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The fluxes of water and solutes in the subsurface compartment of the Critical Zone are

temporally dynamic and it is unclear how this impacts microbial mediated nutrient cycling

in the spatially heterogeneous subsurface. To investigate this, we undertook numerical

modeling, simulating the transport in a wide range of spatially heterogeneous domains,

and the biogeochemical transformation of organic carbon and nitrogen compounds

using a complex microbial community with four (4) distinct functional groups, in

water saturated subsurface compartments. We performed a comprehensive uncertainty

analysis accounting for varying residence times and spatial heterogeneity. While the

aggregated removal of chemical species in the domains over the entire simulation period

was approximately the same as that in steady state conditions, the sub-scale temporal

variation of microbial biomass and chemical discharge from a domain depended strongly

on the interplay of spatial heterogeneity and temporal dynamics of the forcing. We

showed that the travel time and the Damköhler number (Da) can be used to predict

the temporally varying chemical discharge from a spatially heterogeneous domain. In

homogeneous domains, chemical discharge in temporally dynamic conditions could

be double of that in the steady state conditions while microbial biomass varied up to

75% of that in steady state conditions. In heterogeneous domains, the interquartile

range of uncertainty in chemical discharge in reaction dominated systems (log10Da >

0) was double of that in steady state conditions. However, high heterogeneous domains

resulted in outliers where chemical discharge could be as high as 10–20 times of that

in steady state conditions in high flow periods. And in transport dominated systems

(log10Da < 0), the chemical discharge could be half of that in steady state conditions in

unusually low flow conditions. In conclusion, ignoring spatio-temporal heterogeneities in

a numerical modeling approach may exacerbate inaccurate estimation of nutrient export

and microbial biomass. The results are relevant to long-term field monitoring studies,

and for homogeneous soil column-scale experiments investigating the role of temporal

dynamics on microbial redox dynamics.
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INTRODUCTION

Groundwater availability and quality are of great interest due its
wide use as a source of irrigation and drinking water (World
Water Assessment Programme, 2009; UNESCO and UN-Water,
2020). Groundwater quality (microbial community structure and
physicochemical parameters) varies with time, environmental
conditions, and a variety of forcing (Basu et al., 2010; Okkonen
et al., 2010; Zhou et al., 2012; Rezanezhad et al., 2014; Yabusaki
et al., 2017; Lohmann et al., 2020; Yan et al., 2021). Such forcing
includes fluctuating groundwater head with time of the day,
weather events, groundwater abstraction, or fluctuating leakage
of carbon and terminal electron acceptors [such as dissolved
oxygen (DO) and nitrate] with weather events or land use change
(Khatri and Tyagi, 2015). It is beneficial to establish links between
forcing and nutrient cycling in the groundwater, which may
further assist in ensuring safe access to water resources.

Historical studies have established that temporal variations in
nutrient cycling in subsurface systems are linked with diverse and
dynamic bacterial communities, their variation being seasonal
in nature with patterns recurring year on year, synchronously
with environmental conditions and the forcing (Sinke et al., 1998;
Kolehmainen et al., 2008; Moore-Kucera and Dick, 2008; Febria
et al., 2010; Rezanezhad et al., 2014; Rudolf von Rohr et al., 2014;
Vidal-Gavilan et al., 2014; Danczak et al., 2016; King et al., 2017;
Zheng et al., 2019; Meng et al., 2021). For example, Pett-Ridge
et al. (2013), Rezanezhad et al. (2014), Bhattacharyya et al. (2018)
and Lohmann et al. (2020) displayed that microbial communities
present in the periodically fluctuating redox zone are stable
and switch between aerobic and anaerobic respiration according
to fluctuating oxic-anoxic conditions, whereby saturated anoxic
conditions induced anaerobic respiration and oxic unsaturated
conditions induced aerobic respiration. This adaptation of
microbial communities to metabolize varying nutrient inputs by
harnessing varying energy gradients is based on the habitat and
external forcing such as climate or precipitation pattern (Pett-
Ridge et al., 2013). However, with higher uncertainty expected
in these forcing in a changing climate (Easterling et al., 2000;
Lambin et al., 2003; Trenberth et al., 2003, 2014; Cai et al., 2014;
Cohen et al., 2014), any prediction of the response of subsurface
microbial communities to temporally varying forcing based
on aforementioned studies in hitherto unforeseen scenarios is
associated with large uncertainty, resulting in limited capacity to
assess mitigation strategies.

Prediction of spatio-temporally varying groundwater quality
is further complicated by lack of high-resolution field data,
that causes uncertainty in the parametrization of the reaction
network and the flow regime. Furthermore, assumption of
homogeneous and uniform conditions results in uncertainty in
reactive transport modeling outcomes or predictions (Köhne
et al., 2009; Sassen et al., 2012). For example, Berkowitz (2002)
discusses in detail how inadequate field measurements result in
uncertainty in parametrizing the fractured rock domain, further
expanding on the inadequacy of simplified 1D or 2D models for
accurate predictions. In reactive transport modeling, Shi et al.
(2014) observed deviation as large as 40% of average simulation
results and Nitzsche et al. (2000) observed an uncertainty band

equivalent to median concentrations (of the chemical of concern)
in drinking water, the variation resulting from uncertainty in
the parametrization of their respective models. Recently, Ritschel
and Totsche (2016) displayed that using closed flow columns
experiments to derive reaction parameters (degradation) and
flow parameters (dispersion) reduced the associated uncertainty
by an order of magnitude. Evidently, use of low resolution field
scale data and simplified, homogeneous steady state laboratory
scale data to parametrize models results in high uncertainty
in model predictions (Berkowitz et al., 2016), especially when
upscaling the models to larger scales (Zhang et al., 2021).

With both temporal variations in forcing and characterization
of field scale processes being subject to substantial uncertainty,
we recognize the need to investigate how the temporal variation
in nutrient cycling depends on either variation in forcing
such as weather events, seasonal cycles, average flow rate or
domain characteristics such as variation in the conductivity
field or porosity. Leavitt et al. (2011), focusing on speciation of
U(VI), already established that spatial uncertainty is a substantial
contributor to model prediction errors. Chakrawal et al. (2020)
further derived that predicted non-linear microbial respiration
rate in heterogeneous domains is less than that in homogeneous
domains. Neglecting spatial heterogeneity in conductivity of the
subsurface matrix alone can result in prediction errors associated
with removal of chemical species (dissolved organic carbon
(DOC), dissolved oxygen (DO), nitrate, ammonium) between
60% and 500 times of that in homogeneous domains (Khurana
et al., 2022). This uncertainty may be further exacerbated by
neglecting temporal dynamics (Leavitt et al., 2011). Given the
complex nature of natural systems with numerous confounding
factors, we aim to disentangle the influence of temporal dynamics
in groundwater head, and uncertainty thereof, on the ability of
a diverse geomicrobial community to transform organic carbon
(DOC) and nitrogen (nitrate and ammonium) compounds.

