-time flood events and visualize impacted areas. FAIS

uses IoTs-APIs and various machine learning approaches for

transmitting, processing, and loading big data through which

the application gathers information from various data servers

and replicates it to a data warehouse (IBM database service).

Users are allowed to directly stream and download flood related

images/videos from the USGS and DOT and save the data on a

local storage. The outcomes of river measurement, imagery, and

tabular data are displayed on a web based remote dashboard and

the information can be plotted in real-time. Several tools and

algorithms are integrated within the FAIS application that are

discussed below:
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Data analytics approaches

To perform data analytics approaches, a new Python package

called “FloodImageClassifier” was developed and integrated

within the FAIS application for flood image annotation

and classification. “FloodImageClassifier” uses various deep

learning algorithms (i.e., CNNs) for flood image labeling,

inundation area calculation, and flood level classification.

Several CNN algorithms such as YOLOv3 (You look only once

version 3; Redmon et al., 2016), Fast R-CNN (Region-based

CNN; Girshick, 2015), Mask R-CNN (He et al., 2017), and

SSD MobileNet (Single Shot MultiBox Detector MobileNet;

Liu et al., 2016) were developed and integrated within

“FloodImageClassifier” to detect flood labels and estimate

floodwater depth. These algorithms encapsulate CNNs in an

API to classify images into some categories and assign them

sensible labels and scores. MAP (Mean Average Precision) index

was used to determine the performance of object detection

approaches which is a popular performance metric to evaluate

algorithms that involve predicting the object location as well

as classifying the probability of occurrence. MAP evaluates

the correctness of bounding box prediction using a metric

called Intersection over union (IoU). IoU is a ratio between

the intersection and the union of the predicted boxes, and

the ground truth boxes. Canny edge detection and aspect

ratio concept (see Canny, 1986) were then programmed in the

package for floodwater level estimation and risk classification.

These approaches were performed in order to detect the

edges of the water surface as they calculated the surface

areas of water which in turn were used to determine the

water level.

CNNs algorithms include non-linear approaches for label

detection and segmentation such as Rectified Linear Unit

(ReLU), a layer that outputs the positive part of the input, and

Max-pooling, a layer that performs a non-linear down-sampling.

Typically, CNNs include fully connected layers that apply a set

of linear and non-linear operations to the extracted features

and output a set of probabilities for each class. The multiple

layers contain weights and parameters that are learned from

training samples using backpropagation and gradient-based

optimization methods such as Stochastic Gradient Descent

(SGD) or Adaptive Moment Estimation (Adam; Kingma and

Ba, 2014). “FloodImageClassifier” package uses “keras” deep

learning library to build the CNNs classifier. A schematic figure

of developed CNNs is illustrated in Figure 2 that consists of the

following layers:

Input layer: The first layer of the CNN is the input layer

which takes an image as input, resizes the image and passes the

image to the next layer for feature extraction.

Convolutional layers: Three convolutional layers were

designed in the model to apply small filters on each part of the

image, match the feature points within the image and extract

features from the image.

Pooling layer: The extracted features are passed onto the

pooling layer, which helps in reducing the special dimensions by

shrinking the images down while preserving the most important

information within them. It picks the highest values from each

region that is retained the best fits for each feature within

that region.

Rectified linear unit layer: This layer normalizes

the pooling layer obtained values by replacing the

negative values with zeros to help the CNN stay

mathematically stable.

Fully connected layers: This is the final layer which takes

the filtered images as input and then divides them into categories

along with their respective labels and scores.

Based on the CNN structure presented in Figure 2, four

CNN algorithms including YOLOv3, Fast R-CNN, Mask R-

CNN, and SSD MobileNet were developed and integrated

FIGURE 2

The architecture of floodimageclassifier package. Features within the red dash line reflect pooling layers while the features within the blue dash

line represent the connected layers.
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within the FAIS application. Canny edge detection and

aspect ratio concept were also programmed in the package

to calculate floodwater level and risk classification. Readers

are referred to Girshick (2015), Redmon et al. (2016), He

et al. (2017), and Liu et al. (2016) for more information on

these algorithms.

