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The use of image based velocimetry methods for field-scale measurements of river

surface flow and river discharge have become increasingly widespread in recent years,

as these methods have several advantages over more traditional methods. In particular,

image based methods are able to measure over large spatial areas at the surface of

the flow at high spatial and temporal resolution without requiring physical contact with

the water. However, there is a lack of tools to understand the spatial uncertainty in

these methods and, in particular, the sensitivity of the uncertainty to parameters under

the implementer’s control. We present a tool specifically developed to assess spatial

uncertainty in remotely sensed, obliquely captured, quantitative images, used in surface

velocimetry techniques, and selected results from some of our measurements as an

illustration of the tool’s capabilities. The developed software is freely available via the

public repository GitHub. Uncertainty exists in the coordinate transformation between

pixel array coordinates (2D) and physical coordinates (3D) because of the uncertainty

related to each of the inputs to the calculation of this transformation, and additionally

since the transformation itself is generally calculated in a least squares sense from

an over determined system of equations. In order to estimate the uncertainty of the

transformation, we perform a Monte Carlo simulation, in which we perturb the inputs

to the algorithm used to find the coordinate transformation, and observe the effect on

the results of transformations between pixel- and physical- coordinates. This perturbation

is performed independently a large number of times over a range of the input parameter

space, creating a set of inputs to the coordinate transformation calculation, which are

used to calculate a coordinate transformation, and predict the physical coordinates of

each pixel in the image. We analyze the variance of the physical position corresponding

to each pixel location across the set of transformations, and quantify the sensitivity of

the transformation to changes in each of the inputs across the field of view. We also

investigate the impact on uncertainty of ground control point (GCP) location and number,

and quantify spatial change in uncertainty, which is the key parameter for calculating

uncertainty in velocity measurements, in addition to positions. This tool may be used

to plan field deployments, allowing the user to optimize the number and distribution

of GCPs, the accuracy with which their position must be determined, and the camera

placement required to achieve a target level of spatial uncertainty. It can also be used to

estimate the uncertainty in image-based velocimetry measurements, including how this

uncertainty varies over space within the field of view.
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1. INTRODUCTION

Image based velocimetry methods have great utility, as they
allow continuous, non-contact, measurements of velocity over
two-dimensional areas. Particle image velocimetry (PIV) and
particle tracking velocimetry (PTV) methods, which have been
used extensively in the laboratory (e.g., Adrian, 1991; Cowen
and Monismith, 1997), have also been extended for use in field
scale settings (e.g., Fujita et al., 1998; Creutin et al., 2003; Kim
et al., 2008). These methods are based on tracking images of
particles or patterns, as they are digitized on an array of pixels,
as they are advected by the flow, and inferring the flow velocity
based on a transformation of these pixel displacement to physical
dimensions of length, and knowledge of the time over which
they occurred.

Field scale image velocimetry applications can use algorithms
adapted from laboratory applications, however, in recent years
a large number of methods have been developed specifically
for use with field-scale imagery, including Space-Time Image
Velocimetry (STIV; Fujita et al., 2007), Kanade-Lucas-Tomasi
feature tracking (KLT; Perks et al., 2016), Optical Tracking
Velocimetry (OTV; Tauro et al., 2018b), Surface Structure Image
Velocimetry (SSIV; Leitāo et al., 2018), Infrared Quantitative
Image Velocimetry (IR-QIV; Schweitzer and Cowen, 2021), and
others. These methods have been used with cameras both in fixed
positions or mounted on mobile platforms such as unoccupied
aerial systems (UASs) (Detert andWeitbrecht, 2015; Detert et al.,
2017; Lewis et al., 2018; Eltner et al., 2020). Image-based surface
velocimetry methods have been used utilizing images captured in
various spectral ranges, including the visible light spectral range,
and the infrared spectral range (Chickadel et al., 2011; Puleo et al.,
2012; Legleiter et al., 2017; Eltner et al., 2021; Schweitzer and
Cowen, 2021).

Although image-based surface velocimetry methods span
a range of analysis methods, camera configurations, and
imaged wavelengths, they all share the need for georeferencing,
which involves a transformation between a three dimensional
coordinates system in physical space and the two dimensional
coordinates of an array of pixels in an image. Several methods of
finding a transformation between these two coordinate systems
exist, all of which depend, implicitly or explicitly, on the camera’s
position and orientation, and on resolving distortion introduced
by the image acquisition system. Any uncertainty associated
with the determination of the parameters used to calculate
the coordinate transformation will create uncertainty in the
transformation, which will carry over and lead to uncertainty in
the resulting velocity measurements.