The aim of this study is to quantitatively assess the response
of the dynamics of microbially mediated organic carbon and
nitrogen turnover in the subsurface to temporal variations of
the hydrological forcing (controlling the advective-dispersive
transport of mobile species), and to determine the uncertainty
resulting from neglecting such variations in model-based
predictions of nutrient cycling. To investigate these questions, we
use a reactive transport modeling approach allowing to impose
defined conditions and their temporal and spatial variability. This
allows to disentangle the interplay between the dynamics of key
biogeochemical processes involved in the cycling of carbon and
nitrogen and the dynamics of the hydrological forcing. For this
purpose, we performed a series of reactive transport modeling
experiments representing pristine, oligotrophic conditions in
the groundwater considering its wide use as a source for
irrigation and for drinking water (World Water Assessment
Programme, 2009; Siebert et al., 2010). We used the novel
and comprehensive reaction network developed by Khurana
et al. (2022) to simulate scenarios that combined different levels
of temporal fluctuations of the forcing, groundwater head in
our study, with those of subsurface heterogeneities (Khurana
et al., 2022) to determine the variability in the export of
carbon and nitrogen from subsurface systems. We assumed
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that the groundwater head fluctuates in response to diurnal,
seasonal and inter-annual cycles in atmospheric conditions. Deep
percolation from surface into the deeper subsurface depends
furthermore on dry and wet seasons, affecting groundwater
heads. The transformation of carbon and nitrogen compounds
in our in-silico system is mediated by aerobic autotrophs
and heterotrophs, as well as anaerobic heterotrophs. Since we
use a complex microbial community comprising species using
multiple respiration strategies and study its response to temporal
fluctuations at several scales (diurnal to seasonal) in a variety
of flow regimes, the results help estimate the uncertainty in
nutrient discharge in a wide range of sub-surficial microbial
reactive systems. We are thus able to identify subsurficial reactive
systems where spatio-temporal heterogeneities contribute to
large uncertainty in transient conditions at field scales and
estimate this associated uncertainty. This, in turn, may contribute
toward improved decision making with respect to the spatial
resolution of model domain, and spatio-temporal resolution of
field data collection, consequently improving the predictability of
reactive transport models in transient conditions at field scales.

METHODS

We used a numerical reactive transport modeling approach to
investigate the impact of temporal variation in groundwater
flow rates on nutrient cycling in the groundwater, with a
focus on organic carbon and nitrogen. For this we considered
diurnal fluctuations, seasonal, and inter-annual cycles in flow
velocity in conjunction with varying spatial heterogeneity of the
aquifer. We used conditions from our subject site (Küsel et al.,
2016; Kohlhepp et al., 2017) in Hainich National Park, located
in the Nägelstedt catchment in central Germany [a Critical
Zone Exploratory of the Collaborative Research Center (CRC)
AquaDiva 1076] to inform the development and parametrization
of the model so that both, the model and the investigated
scenarios, are physically plausible. The subject site spans forest,
grassland and agricultural areas, and is underlain by multiple
stories of limestone aquifers. The groundwater monitoring
wells tap the groundwater at varying depths. Thus, long term
hydrobiogeochemical observations across the site below varying
land-use types are available.

Model Setup
The model comprised a transport component and a reactive
component representing microbial mass-transfer processes
(called process network from hereon) in spatially heterogeneous
and fully saturated domains (0.5m × 0.3m in size) subjected
to temporal fluctuations in groundwater head at the inlet of the
domain resulting in variation in groundwater velocities imposed
in the domain. The size of the domain matched the scale of a
typical groundwater monitoring well screen (meter to sub-meter
scale). Unless specifically low-flow sampling techniques are used,
spatial heterogeneity at the scale lower than the monitoring well
screen is seldom resolved. Thus, we deemed this scale of the
domain to be appropriate for our study.

Overall, we considered three different flow regimes. We
imposed an average groundwater velocity of 3.8 10−4 m d−1,

matching the average recharge associated with the subject site
(Jing et al., 2018) in the domain, which was adopted as the
slow flow regime here. The average groundwater velocity was
increased by a factor of 10 in the medium flow regime and
by a factor of 100 in the fast flow regime, to capture a wider
variety of subsurface systems with different water flux rates [also
used by Rein et al. (2009)]. This resulted in the residence time
(synonymously used as breakthrough time) of a conservative
tracer in steady state conditions in a homogeneous domain to be
230 days in the slow flow regime, 28 days in the medium flow
regime and 3 days in the fast flow regime.

Since we aim to study the uncertainty induced due to
unresolved spatio-temporal heterogeneities, we set up a wide
range of physically plausible spatially heterogeneous domains
(Section Spatially heterogeneous domains in Methods) and
subjected all of these systems to temporal dynamics (Section
Temporal dynamics: Simulated scenarios). We compared the
variation in the response of these systems from that of
homogeneous domains (details in Section Data analysis).

Process Network
We used the same conceptual approach used in Khurana et al.
(2022) to describe the reactive processes controlling the fate
of organic carbon and nitrogen compounds in the domain. A
detailed explanation of the complete process network is available
in Khurana et al. (2022) and summarized here (Figure 1).

The process network captured a variety of microbial
functional groups: aerobic dissolved organic carbon (DOC)
degraders, nitrate reducing DOC degraders, sulfate reducing
DOC degraders, and finally ammonia oxidizers. The process
network, hence, accounted for both heterotrophy and autotrophy
in the subsurface, in both aerobic and anaerobic conditions.
Thesemicrobial groupsmediate the transformation of DOC, DO,
nitrate, ammonium, and sulfate in the subsurface. Thus, we were
able to explore the removal of all of these chemical species in
the model.

In addition to growth and respiration, we also included
additional microbial life processes such as dormancy and
reactivation, immobilization on the medium and mobilization
into the groundwater, and mortality. These processes affected the
access of microbial species to suitable carbon source and energy
gradients. Additionally, capturing active and inactive biomass
or mobile and immobilized biomass separately assisted in
developing an understanding of the biogeochemical potential of
subsurface systems, and their response to changing hydrological
settings. We summarized the components and associated
processes in the process network in Table 1.

Spatially Heterogeneous Domains
We generated spatially heterogeneous domains using a
combination of variance (we used 0.1, 1, 5, and 10 as variance)
and anisotropy (we used 2, 5, and 10 as anisotropy) in
the log conductivity field to enforce spatially variable flow
conditions. This approach is well-established to describe spatial
heterogeneity in porous media (de Marsily et al., 2005). The
combination of variance and anisotropy (in total yielding
12 scenarios) effectively captured a variety of heterogeneous
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FIGURE 1 | Complex process network comprising aerobic and anaerobic microbial species in both active and inactive states, both immobilized on the matrix and

mobilized in the groundwater, reproduced from Khurana et al. (2022).

TABLE 1 | Summary of process network: components, acting microbial species,

and processes.

Process Chemical

species

Microbial

species

Location/state

Heterotrophic

respiration

DOC, DO, nitrate,

sulfate

Aerobic

degraders, nitrate

reducers, sulfate

reducers

Immobile and

mobile/active

Autotrophic

respiration

Ammonium, DO Ammonium

oxidizers

Immobile and

mobile/active

Microbial growth Ammonium, DOC All Immobile and

mobile/active

Activation – All Immobile and

mobile/inactive

Dormancy – All Immobile and

mobile/active

Immobilization – All Mobile/active and

inactive

Mobilization – All Immobile/active

and inactive

Mortality – All All

Hydrolysis POM – –

domains. We generated four spatial random fields in each
scenario, thus yielding 48 spatially heterogeneous domains
and one homogeneous domain. Spatial heterogeneity resulted
in a reduction of breakthrough time of a conservative tracer.
The resulting breakthrough time was as low as 20% of
the breakthrough time in the corresponding homogeneous
domain, depending on the flow regime and intensity of spatial
heterogeneity in the domain. A detailed explanation of the
rationale and tools used to generate spatially heterogeneous

fields, and effect of spatial heterogeneity on breakthrough time is
available in Khurana et al. (2022).