FAIS APIs

FAIS was initially developed as a python package targeting

two sources of data i.e., USGS and Twitter. The package

was then transferred to a web Python platform to collect

the data during historical and real-time events and visualize

flooding impacts. USGS collects and stores multiple water data

including river flow data (flood, streamflow, gauge heights,

etc.), water quality, ground water levels, and precipitation at

defined gauging stations which are strategically placed at the

outlets of rivers and lakes. These placements allow the USGS

to correctly monitor and collect the data and compute several

statistical indices related to the river flow across the nation.

USGS provides two different types of flow data including real-

time and historical records based on date and time. FAIS uses

the USGS API to document the available service endpoints

and leverage the various water data sources. Readers are

referred to Donratanapat et al. (2020) for more information

on the USGS API development and implementation for the

FAIS application.

FAIS also gathers social media data through Streaming and

Search APIs. The increasing interaction of federal agencies

with social media during the flood crisis has shown that

social media platforms are important tools to assess flood

situations in real-time. Twitter, one of the biggest social

media platforms, contains many fast-paced real-time data

and a wide range of historical information regarding news

and events that occur in the local and global scales. Being

a famous social media, local residents, and government

agencies use Twitter to provide information during catastrophic

events. For example, during Hurricane Florence (2018), many

residents in SC tweeted real-time information about the

local damage, road closure and shelter information. The

government agencies such as NWS, NHC, SCDOT, and USGS

also used Twitter to provide updates about the damaged

infrastructure, emergency situations, and resources in real-time

and during post-event. These data are valuable because they can

provide location specific information about flooding conditions

in real-time.

FAIS application collects tweets using two different

approaches, i.e., Search and Streaming APIs. These two

approaches are based on two use cases of the applications

which are historical data gathering as well as streaming/real-

time data collection. Search API is more suited to singular

and specific queries of tweets, whereas the Streaming API

provides a real-time stream of tweets. The Tweepy Python

package is first integrated within the FAIS application

and implemented for accessing and collecting the Twitter data.

Twitter developer account was then used to access Token, Token

Secret, Consumer Key, and Consumer Secret to manipulate

Twitter functionalities.

In addition, a bot software was developed and integrated

into the FAIS prototype as part of real time crowd intelligence

mechanism for Twitter data gathering. The developed Twitter

bot allows users to monitor every tweet and automates all

or part of Twitter activities. Specifically, the developed bot

(see Figure 3) allows the user to query tweets from Twitter

by a specific user and/or keyword using both Search and

Streaming APIs. A reusable Python module or a module

configure was created that contains logic steps for implementing

the bot functionalities. This module reads the authentication

credentials from environment variables and creates the Tweepy

API object. The bot reads the credentials from four environment

variables including CONSUMER_KEY, CONSUMER_SECRET,

ACCESS_TOKEN, and ACCESS_TOKEN_SECRET. After

reading the environment variables, the bot creates the

Tweetpy authentication object that eventually can be used

to create an API object. The administrator can choose to

activate or deactivate the bot and change the keywords for

Streaming purposes. FAIS Twitter bot contains three main

components notably:

1. Twitter Client: This component communicates with the

Twitter API and authenticates the connection to use

its functionality. Twitter Client also hosts a function

called tweets_listener, that continuously stream tweets and

search for the matched keywords. Once tweets_listener

finds the match it will then communicate to the other

two components.

2. Tweet Analyzer: It analyzes the tweets and gives the result

a score after a match is found.

3. Twitter Streamer: This module streams tweets from pre-

specified eight keywords, analyzes the data, and organizes

them into a data frame. The collected tweets then store

in a MongoDB database and display on the FAIS Twitter

Streaming section as tabular data. The workflow explaining

how the bot gathers real time tweets using the Twitter bot

is illustrated in Figure 3.

Flood frequency analysis approach

FAIS provides frequency analysis to estimate extreme flood

quantiles that combines elements of observational analysis,

stochastic probability distribution and design return periods.