Literature discussing uncertainty in field-scale, image-
based velocimetry (e.g., Hauet et al., 2008; Muste et al.,
2008), generally focuses on discharge estimation, and
combines uncertainty stemming from multiple sources:
surface seeding and illumination, selection of interrogation
area size, estimation of water column velocity from the surface
velocity (velocity index, or α), cross-channel bathymetry,
and georeferencing. In recent years, with technological
advances allowing for small, high quality cameras, and the

flexibility to deploy cameras from drones and other platforms,
image-based velocimetry methods have increasingly been
used for applications requiring more detailed measurements
than estimating bulk parameters such as mean velocity
and discharge. An early example of this is Fujita et al.’s
(2004) work on flow over and around spur dykes, and more
recently, the study of river confluences (Lewis and Rhoads,
2018), fish diversion structures (Strelnikova et al., 2020), and
instantaneous velocity measurements at the surface of rivers
(Schweitzer and Cowen, 2021).

These high-fidelity surface measurement applications require
a more nuanced approach to uncertainty analysis, and in
particular benefit from analysis of the spatial distribution of
uncertainty between different regions of the field of view field
of view (FOV). However, specific discussion of uncertainty
resulting from georeferencing remains lacking in the surface
velocimetry literature. The accuracy of georeferencing depends
on performing appropriate intrinsic and extrinsic calibrations
of cameras used for surface velocimetry, however, as reported
by Detert (2021), these fundamental steps are often neglected
or overly simplified by making assumptions about camera
parameters and viewing angles. When used in a laboratory
or similar setting the camera can often be set up with
a view normal to the plane of the image, in which case
the transformation between pixel coordinates and physical
dimensions of length is straightforward (e.g., Cowen and
Monismith, 1997). In field settings the camera is often oriented
at an oblique angle to the surface being imaged, which introduces
perspective distortion in the image (i.e., the physical distance
between the locations described by two adjacent pixels will
change based on their position within the image). Even if
the camera is orientation approximately normal to the water
surface, such as from an aerial platform or a bridge, small
deviations from nadir view can have a significant impact on
velocimetry results. For example, Detert (2021) showed that
incomplete camera calibration can lead to errors in velocity
estimation on the order of 20% or more. This article presents a
method of estimating uncertainty related to georeferencing by
quantifying the sensitivity of the results of the transformation
to stochastic changes in the inputs, using a Monte Carlo
simulation technique.

Recently published analyses of uncertainty in image based
surface velocimetry include that of Rozos et al. (2020), who
used a Monte Carlo simulation method to analyze the effects
of interrogation area dimensions on uncertainty in large scale
particle image velocimetry (LSPIV), and of Le Coz et al. (2021)
who used Bayesian methods and a Markov Chain Monte
Carlo sampler to conduct an in-depth analysis of uncertainty
related to georeferencing, and to reduce uncertainty in velocity
and discharge LSPIV measurements, by combining available
knowledge of GCP coordinates and of the camera’s position and
orientation. The strength of Le Coz et al.’s (2021) method is
that it utilizes a combination of explicit information about the
camera’s position and orientation, and implicit information in
the form of ground control point (GCP) coordinates. However,
the method described in that article does not address spatial
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variance of uncertainty within a particular FOV, and one of
its conclusions is that a need exists additional other methods
to quantify uncertainty due to camera model errors and GCP
real-world coordinate errors, two topics which are discussed in
this article.

In contrast to the Bayesian approach of Le Coz et al. (2021),
our approach examines the variance of spatial uncertainty across
the FOV, as a result of either explicit or implicit georeferencing
methods (separately, but not combined), and can be used as a
straightforward tool to optimize camera and GCP positioning at
the site of a planned study.

Our method allows in depth examination of not only the
general uncertainty in georeferencing a particular FOV, but also
how it varies from place to place within the FOV. Understanding
the spatial variance of this uncertainty is key to quantifying the
uncertainty of velocity measurements, since they will be affected
by changes in the accuracy of the georeferencing transformation
along the path over which a parcel of water is tracked. In addition,
the method described in this article provides tools to explore the
potential impact of modifying specific parameters, such as the
position and location of GCPs, or improving the accuracy with
which GCP positions are determined.

The structure of this article is as follows: in Section 2 we
present an overview of georeferencing methods, and of our
Monte Carlo method of estimating uncertainty. In Section 3
we present an example from a large scale velocity measurement
conducted by the authors using IR-QIV. Discussion is provided
in the remaining sections.

The uncertainty analysis tools described in this article
were developed by the authors using the Julia programming
language. Julia is an open source, high level, high performance,
scientific computing language (Bezanson et al., 2017). The
code for the camera calibration and uncertainty analysis tools
described in this article is publicly available at https://github.com/
saschweitzer/camera-calibration.