Temporal Dynamics: Simulated Scenarios
We conceptualized three scenarios to enforce temporal dynamics
in the forcing. Groundwater head (and consequently flow rate)
was observed and recorded over a period of decades in the
Nägelstedt catchment (the relevant catchment for the subject
site). The time series analysis of the varying groundwater head
data [presented by Jing et al. (2018)] revealed it to be a multi-
variate Gaussian distribution with an exponential like covariance
model. Hence, we generated three synthetic time series of
groundwater head based on this. Herein, we used an exponential
covariance model, varying the value of the variance (using 1,2,
and 5 m2) and correlation time scale to incorporate annual
[or seasonal with length scale as 365 days, referred to as g1(t)]
and super-annual cycles [with length scale as 730 days, 2 years,
referred to as g2(t)] in the groundwater head. We superimposed
the time series g1(t) and g2(t) generated using the two length
scales for the same variance and centered the mean of the
distribution around 1 using Equation 1:

f (t) =
g1 (t) + g2(t)

µ
(1)

where, µ is the mean of the sum of g1(t) an g2(t). The product
of this time series [f(t)] with the head at the inlet for each
scenario was then applied at the inlet of the domain as the
temporally varying forcing. Thus, the three imposed time series
showed varying characteristics (Table 2). The covariance of the
mean-adjusted time series varied between 0.15 and 0.27. For the
first time series, the memory (the time lag when autocorrelation
reduced to below 0.7, see section Cross-correlation, memory,
and backward traceability) was 39 days, while for the third time
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TABLE 2 | Summary of temporally dynamic scenarios investigated.

S.No. Scenario name Co-variance∧ Traceability (days)

1 T1 0.15 39

2 T2 0.17 155

3 T5 0.27 166

Note: Super-annual (time scale of 2 years) superposed with annual cycle (time scale of 1

year, representing seasonal cycles), both having the same variance. ∧The co-variance is

of the resulting superposed time series.

series with the highest covariance, the memory was 166 days. See
Supplementary Figure 1 for the autocorrelation function.

We simulated a period of 15 years to evaluate the impact of
temporal dynamics. The initial conditions for these simulations
were steady state conditions induced in each domain as described
in Khurana et al. (2022). Even though the water flux varied in
time to simulate temporal dynamics; the time averaged water
flux in each domain was constant for each flow regime (i.e.,
slow, medium, and fast flow regime) over the entire simulation
period of 15 years for the purposes of keeping the results of the
simulations comparable. All the domains were subjected to three
different series of temporal variations in flow rate (Table 2). In
total, we ran 441 simulations: three time series scenarios imposed
on 48 spatially heterogeneous domains and one homogeneous
domain in three different flow regimes.

Numerical Tools
We used OGS#BRNS (Aguilera et al., 2005; Centler et al.,
2010; Kolditz et al., 2012) as the numerical modeling tool. This
tool has been used successfully to simulate a complex reaction
network combined with a variety of spatially heterogeneous
geologic settings (Centler et al., 2013; Khurana et al., 2022).
We further leveraged this tool in this study to include a
variety of temporally dynamic conditions. Using a constant finite
volume discretization of 0.01m in both directions, we performed
transient simulations for a period of 15 years.

We used the Python programming language (van Rossum and
Drake, 2006), referred to as Python henceforth, for the entire
workflow of the study. We set up the scenarios for running
the simulations using OGS#BRNS using ogs5py package (Müller
et al., 2021b). We used the GSTools package (Müller et al., 2021a)
to generate the spatial random fields to represent heterogeneous
domains in OGS#BRNS [also described in Khurana et al. (2022)]
and also to generate the temporally changing groundwater head
at the inlet of the domain. We processed and further analyzed
simulation results using a workflow in Python as well. We used
Python to generate all graphical outputs presented in this paper
for ease of reproducibility.

Data Analysis
We recorded observations at a time interval of 5 days in all
scenarios.We extracted the following response variables from the
simulation results:

1. Chemical/reactive species: Normalized flux averaged
concentration of each chemical species leaving the domain

(DOC, DO, nitrate, ammonium, total nitrogen, total organic
carbon as mentioned in Table 1), and

2. Microbial biomass: Normalized total biomass of each
microbial species in the domain.

We then explored the impact of temporal dynamics in
changing groundwater head at the inlet boundary on these
time series by characterizing the cross-correlation, backward
traceability, and responsiveness as defined below. We compared
these simulation results with base cases (detailed below) to
evaluate the impact of spatio-temporal heterogeneity (base
case being homogeneous domains in temporally dynamic
conditions) and the impact of temporal dynamics (base case
being spatially heterogeneous and homogeneous domains in
steady state conditions). In this way, we were able to estimate
the uncertainty induced by both spatial heterogeneity and
temporal dynamics.

Cross-Correlation, Memory and Backward

Traceability
We used time lagged cross-correlation (Pearson), and
particularly the peak value (referred to as R hereon), to
investigate how strongly the response variables are linked with
the temporal dynamics at the inlet boundary of the domain.
We adapted classification of correlation into strong, moderate
and weak types from Moore et al. (2013) and Lehmann et al.
(2021). Weak correlation (−0.4 ≤ R≤ 0.4) indicates that the
value did not follow closely the head signal at the inlet. If
the R > 0.7, then it is strongly correlated with the forcing,
indicating that the response variable is changing according to
the forcing.

Temporal variations in a time series signal are linearly
traceable when the autocorrelation of the time series is strong
even over a time lag. We termed the time point (in days)
after which the lag autocorrelation falls below 0.7 as “memory”
of the time series signal. We used memory to characterize
the forcing.

A traceable linear relation also exists between the forcing
and the response variables as long as the lag cross-correlation is
strong even over a time lag. We termed the time point (in days)
after which the lag cross-correlation falls below 0.7 as “backward
traceability.” In other words, backward traceability indicated the
duration of the impact of the forcing on response variables of
a system.

We consider the response of the system to temporal
dynamics to be less uncertain, given a high correlation and
short backward traceability. Alternatively, a lack of correlation
between the response of the system and hydrological settings
indicates the relative stability of the system and its inertia
to external disturbances, rendering the system behavior to be
more certain.

Responsiveness
We referred to the root mean squared amplitude of the
response variables’ time series signals resulting from temporally
dynamic forcing as responsiveness for brevity. Responsiveness was
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calculated using Scipy package (Virtanen et al., 2020) as explained
in Equation (2):

Responsiveness = Root mean squared amplitude

=
√

max(Power spectral density(Cnorm(t)))

(2)

where the power spectral density is related with the
autocovariance of the time series Cnorm(t), as introduced
by Duffy and Gelhar (1985) and Cnorm is defined using
Equation (3):

Cnorm (t) =
Cout (t)

Cout,base
(3)

where Cout(t) is the time series signal of the response variables at
the outlet and Cout,base is the concentration of the same chemical
species at the outlet in steady state conditions. To assess the
responsiveness of spatially heterogeneous domains specifically,
we normalized it by the responsiveness of corresponding base
case (homogeneous domains in temporally dynamic conditions)
using Equation 4:

Normalised responsiveness =

Responsiveness of spatially hetergeneous domain

Respnsiveness of spatially homogeneous domain
× 100% (4)

where, a normalized amplitude of 100% indicates that
the spatially heterogeneous domain has the same amplitude as
the homogeneous domain, given the same temporal dynamics in
the forcing, rendering the system behavior to be less uncertain
with respect to spatial heterogeneity. In contrast, the response of
the system is uncertain if the responsiveness is high, and cannot
be substituted by a similar homogeneous domain, rendering the
system behavior to be more uncertain.