FFA techniques predict how flow values corresponding to

specific return periods or probabilities along a river could change

over different design periods. FFA can be used to estimate

the design flow values corresponding to specific return periods

for designing structures such as dams, bridges, culverts, levees,
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FIGURE 3

The workflow of Twitter APIs and Twitter bot designed in the FAIS application.

highways, sewage disposal plants, waterworks, and industrial

buildings. FFA is useful in providing a measurement parameter

to assess the damage corresponding to specific flow during

flooding event. Accurate estimation of flood frequency not

only helps engineers in designing safe infrastructure but also

in protection against economic losses due to maintenance

of structures. FAIS uses several Python packages such as

“scipy.stats” (Bell et al., 2021) and “reliability” (Reid, 2021) to

retrieve annual peak flow rates for provided years and calculate

distribution parameters to create frequency distribution graphs.

The tool fits various probability distributions including Normal,

Lognormal, Gamma, Gumbel, Pearson Type III, Weibull,

and Loglogistic distributions. These distributions and their

probability density functions, and mathematical formulations

are presented in Table 1. However, the accuracy of FFA

estimates may vary using different probability distributions.

Hydrologists typically recommend using Pearson Type III, but

other distributions such as Gumbel function can be also used

for a river system with less regulation and less significant

reservoir operations, diversions, or urbanization effects. It is

also important to quantify the precision of estimates, so the

tool calculates flood frequencies within 95% confidence interval

and provides the accuracy of the calculation. A 95% confidence

level indicates that the interval between lower bound and upper

bound contains the true value of the population parameter

(flood data).

The usual domains for these seven distributions are

the whole real line for the normal density functions and

values larger than ε for the Pearson Type III density

function, which can, in principle, be any real number. The

Pearson type III distribution has been adopted in many

FFA assessment as the standard distribution because of its

better fit and performance (Sumioka et al., 1997). If ε =
0, then Pearson type III distribution reduces to the gamma

distribution. The default estimation parameter method for

these distributions is maximum likelihood estimation (MLE),

although other approaches such as least-squares, weighted

moments, linear moments, and entropy to compute parameter

values are also used in the prototype. Readers are referred to

Vogel et al. (1993) and Singh (1996) for more information

on the probability distributions for FFA and parameter

estimation methods.
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TABLE 1 Probability distributions and their density functions used in the FFA section of FAIS application.

Distribution PDF Assumption Domain

Gamma xα−1

βαŴ(α)
e−

x
β α > 0,β > 0 x > 0

Normal 1

σ
√
2π

e−
1
2 (

x−µ
σ

)
2

µ = 0, σ = 1 xǫ(−∞,+∞)

Log-normal 1√
2πσx

e−
1
2 (

log(x)−µ

σ
)
2

α > 0 x > 0

Weibull αxα−1

βα e−( x
β
)α

α > 0, β > 0 x > 0

Pearson type III 1
Ŵ(α)β

( x−ε
β

)
α−1

e−
x−ǫ
β α > 0, β > 0 x > eε

Gumbel 1
β
exp [ x−α

β
− exp

(

x−α
β

)

] −∞ ≤ x ≤ ∞ α = 0, β = 1

Loglogistic αxα−1

βα [1+ x
β
]2

α > 0, β > 0 0 ≤ π < +∞

Application

FAIS implementation

Different components of the FAIS prototype were

implemented for collecting data and assessing flood risk

and identifying at-risk areas to flooding in real-time. These

executions are explained below.

USGS data gathering

FAIS uses USGS APIs for real-time and historical data

collection as well as images collection from the USGS river

cameras. Users can collect real time and historical discharge (cfs)

and gauge height (ft) data and display the gauge geolocation

using the FAIS visualization dashboard. A summary of data

including maximum gauge height, latitude, longitude, and

elevation can also be retrieved on the map dashboard by clicking

on each USGS station. Gathering USGS historical data involves

selecting the target state, the interested station, and the date.

After the query criteria is entered, FAIS creates a request URL

and sends it to the USGS server for collecting the data. The

prototype displays the data as “Table View” as well as “Map

View” and plots the results (see Figures 4–6). Users can also

upload a .csv format file of all the collected data that contains

station name, ID, latitude, longitude, discharge, gauge height,

and the USGS original URL. The prototype also gathers the

USGS flow data through HydroShare Web services (results

not shown here). It uses HydroShare Representational State

Transfer (REST) API to access the data through the Web user

interface programmatically.