2. METHODS

2.1. Georeferencing Method
Georeferencing involves a transformation between two-
dimensional image (pixel) coordinates (u, v) and three-
dimensional physical coordinates (x, y, z). In general, this
transformation requires precise knowledge of the camera’s
position and orientation (known as extrinsic camera calibration
parameters), as well as optical characteristics, including
magnification and any distortion that might exist due to the
optical or electronic image acquisition path (known as intrinsic
calibration parameters). When all of the camera calibration
parameters are known it is possible to transform between 3D
physical coordinates and 2D pixel coordinates. The inverse
transformation, from pixel to physical coordinates, requires an
additional piece of information, namely the distance between the
camera and the object visible in the image. In surface velocimetry
applications this is often found from the difference between the
camera’s elevation and the water surface elevation (WSE). Other
methods of determining the distance from the camera, such as
multiscopic views, are not discussed in this article, however,

the uncertainty analysis method described here remains valid,
with the appropriate modifications to inputs, regardless of the
method used.

If the camera calibration parameters are known a-priori
an explicit, or direct georeferencing, transformation can be
calculated. This is often done if the camera can be assumed
to be oriented normal to the water surface (i.e., at a nadir
view), e.g., if the camera is mounted on an aerial platform.
The camera’s orientation may also be measured directly, e.g., by
using an inertial measurement unit (IMU). In the more general
case where the camera’s position and orientation are not known
these parameters may be calculated from the collected images,
by relating the coordinates of features visible in the image in
the two coordinate systems. These features are known as ground
control points (GCPs, sometimes referred to as ground reference
points, GRPs), and can be either naturally occurring or placed
by the practitioner. Good GCPs must be clearly identifiable both
in the field and in images so that their coordinates can be
unambiguously determined in the two coordinate systems. This
type of calculation is known as implicit georeferencing.

Most camera calibration methods can be categorized as
explicit or implicit (Holland et al., 1997). Explicit methods
use an iterative algorithm that minimizes a set of non-linear,
or in some cases linearized, equations to estimate all the
camera calibration parameters and uses them to calculate the
coordinate transformation. Implicit methods, such as the Direct
Linear Transformation (DLT) method of Abdel-Aziz et al.
(1971), use intermediate parameters to calculate the coordinate
transformation. The parameters are calculated based on a closed-
form solution to a linear set of equations. Two-step methods
solve for combinations of implicit and explicit methods for the
various camera calibration parameters, such as Holland et al.’s
(1997) method, which itself is a modified version of Tsai’s
(1987) method.

In this manuscript, we follow the georeferencing method
developed by Holland et al. (1997), which is a two-step method
in which the intrinsic camera properties (coordinates of the
image center, horizontal and vertical magnification coefficients,
and radial distortion) are determined before deploying the
camera, so that only the extrinsic properties of the camera
must be determined in the field. The extrinsic parameters
include the camera’s coordinates (xc, yc, zc), orientation angles
(azimuth, φ, tilt, τ , and roll, σ ), and the focal length (f ).
Focal length is technically an intrinsic characteristic of the
camera, but it can vary with lens focus and with changes
in the camera temperature (e.g., Elias et al., 2020), so it is
advantageous to determine it in the field after positioning
the camera. While it is possible to determine both the
intrinsic and extrinsic camera parameters in the field using
GCPs, separating the process into two steps reduces the
number of GCPs required, while increasing the accuracy of
the intrinsic calibration by using a calibration target in a
controlled environment. The intrinsic camera parameters only
change if the camera’s hardware is modified (e.g., changing
the lens), so it only needs to be performed once, whereas the
extrinsic calibration must be repeated any time the camera
is moved.
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There are seven unknowns (xc, yc, zc,φ, τ , σ , f ) to be solved
for in the extrinsic calibration. Each GCP yields a pair of
equations (one each for the u and v pixel coordinates), so a
minimum of four GCPs are required, although in theory it is
possible to reduce this number if other information is available,
such as the position of the camera (xc, yc, zc). If more than the
minimum number of GCPs are available the system of equations
is overdetermined and it is typical solved in a least-squares sense.
Once the intrinsic and extrinsic camera calibration parameters
have been found they are used to calculate the coefficients
of the DLT, which transforms between pixel coordinates and
physical coordinates.

Other georeferencing methods for velocimetry applications
exist in the literature. These include, among others, a coplanar-
GCP method that requires all the GCPs to be placed in a plane
parallel to the plane of the water surface, first described by Fujita
et al. (1997, 1998) and used by others, e.g., Creutin et al. (2003),
Jodeau et al. (2008), and a method that requires a minimum
of six non-coplanar GCPs that solves for all 11 calibration
parameters from GCPs in the field without separating intrinsic
and extrinsic calibration steps, described by, for example,
Muste et al. (2008).