Aggregating Results
We used the Damköhler number to characterize reaction
regimes (Pittroff et al., 2017; Khurana et al., 2022) in steady
state conditions to generalize results and to move away from
domain specific, flow regime specific, chemical, or microbial
biomass specific discussions. To estimate Da, we assigned the
characteristic transport time scale as the breakthrough time,
assigned the characteristic reaction time scale as the time taken
for 63% loss in chemical species concentration and took their
ratio. If the chemical species concentration at the outlet is higher
than 5% of the inlet concentration, the estimation of Da reduced
to Equation (5) using the above definitions (Khurana et al., 2022).

Da = − ln
Cout

Cin
(5)

with Cin [L−3 N] as flux averaged concentration of a chemical
species entering the domain, and Cout [L−3 N] as flux averaged
concentration of the chemical species leaving the domain in
steady state conditions (that is the initial conditions in the
simulation). If the chemical species concentration at the outlet
is <5% of the inlet concentration, we derived the characteristic

reaction time scale by identifying the cross-section where 95%
loss of chemical species occurs, deriving the tracer breakthrough
time at this cross-section and using 63% loss in chemical species
to calculate the characteristic reaction time scale (Khurana et al.,
2022):

τreaction =
− ln(0.37)

− ln (Cy5Cin )
× τy5 (6)

where, Cy5 is the concentration of the chemical species at the
point where (y = y5) 95% loss in chemical species occurs, τy5
is the breakthrough time for a conservative tracer at this point.
Using the breakthrough time of the tracer at the outlet of the
domain, we then estimated the Da in systems where the chemical
species were fully (>95% loss) consumed at the outlet of the
domain. We also used the breakthrough time to characterize
the extent of spatial heterogeneity, as used by Khurana et al.
(2022). Based on Khurana et al. (2022), we identified four
categories of reaction and flow regimes that were responsive
to the forcing: transport dominated (log10Da < −1), transport
influenced (where −1 < log10Da < 0), reaction influenced (0 <

log10Da < 0.5), and reaction dominated [log10(Da) > 0.5].

RESULTS

The temporal dynamics in the groundwater head at the inlet of
the domain induced changes in the concentration of chemical
species leaving the domain (mentioned in Section Data analysis
and in Table 1), concentration of microbial biomass in the
domain, and also concentration of mobile biomass leaving the
domain. To characterize the temporal variation, we explored
the characteristics of the forcing (Table 2) and the response
variables (Sections Temporal Variation in Chemical Discharge
and Sections Temporal Variation in Microbial Biomass for the
heterogeneous domains), the aggregated impact onmass removal
of chemical species over 15 years (Section Aggregated Results for
homogeneous domains andAggregated results for heterogeneous
domains). We then considered the responsiveness of the reactive
systems, cross-correlation of the time series signal of the
response variables (Section Responsiveness and Correlation to
Forcing for the homogeneous domains and Section Normalized
Responsiveness for the heterogeneous domains), and the
backward traceability of the response variables to temporal events
at the inlet of the domain (Section Backward Traceability).

Homogeneous Domains (Base Case)
Homogeneous domains provided the opportunity to consider
the impact of temporal dynamics alone on microbial biomass
and nutrient cycling. We first explored the aggregated removal
of mobile chemical species and average biomass over the entire
simulation period of 15 years (Section Aggregated Results),
and then the responsiveness of the response variables in
the homogeneous domains to the forcing in detail (Section
Responsiveness and Correlation to Forcing).

Aggregated Results
In all the flow regimes and investigated scenarios described
in Table 2, the aggregated removal in temporally dynamic
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conditions and steady state conditions was approximately the
same for most chemical species with the aggregated impact being
marginal (within 20% of that in steady state conditions). The
notable exception was nitrate and nitrogen removal in the fast
flow regime, which increased to more than twice of that in steady
state conditions (240 and 211% of steady state conditions in
scenario T5, respectively).

The microbial biomass also was the same in all flow regimes in
temporally dynamic conditions as that in steady state conditions.
The exception was the mass of inactive ammonia oxidizers in
the medium flow regime (increased by 200% in scenario T5) and
active nitrate reducers in the fast flow regime (increased by more
than 200%) compared to steady state conditions.

The summary of the aggregated removal of chemical species in
the homogeneous domain in all the flow regimes and temporally
dynamic scenarios is given in Supplementary Table 1, while the
average total biomass is presented in Supplementary Table 4.

Responsiveness and Correlation to Forcing
The forcing induced fluctuations in the response
variables in the homogeneous domains. The range of
flux averaged concentrations of chemical species and of
spatially averaged concentration of microbial biomass
observed in scenario T5 in the domain are presented in
Supplementary Figures 2, 4 respectively.

The chemical species at the outlet in the slow flow regime
did not respond to the forcing (Supplementary Figure 6). This
was also reflected in weak to moderate correlation with the
forcing (between 0 and 0.7). Among the microbial species,
the active ammonia oxidizers were the most responsive to
the forcing (37% of steady state conditions in scenario T5,
Supplementary Table 5, Supplementary Figure 7). The active
biomass concentration dynamics was moderately to strongly
correlated with the forcing (R >0.67, Supplementary Table 6).

In the medium flow regime, DO was most responsive to
the forcing (at 16% of the steady state conditions in scenario
T5, Supplementary Figure 6) among the chemical species. All
chemical species except ammonium and TOC were moderately
to strongly correlated with the forcing. In contrast, ammonium
and TOC were weakly correlated with the forcing (<0.4). All the
microbial species were responsive to the forcing, and moderately
to strongly correlated (>0.77, Supplementary Table 6). While
inactive aerobic degraders varied the least (6%), the inactive
ammonia oxidizers responded the most (62%) to the forcing.

Lastly, in the fast flow regime, the chemical species were
moderately to strongly correlated with the forcing, with DO
most responsive (92% in T5) and nitrogen least responsive
(5.5%) to the forcing (Supplementary Table 5). The microbial
species, with exception of active mobile aerobic degraders, were
also moderately to strongly correlated with the forcing, with
active nitrate reducers and inactive aerobic degraders the most
responsive, exceeding 70% in scenario T2.

The responsiveness of the chemical and microbial
species in the domain to temporal dynamics are
presented in Supplementary Tables 2, 5, respectively,
while their cross-correlation are presented in
Supplementary Tables 3, 6, respectively.

Heterogeneous Domains
After having described the homogeneous base cases, we will
now investigate the response of the spatially heterogeneous
domains to the forcing. To that end, we first consider the
aggregated removal of chemical species (in Section Aggregated
Results), then characterize the temporal behavior of the domains
in terms of responsiveness, cross-correlation and finally derive
the backward traceability (in Sections Temporal Variation in
Chemical Discharge, Temporal Variation in Microbial Biomass,
Normalized Responsiveness, and Cross-Correlation).

Aggregated Results
In the slow flow regime, the removal of chemical species,
except for TOC, was not impacted by temporal dynamics.
The aggregated removal of TOC reduced to 95% of steady
state conditions in scenario T5 in high heterogeneous domains.
Similarly, we observed that the microbial species were also
distributed among various fractions similar to that in steady
state conditions.

In the medium flow regime, the aggregated removal of all
chemical species was not impacted (within 10% of that in steady
state conditions). We observed the same in the distribution
of microbial species which did not vary from that in steady
state conditions.