Flood risk assessment using Twitter geotagged
data

During flooding events, citizens use Twitter to share flood

information such as damages, road closure, shelter information,

etc. Government agencies such as NWS, NHC, DOT, and

USGS also use Twitter to disseminate data and updates

about flooding conditions, damaged infrastructure, emergency

situations, evacuation route, and other resources. A tweet can

provide a variety of information, such as text, images, videos,

audio, and additional links. In addition, there is also a significant

number of metadata that is attached to each tweet. This

metadata includes information regarding geolocation (either

a place name or coordinates), the author’s name, a defined

location, a timestamp of the moment the tweet was sent or

retweeted, the number of retweets, the number of favorites, a list

of hashtags, a list of links, etc. This information is valuable and

has the potential to provide reliable information and actionable

intelligence when attempting to extract tweets and use themto

assess flood situations.

FAIS uses NLP to cleanse, filter, and group flood related

tweets including tweet geolocation information, related images,

etc. To accomplish this need, a Twitter Streaming bot (functions

on both iOS and Mac) was developed and deployed at

Heroku cloud platform outside of the application access

which is controlled by the Heroku User Interface. Heroku

is a cloud platform as a service (PaaS) that enables system-

level supervision and coordination of Twitter APIs, crowd

sourced data, and tweets. Twitter bot automates tweet gathering

and continuously cleans and monitors all Twitter activities

during real time implementation. During a real-time flooding

event, the bot gets notification when new content, such

as tweets that match certain criteria (keywords) is created.

Overall, eight keywords including “Flood Damage,” “Road

Closure,” “Emergency Management and Response,” “Flooded

Neighborhood,” “Infrastructure Damage,” “Evacuation Route,”

“Shelter and Rescue,” and “Storm Surge” are incorporated into

the Twitter data gathering section.

FAIS was used to identify at-risk areas to flooding during

Hurricane Laura. Hurricane Laura was a deadly and destructive

category 4 hurricane that made landfall in the U.S. state of

Louisiana (LA) in August 2020. While impacted many countries

and people on its path, Laura prompted many warnings and

watches across LA coastal communities. Early on August 27,

Laura made landfall near peak intensity on Cameron, LA and

was recorded as the tenth-strongest U.S. hurricane that made

landfall by wind speed on record. When Laura approached LA,

FAIS application was used to constantly stream the tweets and
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FIGURE 4

USGS real-time flood data gathering interface. Users can download a .csv file of the data and visit the original data sources at the USGS portal.

FIGURE 5

Map view interface of the USGS flood gauges. A summary of data for each gauging station can be retrieved from Map View section.
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FIGURE 6

USGS historical flood data collection and visualization interface. Users can display the data for any state and any USGS station by selecting the

state and USGS gauging station. A .csv format file of the data can be also downloaded directly from the interface.

identify at-risk areas to flooding. Georeferenced tweets were

gathered and filtered by eight keywords (mentioned above) and

queries across the shortlisted areas in LA. The retrieved tweets

were then used to intersect a maximum of seven locations with

the USGS peak flood rates and watershed boundary. Geotagged

tweets coordinates considered as a center-point for ∼16 km

wide square boxes. This size is arbitrarily chosen to cover the

areas nearby to each gauge. These seven at-risk locations were

monitored during Hurricane Laura for any updated tweets

whose geotag intersected a bounding box, which constituted a

“match.” The retrieved tweets were then stored in a MangoDB

database which is widely used as an open-source database to

store JSON format files. Due to the size of queried data, the

Twitter bot filtered the data (>95% of uninterested/mismatched

tweets) and only kept those flood related tweets that match

the eight keywords mentioned above along with the text,

geolocation, author ID, and date.