In the fast flow regime, the removal of ammonium, DO,
DOC, TOC marginally reduced with temporal dynamics in
spatially heterogeneous domains (within 10% of that in steady
state conditions in scenario T5). In contrast, the removal
of nitrate and nitrogen increased to more than 200% (in
scenario T5) of steady state conditions, with higher impact
in low to moderate spatially heterogeneous domains. The
contribution of most microbial species was not impacted by
temporal dynamics, with the exception of immobile active
aerobic degraders (reduced marginally by up to 10% in low to
moderate spatially heterogeneous domains, the impact reducing
with increasing spatial heterogeneity), immobile active nitrate
reducers (increased marginally at the same time in low to
moderate spatially heterogeneous domains), and immobile
inactive aerobic degraders (increased marginally by up to 4% in
high spatially heterogeneous domains).

Temporal Variation in Chemical Discharge
As explained in the Methods Sections, we identified four
categories of reaction and flow regimes that were responsive to
the forcing (Figure 1) based on the Damköhler number (Da) of
the respective system.

For transport dominated regimes (log10Da < −1), the
concentration of chemical species reduced below steady state
conditions (down to 40%) only in unusually low flow conditions
when velocity was less than half of that in steady state conditions.
But the concentration did not increase when the flow was
higher than the steady state conditions. Similarly, in transport
influenced regimes (−1 < log10Da < 0), the concentration
reduced (to <10%) during periods of low flow (when velocity
was <50%) but did not increase by more than 30% even
when the flow was twice of that in steady state conditions. In
reaction influenced regimes (0 < log10Da < 0.5), the system
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FIGURE 2 | Concentration of chemical species belonging to identified

categories of reaction regimes in all investigated domains normalized by that in

steady state conditions with changing normalized velocity in corresponding

domain (velocity normalized by that in steady state conditions) over the entire

simulation period of 15 years for the three investigated time series (T1, T2, and

T5). Points are colored when the change in concentration is 20% or higher,

otherwise points are gray. Dashed black lines mark a change of 20% in

normalized concentration and in normalized velocity. (A) Displays data for

transport dominant regimes, (B) for transport influenced regimes, (C) for

reaction influenced regimes, and (D) for reaction dominant regimes.

was responsive to velocity fluctuations in both directions; the
concentration reduced (to <10%) in low flow conditions, and
the concentration increased (as high as 10 times) in high flow
periods. In contrast, in reaction dominated regimes (log10Da >

0.5), the concentration increased (as high as 12 times) in high
flow conditions (velocity higher by 50%) and reduced down to
20% in low flow conditions (when velocity was less than half of
steady state conditions). Figure 3 presents the same time series
signal of the normalized velocity, and of the median of the
chemical species concentration bound by quartile ranges in the
same reaction regime categories. Even though the normalized
concentration exceeds the steady state conditions by more than
100% in few select scenarios when systems are characterized by
log10Da > 0 (Figure 2), these extreme scenarios lie outside the
third quartile (Figure 3).

Temporal Variation in Microbial Biomass
The contribution of different fractions of microbial species
also varied with temporally dynamic forcing. In all flow
regimes, the ratio of active to dormant species increased with

increasing velocity. The increase in the ratio was attributable
to both, increasing active and decreasing dormant species with
increasing velocity. The ratio of immobile and mobile species
also increased with increasing velocity, but attributable only to
decreasing mobile species in the domain (Figure 4). The shifting
contribution of each microbial sub-population is presented in
Supplementary Figure 14.

Normalized Responsiveness
As described in Section Temporal variation inmicrobial biomass,
normalized responsiveness indicates the degree of variation in the
time series with respect to homogeneous steady state conditions.

Chemical Species
Each chemical species responded differently to forcing based
on the flow regime (Supplementary Figure 12). In Figure 5,
we presented the normalized responsiveness in terms of the
Damköhler number of the prevailing reaction regime (estimated
in corresponding steady state conditions). Heterogeneous
transport dominated domains were little affected by temporal
dynamics, the responsiveness of temporally dynamic spatially
homogeneous domains being slightly higher. For transport
influenced systems and reaction influenced systems, spatio-
temporal heterogeneities induced a normalized responsiveness
of 6–7 (that is, the amplitude was 500–600% higher than
in homogeneous domains). With residence time < ∼30
days, the normalized responsiveness increased, in moderately
heterogeneous domains, and then tended back toward that
in homogeneous domains when residence time reduced to
approximately a day. For reaction dominated systems, the
normalized responsiveness also depended on the residence
time. For residence time of ∼1 day, there was limited impact
of temporal dynamics. With residence time between 1 and
30 days, the responsiveness increased with increasing spatial
heterogeneity, inducing a normalized responsiveness higher
than 10.

Microbial Species
For all microbial species highest normalized responsiveness
values were∼1. We observed that the normalized responsiveness
of all microbial species in all flow regimes, except for aerobes
in the slow and medium flow regimes, reduced with increasing
spatio-temporal heterogeneity. Figure 6 presents the normalized
responsiveness of the active biomass in these heterogeneous
domains normalized by that of the homogeneous domain.

Cross-Correlation
The chemical species were moderately to strongly correlated
with the forcing in medium and fast flow regimes. In the
slow flow regime, DOC and DO had weak to moderately
positive correlation. In contrast, TOC and nitrogen had weak to
moderately negative correlation (Supplementary Figure 8).

The active microbial species in the medium flow regime
were moderately to strongly correlated with the forcing. All
the microbial species (except mobile aerobic degraders) were
also similarly correlated with the forcing in the slow flow
regime. Mobile aerobic degraders, on the other hand, were
negatively correlated with the forcing. Lastly, all the microbial
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FIGURE 3 | Median concentration of chemical species belonging to identified categories of reaction regimes in all investigated domains bound by 25 and 75%

quartile ranges (red for reaction dominant regimes where log10Da > 0.5, green for regimes where, 0 < log10Da < 0.5, orange for regimes with −1 < log10Da < 0 and

blue for reaction-limited regimes with log10Da < −1) over the entire simulation period of 15 years for the three investigated time series (T1, T2, and T5). Velocity

normalized by that in steady state conditions is indicated by gray solid line. (A1,A2,A5) Display data for transport dominant regimes in three scenarios (time series T1,

T2, and T5) respectively. (B1,B2,B5) Display data for transport influenced regimes in time series T1, T2, and T5 respectively. (C1,C2,C5) Display data for reaction

influenced regimes in time series T1, T2, and T5 respectively. (D1,D2,D5) Display data for reaction dominant regimes in time series T1, T2, and T5 respectively.

species (except aerobic degraders) were negatively correlated
with the forcing in the fast flow regime. The immobile
aerobic degraders were positively correlated with the forcing
(Supplementary Figure 9).

Backward Traceability
We traced the variation in the microbial and physiochemical
quality of the groundwater back to temporally dynamic forcing
(changes in groundwater head in our case). A high backward
traceability indicated that the impact of changes in forcing
lasted a substantial amount of time. We contextualized backward
traceability of the reactive domains with the memory of the
temporally dynamic forcing (Table 2) by taking the ratio of
the two.

Chemical Species
The backward traceability varied from 0 days (in buffered slow
flow regimes, for TOC in relatively homogeneous domains, and
for nitrogen in selected transport dominated fast flow regimes)
to up to 245 days (nitrate in medium flow regime in T5). In
the fast flow regime, the backward traceability increased with
heterogeneity and then decreased in high spatial heterogeneity
scenarios for DOC, TOC, and DO (Supplementary Figure 10).
In the medium flow regime, the backward traceability increased

with spatial heterogeneity for all chemical species except
for DO, for which it remained constant independent of
spatial heterogeneity. The backward traceability of chemical
species could not be evaluated in the slow flow regime
as the correlation with the forcing was weak to moderate
(Supplementary Figure 8). This means that any fluctuation in
the concentration profile of the flux averaged concentrations of
mobile species at the outlet of the domain is not attributable to a
change in the forcing in the slow flow regime.

Microbial Species
The backward traceability for active microbial biomass varied
from 0 days (ammonia oxidizers, nitrate reducers and mobile
aerobes in the fast flow regime) to ∼280 days (immobile active
ammonia oxidizers in slow flow regime in T5).

The backward traceability of the microbial species biomass
in the slow flow regime was the highest (active immobile
aerobes, ammonia oxidizers and nitrate reducers), followed by
that in the medium flow regime and the fast flow regime
(Supplementary Figure 11). Except for nitrate reducers, the
backward traceability remained independent of the spatial
heterogeneity in the domain. Among the nitrate reducers,
the backward traceability reduced with increasing spatial
heterogeneity in the medium flow regime only. The backward

Frontiers in Water | www.frontiersin.org 9 March 2022 | Volume 4 | Article 780297

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Khurana et al. Temporally Dynamic Microbial Nutrient Cycling

FIGURE 4 | Density plot of contribution of microbial subpopulations in all investigated domains normalized by that in steady state conditions with normalized velocity

in corresponding domain (velocity normalized by that in steady state conditions) over the entire simulation period of 15 years for the three investigated time series (T1,

T2, and T5). Darker colors indicate higher density of points. (A1) Displays ratio of active and inactive biomass and (A2) displays ratio of immobile and mobile biomass

in the slow flow regime. (B1) Displays ratio of active and inactive biomass and (B2) displays ratio of immobile and mobile biomass in the medium flow regime. (C1)

Displays ratio of active and inactive biomass and (C2) displays ratio of immobile and mobile biomass in the fast flow regime. *Data points are normalized by that in

steady state conditions.

traceability for nitrate reducers in the slow flow and fast flow
regimes also remained independent of spatial heterogeneity.

DISCUSSION

The response of nutrient cycling and microbial biomass to
temporal dynamics in the forcing involved a detailed analysis of
flow regime, spatial heterogeneity, and the intensity of temporal
dynamics in the forcing. We observed that the concentration of
chemical species leaving the domain varied over time, although
the aggregated removal of the chemical species of the entire
simulation period was the same as that in steady state conditions.
We also observed that the biomass of the microbial species, the
relative contribution of different fractions of microbial species in
the domain varied over time. This is analogous to real-time data
collected during long term environmental monitoring studies
where varying groundwater head in monitoring wells is linked
with varying physicochemical characteristics of groundwater
(McGuire et al., 2000; Van Der Hoven et al., 2005). The
predictability of the response of the system to temporal dynamics
is confounded by both uncertainties in the flow regime and
spatial heterogeneity. Here we shed light on their individual
contributions and the consequences for modeling predictions.

As described in the Methods section, we explore a wide
range of physically plausible scenarios of spatially heterogeneous
domains and temporally dynamic scenarios. We varied
the conductivity spatially in the domain to induce spatial

heterogeneity. However, subsurface systems are spatially
heterogeneous given variation in other properties as well,
including porosity, surface properties of the matrix, and
storativity. We did not explore variation in any other properties
to induce spatial heterogeneity in the domain. It must be
noted, though, that the explored scenarios of spatially distributed
conductivity induced a reduction in breakthrough time as high as
80% of that in homogeneous scenarios. Given that breakthrough
time is a suitable indicator of changing biogeochemical potential
of most spatially heterogeneous reactive systems (Sanz-Prat
et al., 2015, 2016; Khurana et al., 2022), we deemed this sufficient
to derive uncertainty due to spatial heterogeneities in the
domain. We expect that further studies exploring the impact
of the above-mentioned properties of the domain to add to
our findings.

Similar to spatially heterogeneous scenarios, we focused
on developing temporal dynamics scenarios that would be
comparable to steady state conditions. This assumes that long-
term average conditions in the subsurface are stable. However,
groundwater table is expected to drop in regions where it is used
for irrigation (Huang et al., 2015), while it is expected to increase
in regions with surface water irrigation or permafrost melt (Bense
et al., 2009; Huang et al., 2015; Pholkern et al., 2018). We detail
the implications of this further in the following sections.

Lastly, a major source of uncertainty is parametrization of
the reaction network [as also described in the Introduction
(Nitzsche et al., 2000)]. We sought to mitigate the uncertainty
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FIGURE 5 | Normalized responsiveness of chemical species leaving the

domain in temporally dynamic and spatially heterogeneous domains with

respect to temporally dynamic homogeneous domain. The color varies with

the prevalent reaction-flow regime (red for reaction dominant regimes where

log10Da > 0.5, green for reaction influenced regimes where, 0 < log10Da <

0.5, orange for transport influenced regimes with −1< log10Da < 0 and blue

for transport dominated regimes with log10Da < −1). Normalized

responsiveness close to 1 indicates that the temporal dynamics induced in a

spatially heterogeneous domain is similar to those induced in the

corresponding homogeneous domain.

due to this on multiple levels. First, we coupled the same
process network with the same parameters in all the scenarios
(homogeneous and heterogeneous domains, in both steady
state conditions and temporally dynamic hydrological settings).
Second, we considered the homogeneous domains and steady
state conditions as the base case. Recall, for example, that
we normalized the responsiveness of spatially heterogeneous
domains with that of homogeneous domains. Lastly, the
characterization of subsurficial reactive systems may be done
based on a dimensionless number (Da). This can be relatively
easily estimated based on field data and its use mitigates the
importance of accurate parameterization when predicting a
system’s response to changing forcing or domain characteristics.
Thus, we can confidently explore the implications of the results
of this study with respect to uncertainty induced by spatio-
temporal heterogeneities.

Temporal Dynamics and Associated
Uncertainty in Reactive Transport Modeling
This study explored biomass dynamics and nutrient cycling
thereof in domains exhibiting spatio-temporal heterogeneities.
Depending on the reaction and flow regime in the system, and
temporal dynamics of the forcing, we can estimate the predictive
uncertainty of chemical discharge from a domain caused by
the associated spatio-temporal heterogeneities. The uncertainty

FIGURE 6 | Normalized responsiveness of concentration of active fraction of

biomass in the domain in response to temporal dynamics in the forcing

(changing groundwater head at the inlet of the domain). The color varies with

the prevalent flow regime (red for slow flow, green for medium flow, and blue

for fast flow regimes). Normalized responsiveness close to 1 indicates that the

temporal dynamics induced in a spatially heterogeneous domain is similar to

those induced in the corresponding homogeneous domain. (A) Displays the

data for active aerobic degraders (aerobes), (B) for active ammonia oxidizers,

and (C) for active nitrate reducers.

bounds are therefore a good measure for the error that would
result from neglecting them.