To identify at-risk locations, FAIS first cycles through a set

of USGS web addresses to find river gauge height readings,

parsing these flat files using Python web scraping technique and

obtaining all the latest river levels. Each river level reading is

compared with its respective long term cached average level to

identify the highest relative river levels in real-time. The highest

river level will then be intersected with watershed polygons as

well as geotagged tweets (filtered by Streaming bot) to identify

flooded locations in real-time. To update at-risk locations in

real-time, a shell script in Python runs on a local computer

server, the script is reset every 3 h to update at-risk areas to

flooding from the latest national and environmental data sources

as well as geotagged data. A period of 15min was initially chosen

as the intended trade-off between tracking the latest at-risk

location forecasts. API updates can be varied between 15min to

several hours but based on real-time testing the period extended

to 3 h to allow some reaction time from those areas on Twitter.

However, the choice of time period depends solely on the project

requirements as well as the flooding impact and severity. During

Hurricane Laura, the time between a tweet appeared online

and visually plotted in the FAIS as being potentially relevant

(in terms of location and content) was in the order of few

seconds to 2min, thereby this rapid analysis could provide an

early information channel to the stakeholders for emergency

management, asset allocation and rescue plan. A web-based

console and a visualization tool—GeoJSONLint13—are used in

the FAIS application to view results and inspect the polygons.
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In addition, the prototype was operationally tested during

Hurricane Dorian (September 04-06, 2019) in the Carolinas and

georeferenced tweets were also gathered in real-time to identify

at-risk locations to flooding (see Donratanapat et al., 2020). A list

of real-time tweets is presented in Table 2. The tweets were then

used to intersect with the USGS gauging stations and watershed

boundary to identify at-risk areas (see Figure 7).

Big data analytics

Data analytics section of the FAIS application uses

“FloodImageClassification” package for flood image labeling,

inundation area calculation, and flood level classification.

Four CNN algorithms such as YOLOv3, Fast R-CNN, Mask

R-CNN, and SSD MobileNet were programmed in the

“FloodImageClassification” package to detect flood labels and

estimate flood depth and inundation area. These algorithms

encapsulate CNNs in an API to classify images into some

categories and assign them sensible labels and scores. Less than

eight thousands flood images were first collected from the USGS

river web cameras, DOT traffic images, and search engines such

as Google and Bing. The data were formatted and split into

training and test datasets. Themodels were trained for 27 epochs

with a batch size of 72. The images were partitioned into training

and testing sets in the ratio of 9:1. The images present within the

training set were resized and normalized before training. Once

all the images were resized and normalized, “labelIme” Python

package was used to annotate these images with eight different

object categories such as “vehicle,” “forest,” “tree,” “traffic sign,”

“water vessels,” “residential areas,” and “critical infrastructure.”

Annotation of images involves highlighting each of the objects

within an image manually using bounding boxes and labeling

them appropriately. MAP index was used to determine the

performance of each object detection algorithm. Canny edge

detection and aspect ratio concepts were also used to calculate

flood depth and inundation areas.

Given an input image, images were first resized and

converted into a grayscale. Next, the skyline was identified and

eliminated from the images. Since both water and skyline have

the same color gradient, it is possible the skyline could be

detected as a water surface. Therefore, the skyline was eliminated

and a portion of images consisting of the water surface was

taken into consideration. For each image, the edges of the

water surface were first detected, and the associated contour

was automatically drawn around the water surface and the area

of the contours (i.e., the area of water surface) was calculated.

Next, based on the aspect ratio which is calculated by taking

into consideration the area of water surface, the floodwater

level was estimated. The estimations were then categorized

into “shallow,” “moderate,” and “deep” to reflect flood risk

conditions. This process is automated in Python to provide

the user a seamless procedure to perform data analytics in the

FAIS application. This automatics procedure takes on average

about 2–3min to complete. As illustrated in Figures 8–11, it is

evident that the CNNmodels were capable of detecting multiple

objects within a single image as it almost detected 90% of the

objects precisely. However, object detection models produced

different outcomes. Segmentation models such as Mask R-CNN

identified the foreground shapes and highlighted the objects

using bounding boxes as well as by drawing amask on the object.

This helped in clearly segmenting one object from another one

whereas other object detection models such as Fast R-CNN,

YOLOv3, and SSD MobileNet highlighted the detected objects

using a single bounding box only.

The prediction scores (MAP) of different CNNmodels were

calculated for different object categories namely vehicle, person,

forest, tree, traffic sign, residential area (i.e., houses), water

vessels (i.e., boats, ships, etc.) and critical infrastructure (bridges,

dams, etc.) by passing the same set of test images to each of

these four CNN models (Table 3). This determined which of

these models is the best object detection approach for flood

images. Results revealed that Mask R-CNN and Fast R-CNN

were particularly skillful in detecting labels and segmenting

them, although Mask R-CNN showed better performance in

detecting labels. The processing to perform object detection for

each CNN algorithm varies between 2 and 4min depending on

the system memory and processor.

Once the detection results were generated by CNN models,

each detected object was removed from the images and

the images were reconstructed by filling the void spaces in

a plausible manner using exemplar based inpainting (see

Criminisi et al., 2003). We used partial convolutions with an

automatic mask update to fill in the voids within an image.

Image inpainting model substituted convolutional layers with

partial convolutions and masked the updates. This algorithm

successfully identified the target region which was filled using

the surrounding areas of the target region as reference. The filled

region was used to calculate floodwater depth and inundation

area. As shown in Figure 12, the edges of the water surface

(i.e., the drawn contours) was first detected and then the

area of the water surface was calculated. To isolate the water

surface from the other objects that were highlighted, OpenCV’s

findContours() function was used to identify the foreground

mask shapes and to draw contours around them. Next, the area

of each of the contours was calculated, the contour areas were

then sorted and only the largest contour was printed over the

original image, allowing us to accurately segment and calculate

the water surface area (flood inundation area). The area is also

calculated based on the pixel dimensions and the number of

pixels located in the flooded area. After highlighting the water

surface using contours, a bounding box was drawn around the

contour to calculate the aspect ratio. The aspect ratio value is

used to determine the floodwater level as shown in Figure 12.

If the aspect ratio is in a range of 1.27–1.8 the floodwater level is

then considered to be low, if the aspect ratio is in a range of 0.54–

1.26 the floodwater level is considered to be moderate, and if the
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TABLE 2 The relevant tweets and tweet geolocation and time for 12 at-risk locations in LA during Hurricane Laura flooding.

Text Location Username Date/time Latitude Longitude

Watches for flash flood, hurricane, and

surge. I should not get direct surge from

pontchartrain, at 2–4 feet, but it will

have an impact on drainage since I am

so close to the lake. This was the same

fear I had when it looked like Laura was

gonna hit this area

South Louisiana, Plain

Dealing, Bossier Parish,

Louisiana, 00710, USA

BonnieBlueTK Mon Aug 24

21:48:18+0000

2020

32.9016393 −93.7047546

Man I’ve been in earthquakes, 93 flood,

hurricanes, tornadoes, and wildfires. . . I

just went through hurricane Laura with

the eye right over my home

Louisiana, USA darinnstacy Wed Aug 26

03:10:16+0000

2020

30.8703881 −92.007126

Calcasieu Parish officials warning that

roughly 70% of area south of I-10 could

see flooding from Hurricane Laura and

that I-10 could flood in the parish

Baton Rouge, East Baton

Rouge Parish, Louisiana,

USA

MelindaDeslatte Tue Aug 25

21:34:10+0000

2020

30.4459596 −91.18738

Hurricane Laura strikes Louisiana as

Category 4 storm, battering Lake

Charles area and bringing flood

threat—The Washington Post

Louisiana, USA StateStatus_LA Thu Aug 25

10:39:32+0000

2020

30.8703881 −92.007126

Hurricane Marco and Tropical Storm

Laura could bring heavy rains to this

area causing flooding. Stay safe! Do not

venture. . .

New Orleans, Orleans

Parish, Louisiana, USA

kingfrost_24 Mon Aug 24

19:26:47+0000

2020

29.9499323 −90.0701156

Calcasieu Parish officials warning that

roughly 70% of area south of I-10 could

see flooding from Hurricane Laura. . .