It is worthwhile to note that there was no substantial impact
of temporal dynamics on removal of chemical species or the
distribution of microbial species into various fractions when
aggregated over the entire simulation period. Even for the
exceptional case of nitrate in fast flow, the aggregated impact
was marginal, since the observed large increase (∼200%) in
nitrate removal was with respect to very low removal in the
steady state homogeneous domain; the removal increased from
1.1 to 2.7%. Thus, the relevance of uncertainty quantification in
modeling studies must be examined with the research objective
in mind. If we are interested in aggregated behaviors of the
system over long periods, then the impact of sub-scale temporal
dynamics is small and the system can be well-represented
with a steady state model of the same residence time, akin
to biogeochemical stationarity discussed by Basu et al. (2010)
for above surface systems. The link between average behavior
of subsurficial reactive systems with travel time has also been
established (Sanz-Prat et al., 2015). Thus, aggregated removal
of chemical species of the system is linked with the travel time
of the system at the temporal scale of interest/in question. For
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example, if the travel time in a system increases over the time
scale of interest, say due to lowering water table and decreasing
hydraulic gradient, then we expect the aggregated removal of
the chemical species in the system to increase, resulting in lower
chemical discharge from the domain. At the same time, sub-scale
temporal dynamics in chemical discharge can be characterized
based onDamköhler number as in Khurana et al. (2022), whereby
neglecting spatial heterogeneity alone may result in prediction
errors from−60 to+500%. Transport dominated heterogeneous
systems showed limited impact to temporal dynamics; most of
which was attributable to the reduction of nitrate in unusually
low flow conditions when velocity reduced to <50% of that in
steady state conditions. Furthermore, the response of temporally
dynamic spatially homogeneous domains was higher than that
of heterogeneous domains. In other words, spatial heterogeneity
dampened the impact of temporal dynamics on the reactive
system. Temporal dynamics are therefore important in only
unusually low flow conditions. Unusual here means that the
average residence time is less than half of that in a corresponding
homogeneous domain, caused by the strong heterogeneity, and
at time points when the flow rate is also less than half of that in
steady state conditions.

For transport or reaction influenced systems, spatio-temporal
heterogeneities induce a normalized responsiveness of 6–7
(that is, moderately heterogeneous domains respond more
than homogeneous domains by 500–600%). At the same
time, high spatially heterogeneous domains respond the
same as homogeneous domains. Thus, predictive uncertainty
associated with temporal dynamics was adequately captured
by homogeneous domains in high heterogeneity scenarios.
However, in moderately heterogeneous domains, both
spatial heterogeneity and temporal dynamics lead to strong
deviations from the homogeneous cases and therefore
heterogeneity needs to be accounted for when modeling
these systems.

For reaction dominated regimes, the amplitude depended on
the average residence time as well. When residence time was
short (approximately a day), there was limited impact of temporal
dynamics on the system. On the other hand, in medium flow
systems, when residence time was higher than a fortnight, spatial
heterogeneity accentuated the impact of temporal dynamics on
the amplitude of the system, and the third quartile could be as
high as twice the steady state conditions. Thus, spatio-temporal
heterogeneities may not be neglected in these systems.

In general, the high responsiveness of the systems in the
study was due to DO, nitrate and DOC traveling through the
preferential flow paths in spatially heterogeneous domains. This
behavior and extent of impact is consistent with previous studies.
Gwo et al. (1996) proposed that 64% of variation in fluxes
is attributable to spatial heterogeneity (hydraulic conductivity
and anisotropy) and temporal dynamics (rainfall intensity). Van
Der Hoven et al. (2005) observed even higher dynamics with a
variation of DO over 2 orders ofmagnitude at their site. Rein et al.
(2009) also observed that temporal variation in groundwater flow
conditions resulted in variation of contaminant concentration (as
high as the steady state/average concentration). More recently,
Küsel et al. (2016) discussed variation of chemical species (such

as DOC, DO, nitrate) by a factor of 3–4, both in space and
in time. While a direct comparison between these previous
studies and our results is ill advised considering differences in
flow regimes, conceptual model, and site settings, it is worth to
note that we observe variation over similar orders of magnitude
and even higher since we considered a larger range of spatio-
temporal variations.

To conclude, we estimated bounds of predictive uncertainty
based on easily estimable field indicators (Da, travel time).
Neglecting spatio-temporal heterogeneities resulted in large
predictive uncertainty depending on the reactive system of
interest. In transport dominated systems, parametrization
uncertainty was much higher than predictive uncertainty, which
was predicted to be as high as median concentration of chemical
of concern by Nitzsche et al. (2000). In reaction dominated
systems, the predictive uncertainty could be comparable to
parametrization uncertainty. Note also that for the reaction
network and parameters used in this study any scenarios with
flow rates lower than the presented slow flow regime would have
been reaction dominated systems. In the transport influenced
and reaction influenced systems, neglecting spatio-temporal
heterogeneities resulted in higher predictive uncertainty
compared to parametrization uncertainty.

In this work, we considered a wide variety of flow regimes,
a comprehensive and detailed process network, homogeneous
uniform flow conditions as the base case, and stochastically
generated time series of the forcing, and dimensionless numbers
that are used for capturing scaling effects. Thus, this work
comprehensively encapsulates the predictive uncertainty relevant
at the field and policy scale (Muniruzzaman and Pedretti, 2021).

Response of Microbial Biomass and
Nutrient Cycling to Temporal Dynamics
The distribution of the biomass among the various types of
species changed in the temporally dynamic regimes where flow
velocity varied in time. This agrees with previous research
that attribute species composition to difference in the flow
regimes (Grösbacher et al., 2018), the maximum carrying
capacity (the limited capacity of the domain to host immobile
microbes) (Grösbacher et al., 2018) and spatial heterogeneity of
a system (Or et al., 2007; Franklin et al., 2019, 2021; Khurana
et al., 2022). Since the slow flow regime is already transport
limited, the temporal variation in inactive species appears to
be stochastic in nature, enhancing predictive uncertainty. With
increasing advection, the microbial community composition
tends to become deterministic and predictable (Stegen et al.,
2016), mitigating predictive uncertainty using the approach
presented in this work. Notably, the biomass in low flow zones
of transport dominated systems is less sensitive to temporal
dynamics because the biomass in low-flow zones may not
be reached by fluctuations in advection. In contrast, locally
mixed or diffusion dominated heterogeneous domains as well as
homogeneous domains respond similarly to temporal dynamics.
Spatial heterogeneity and long transport time scales thus enhance
resilience of microbial community structure to disturbances
(König et al., 2017, 2018; Yabusaki et al., 2017). Thus, the
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relevance of spatio-temporal heterogeneities (and uncertainty
thereof) for geomicrobial community structure and nutrient
cycling is dependent on travel time and dominant flow processes.
Spatio-temporal heterogeneities are more relevant in transport
dominated systems and may be neglected in reaction dominated
(or transport limited) systems.

The fluctuation of microbial communities attributable to
groundwater or surface inputs was also observed in other studies.
For example, King et al. (2017) demonstrated that the relative
contribution of bacterial species in an in-field bioreactor changes
between dry periods (oxic conditions) and wet periods (sub-oxic)
conditions. Benk et al. (2019) further demonstrated that changing
input of DOM between dry and wet seasons influences bacterial
community evolution in a pristine oligotrophic aquifer under
minimal anthropogenic impact or disturbance. Lohmann et al.
(2020) also then focused on the shift from aerobic to anaerobic
ammonium oxidation between summer (dry conditions) and
autumn (wet conditions) at the same site. We observed that
change in relative abundance of active species in the microbial
community or the change in microbial activity did not lead
to an impact of the same magnitude on chemical discharge.
For example, even though the contribution of active nitrate
reducers decreased during low flow conditions in the medium
flow regime, we observed that nitrate removal increased. This
points to the low microbial activity in low-flow periods as
discussed by Stegen et al. (2016). Even though nitrate reduction
increased during these periods, the proliferation and activity
of nitrate reducers decreased as microbial activity is limited by
transport. In contrast, during high flow periods, even though
the discharge of nitrate increased, the contribution of active
nitrate reducers did not change from steady state conditions,
while the contribution of inactive nitrate reducers decreased.
This points to flushing of both microbes and chemical species
due to high flow rates (Stegen et al., 2016). Temporal dynamics
thus enable higher diversity in the subsurface microbiome by
enabling mobility of microbial species in high flow periods
(King et al., 2017).