Baton Rouge, East Baton

Rouge Parish, Louisiana,

USA

CEStephens Tue Aug 25

21:35:08+0000

2020

30.4459596 −91.18738

Under a Hurricane Watch for my area

now. Meteorologists are saying get ready

for a “one two punch” hurricane Marco

on Monday, Hurricane Laura on

Wednesday. Flood gates were being

closed this evening to protect the City

from storm surge

New Orleans, Orleans

Parish, Louisiana, USA

DanielBailleau Sun Aug 23

01:24:19+0000

2020

29.9499323 −90.0701156

aspect ratio is in a range of 0.18–0.54 and less than 0.18 (<0.18)

the floodwater level is considered to be high (sever flood risk; see

Table 4).

FFA for the USGS 02147500 Rocky Creek at
Great Falls, SC

FAIS uses multiple probability distributions such as Normal,

Lognormal, Gamma, Gumbel, Pearson Type III, Weibull, and

Loglogistic distributions to compute FFA for any given flood

gauging station in US. Figure 13 shows FFA results for the

USGS02147500 Rocky Creek at Great Falls, SC. Among several

probability distributions, Loglogistic distribution was a perfect

fit followed by the Weibull distribution. Both log-Pearson type

III and log-normal distributions were also showed appropriate

fits when the maximum likelihood method was used for

parameter estimation. As illustrated, all annual flood data points

(overall 64 data points) were bracketed within 95% uncertainty

bound using the Loglogistic distribution while the uncertainty

bound for theWeibull distribution skillfully bracketed moderate

flood rates and showed less performance with respect to low

and maximum flood data. Analysis suggests that annual flood

peak of ∼15,000 cfs for the Rocky Creek represents a design

return period of 25-year. The design discharge of a 100-year

flood (1% probability) occurring at the USGS02147500 gauging

station is >30,000 cfs. This gauge is associated with Lower

Catawba basin (hydrologic unit code 03050103) Chester County,

SC with a drainage area of 194 square miles which is mostly a
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FIGURE 7

At-risk locations to Hurricane Laura in LA. Yellow circles indicate at-risk locations identified by using collected tweets in real-time that were

intersected with the USGS peak flood data as well as the watershed boundary. Note that FAIS streaming approach intersects ≥ 3 tweets with the

USGS peak flow rates and disregards <3 tweets for intersection.

FIGURE 8

The Fast R-CNN detection results with bounding boxes.

rural basin. FFA for this location proved that high peak values

made critical contributions to the upper tail of the Loglogistic

probability distribution.

FAIS application also provides a .CSV format file of FFA

that can be downloaded from the interface. The use of FAIS

application for FFA provides an easy assessment for the

design of engineering structures such as culverts, bridges, and

dams. With the many challenges facing existing probability

distribution fitting and performance calculation for a given

design problem, FFA functions, numerical estimation and

uncertainty calculation, and graphical capabilities together with

its flexibility to fit multiple distributions, can go a long way. This

makes FAIS application an ideal tool to assess flood frequencies

for any USGS gauging station. It should be noted that FFA builds

a predictive model based on existing flood data, so the accuracy

is greatly enhanced with a larger dataset (>10 years).

Discussion and future works

This article elaborated on the latest concepts related to AIoT

in flood related research, emphasizing the architectures and

functionalities of this approach and how these capabilities were

used to design FAIS application. AIoT brings AI capabilities

and IoT power to flood related research, enhances data

management and analytics, and aids in intelligent decision-

making process. As AIoT continues to evolve into a computing

paradigm endowed with a high computing rigor, it has become
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FIGURE 9

The Mask R-CNN detection results with bounding boxes.

FIGURE 10

YOLOv3 detection results with bounding boxes.

FIGURE 11

SSD MobileNet detection results with bounding boxes.

apparent that traditional solutions for training, validation,

and testing models are no longer appropriate for flood

computational challenges brought about by the big data and

catchment complexities.

As an AIoT paradigm, FAIS enables real-time flood data

gathering and analytics across different domains. This prototype

has been driving the confluence of IoT, deep learning, and

big data to enable a real-time assessment of domain-inspired

Frontiers inWater 14 frontiersin.org

https://doi.org/10.3389/frwa.2022.786040
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Samadi 10.3389/frwa.2022.786040

TABLE 3 The prediction score of di�erent labels using multiple CNNs.

Models/object

categories

Vehicle

(%)

Forest

(%)

Traffic

sign (%)

Tree (%) Residential

area (%)

Person

(%)

Water

vessel (%)

Critical infrastructure

(bridge, dam, road,

storm water facilities,

and railroad) (%)

SSD MobileNet 92 53 60 97 51 74 98 95

Fast R-CNN 99 56 99 89 100 99 48 100

Mask R-CNN 85 70 87 73 96 91 68 89

YOLOv3 99.9 * * * * 98.3 95 *

Mask R-CNN was a superior segmentation model followed by the Fast R-CNN.
*YOLOv3 was not able to compute performances for several labels.

FIGURE 12

Floodwater depth estimation (Level 3) using canny edge detection and aspect ratio approach along with the calculated area (75862.0 based on

pixel width and length dimension).

TABLE 4 Water levels associated with Aspect Ratios and flood severity

and risk estimation.

Water level Aspect ratio Flood severity and risk

Level 1 >1.8 Low

Level 2 1.62–1.8

Level 3 1.44–1.62

Level 4 1.26–1.44

Level 5 1.08–1.27 Moderate

Level 6 0.90–1.08

Level 7 0.72–0.90

Level 8 0.54–0.72

Level 9 0.36–0.55 Severe

Level 10 0.18–0.36

Level 11 <0.18

intelligent architectures for AI-driven decision making and

discovery. FAIS was developed as a national scale prototype for

flood data analytics assessment, based on both historical and

real-time flood warning and river level information, as well as

crowdsourced processing of tweets. This included automated

selection and analysis of large volumes of geotagged and

relevant social media data, and recent advancement in data

analytics algorithms. FAIS application intelligently identifies at-

risk areas to flooding in real time and defines the geospatial

footprint of a flood event using georeferenced tweets. The

application also uses various image processing algorithms to

detect labels and calculate flood depth and inundation areas.

Overall, FAIS pipeline proved to be a robust and user-friendly

AIoT prototype for both real-time and post-event analysis of

flooding data at local scale that could help stakeholders for

rapid assessment of flood situation and damages. Improved

data collection and timely assessment of at-risk locations allow

more efficient mutual aid in the operational theater for warnings

and evacuations, and more effective search and rescue plans

while enabling automatic dispatching of relief resources and

evacuation plans.

The versatility of the AIoT approaches brings the

intelligence and a new paradigm in flood computing and
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FIGURE 13

FFA for the USGS 02147500 using Loglogistic and Weibull distributions.

modeling. AIoT enables data provision as a service and provides

controlled access to this data through APIs that ensures fast

and accurate analysis of data across catchment scales. As

the technologies reach different application sectors due to

specific domains and data, the AIoT paradigm will evolve

and expand in future heading to significant developments

in terms of research and innovation. However, there are

several challenges that need to be addresses to see AIoT full

potential in flood research and applications. Given the huge

number of devices, AIoT requires simultaneous connectivity

and functional scalability that have become a concern for

real-time application. Other deficiencies such as fault tolerance

and data storage and complexities add more challenges to the

AIoT application for real-time decision making. Moreover,

the current data services do not support the reuse of data

exploration processes and the data derived from analytics

systems. Limitless analytics service combined with deep

learning, data lake and data warehouse to process streaming

data, and automated data lifecycle management are promising

ways forward. Although, enabling AIoT interoperability for

connecting data services and analytics requires solutions that

must be realistic and scalable to multiple data platforms with the

possibility to plug and play dynamically new analytics tools and

AI algorithms.

More effort should be made to leverage AIoT application to

better manage flood risk, make timely and effective decisions

and forecast, and automate flood forecasting operations.

For instance, improving the intelligence of AIoT systems

to handle dynamic and complex environments using Edge

computing could potentially handle hybrid models and reduce

forecasting time by bring decentralized computing power as

close as possible to the origin point of the data. In the

future, empowered by rapidly developing AI technologies

and big data analytics, many fast, smart, and safe AIoT

applications are expected to deeply reshape flood related

research and applications.

Software and data availability
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