Assisting Sampling Decisions
Having estimated the predictive uncertainty associated with
temporal dynamics in forcing on themobile species signal leaving
the domain and microbial biomass within the domain, we now
consider the implications for sampling design. Low variation
of mobile species at the outlet of the domain indicates that
the temporal dynamics in the forcing are potentially buffered
by the flow regime at the scale of the domain (Alewell et al.,
2006). Alternatively, the corresponding chemical species is not
affected by excessive flow rates induced in the domain, for
example nitrogen in the fast flow regime. Since nitrogen removal
was already marginal at steady state conditions in the fast flow
regime (Khurana et al., 2022), higher flow rates do little to
reduce the consumption further. In contrast, lower flow rates
induced in heterogeneous domains in the fast flow regime
provide an opportunity for nitrate reducers to thrive in anaerobic
microsites in heterogeneous domains, thereby resulting in
increased consumption of nitrogen with both temporal dynamics
and spatial heterogeneity. Lohmann et al. (2020) observed similar

shifts from aerobic metabolism (ammonia oxidation during
dry periods) to anaerobic metabolism (nitrate reduction and
anaerobic ammonia oxidation during wet periods) in functional
diversity of microbial communities in groundwater. This is
hypothesized as a potential effect of climate change driven
changing surficial processes by Stegen et al. (2016) as well.
Interestingly, the low flow zones provided buffer zones to these
anaerobic microsites in domains with high flow rates, and
therefore the response of these microbial species was lower
compared to temporally dynamic regimes in lower average flow
rates (see discussion above).

Tracing temporally dynamic mobile species poses an
additional challenge. The time-lag analysis provided insight into
the traceability of temporal dynamics of the system to forcing
(Kim et al., 2019). The lag between the forcing of groundwater
head and corresponding response in the domain and at the
outlet of the domain varied as per the flow regime, as well as
the microbial and chemical species of concern. Depending on
the time scale of interest, the frequency of sampling, and the
timing of sampling must be governed by occurrence of weather
events as well as broader seasonal changes. While the response in
dissolved chemical species signal may be immediate (shorter than
observation frequency, and shorter than the traceability of the
time series signal itself) in high spatio-temporal heterogeneity
and high flow rate regimes, the response is induced later and
lasts longer on microbial species in medium and slow flow
regimes. Also, the traceability for microbial biomass in slow
and medium flow regimes was in the same range as that of the
traceability of the forcing and was largely not dependent on
the residence time of the domain. Interestingly Hofmann et al.
(2020) concluded that microbial communities present in the
shallow subsurface respond to changing surficial inputs (with
residence time of ∼15 h, corresponding to fast flow regime
in our study) over 170 days, which is in the same order of
magnitude as the traceability observed in our study. It was also
in the same order of magnitude of that observed by Zhou et al.
(2012), even though their study was a transport dominated
system at the field scale as opposed to the sub-meter scale of
our study. Thus, we link traceability with the time scale of
respective microbial growth kinetics. Microbial species with
lower respiration and growth rates are slower to adapt to
dynamic environmental conditions, and therefore display a large
time lag (or high traceability). Microbial population distribution
shifts are attributable to shifting hospitable conditions for high
adaptable microbial species, and increased mobility for low
adaptable microbial species (Sugiyama et al., 2018). Therefore,
the time scale of temporal dynamics of environmental conditions
and subsequent impact must be considered in relation to the
time scale of microbial kinetics. If the time scale of changing
forcing is short in comparison to the time scale of microbial
kinetics, then the observable impact on microbial biomass
is expected to be less. Regardless of these differences in the
extent of the system response, the time series signal of dissolved
chemical species and microbial biomass is linked with that
of groundwater head, which is in turn linked with surficial
events. Therefore, none of these analyses may be undertaken
in isolation.
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SUMMARY AND CONCLUSIONS

Computational costs, lack of detailed characterization of
geological setting, lack of temporal resolution in field monitoring
leads to modelers assuming steady state homogeneous
conditions of a natural system. Field scale studies do not
resolve sub-scale spatial heterogeneity, thus contributing
to uncertainty with respect to both parametrization and
predictive outcomes of modeling studies. The uncertainty
induced due to lack of characterization of spatial heterogeneity
is further exacerbated by neglecting temporal dynamics.
Additionally, prediction of temporal dynamics is also
increasingly uncertain in a changing climate scenario, and
we are not yet equipped to estimate the uncertainty in microbial
activity, and chemical discharge thereof from subsurface
reactive systems.

While we are not able to completely do away with the
uncertainty associated with reactive transport modeling, this
study is a first attempt to capture the extent of uncertainty
were we to neglect spatio-temporal heterogeneities in modeling
studies. With accurate site characterization, and contextualizing
temporal dynamics, we can now assist in field sampling design to
correlate field data with dynamics in forcing. With this, we aimed
to reduce predictive uncertainty in modeling studies.

We explicitly accounted for both spatial and temporal
heterogeneities and combined this with a comprehensive
biogeochemical reaction network to estimate associated
uncertainty. We captured a wide range of spatially heterogeneous
scenarios, temporally dynamic regimes, flow regimes, four
distinct microbial functional groups, to comprehensively
propose the bounds of predictive uncertainty associated with
spatio-temporal heterogeneities. We identified four (4) types of
reactive systems: Transport dominated, transport influenced,
reaction influenced, and reaction dominated, similar to that
used in Khurana et al. (2022), based on the travel time and the
logarithm of Damköhler number (log10Da) to categorize system
response to spatio-temporal heterogeneities.

We found that both spatial and temporal heterogeneity impact
biomass distribution and nutrient cycling to varying degrees (as
high as 20 times that of average or steady state conditions),
resulting in uncertainty in prediction of reactive transport
models. We concluded that spatial heterogeneity has a higher
bearing than temporal dynamics on nutrient cycling in extremely
high spatio-temporal heterogeneous scenarios. In systems with
high spatial heterogeneity or preferential flow paths, the aerobic
conditions vary dramatically with forcing, but the appearance of
anaerobic microsites leading to higher consumption of nitrate
may only appear in extremely low flow periods. These conditions

may be rare historically but are expected to occur with higher
frequency with climate change driven processes (Stegen et al.,
2016).

In cases of moderate spatially heterogeneous domains,
temporal dynamics play a larger role in nutrient cycling.
Furthermore, we concluded that temporal dynamics have a
longer lasting impact on microbial community structure and
corresponding redox conditions in heterogeneous subsurface
domains (characterized by low variance domains in medium to
slow flow regimes) such as alluvial sediments close to hyporheic
zones with increased matter exchange between the surface and
the subsurface.

This study provided a comprehensive estimate of predictive
uncertainty if spatio-temporal heterogeneities were to be
neglected. While predictive uncertainty could be as high as
10–20 times that of homogeneous steady state conditions
depending on the reactive system of interest, neglecting temporal
dynamics alone resulted in predictive uncertainty as well with the
interquartile range being 50% lower to 100% higher than that in
average or steady state conditions.
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