In velocimetry methods based on images collected from aerial
platforms an assumption is sometimes made that the camera is
oriented at a normal angle to the water surface, and, therefore, the
transformation between pixel and physical coordinate systems is
only a matter of magnification based on the camera’s focal length
and distance from the water surface, and rotation (e.g., relative
to the north) (Streßer et al., 2017; Tauro et al., 2018a). However,
while this type of assumption simplifies the analysis required for
velocimetry, neglecting to perform careful intrinsic and extrinsic
calibration can lead to significant reduction in the accuracy of
velocimetry results (Detert, 2021).

All of the above methods are based on a pinhole camera
model, which assumes no distortion in the optical path. Radial
distortion (i.e., barrel, pincushion, or a combination of the two)
can be present in cameras used for velocimetry applications,
and can lead to significant errors if not corrected for, especially
when using short focal length lenses. The effects are increased
near the edges of the image, and exist even if there is little
perspective distortion due to a nadir view (Detert, 2021). Radial
distortion must, therefore, be accounted for before performing
georeferencing. The radial distortion of a camera is often
modeled as a polynomial, the coefficients of which can be found
by imaging a regular grid target such as a checkerboard, and
fitting a curve to the change in distance between grid points in
the image as a function of distance from the image center. Similar
methods are used to remove radial distortion when using infrared
(IR) images, however printed checkerboards may not be the best
calibration target in this case. Alternate targets may be preferable,
such as the emissivity contrast target described in Schweitzer and
Cowen (2021). In georeferencing methods that involve only a
field (i.e., GCP) step, without a separate intrinsic calibration step,
radial distortion is sometimes addressed using a grid of reference
points in the field, covering a subset of the FOV (e.g., Lewis and
Rhoads, 2018), or using image processing software that makes
assumptions of the distortion based on the camera and lens

model (e.g., Tauro et al., 2018b). However, these methods may
not completely eliminate the effects of radial distortion (Detert,
2021).

2.2. Georeferencing Sensitivity Simulation
We quantify the general georeferencing uncertainty, and the
sensitivity of the georeferencing transformation to uncertainty
in its inputs, by way of a Monte Carlo simulation. Regardless
of the method used, georeferencing consists of using a set
of inputs to calculate a transformation between pixel and
physical coordinates, which is then used to calculate the physical
coordinates of the center of pixels in the image. Our approach
is to perturb the inputs to the calculation, and observe the
effect on the transformed coordinate set. By perturbing one or
more of the inputs by a randomly selected amount, repeated
a significant number of times with a range of perturbations,
we calculate statistics of the sensitivity of the output of the
coordinate transformation to perturbations in its inputs. We
select a distribution of input perturbations that is similar to our
estimates of a reasonable distribution of error in the inputs in a
real measurements, e.g., the x, y, z coordinates of a GCP may be
perturbed by random values corresponding to the uncertainty of
the survey method used to determine its location.

This methodology is similar to the more basic version
described in Schweitzer and Cowen (2021), expanded here to
illustrate the effects of correcting for, or neglecting, radial lens
distortion, comparing oblique (e.g., camera installed on the river
bank), and nadir (such as from an aerial platform) viewing angles,
and to consider the effects of the distribution of GCPs within
the images, which can be a useful planning tool. Additionally, we
simulate the uncertainty related to using a direct georeferencing
system, which is based on directly measuring, or estimating, the
position and orientation of the camera (e.g., using an IMU),
without utilizing GCPs.

The steps of the simulation are:
Create a reference set of coordinates: Define a reference

camera installation geometry, and use it to calculate a reference
set of (x, y) pixel ground footprint coordinates from each pixel’s
(u, v) coordinates. This will be used as a baseline to compare
the results of the perturbed simulations. The reference geometry
can be defined either by directly defining the camera’s position
(xc, yc, zc), orientation (φ, τ , σ ), and focal length (f ), or by using
a set of GCPs and performing a georeferencing calculation. In
the second case the input parameters can be the surveyed or
estimated GCP coordinates from an existing measurement, or
they can be arbitrarily assigned, e.g., as the design parameters for
a planned surface velocity measurement. Since this reference set
of coordinates is used only for simulations, and not for rectifying
actual images, we can reduce computational costs by considering
only a subset of pixels (e.g., every 6th row and column of pixels).

Generate a random set of input perturbations: After
generating the reference coordinates, we randomly select
multiple sets of perturbations to apply to simulate uncertainty.
Each of these sets are either a combination of perturbations to
the WSE and the GCP’s pixel and physical coordinates, or direct
perturbations of camera’s position and orientation. Alternatively,
the location of GCPs to be used may be randomly selected to
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analyze the sensitivity to GCP placement. In this case the GCP
coordinates may be selected either in the pixel or the physical
coordinate systems. We can also simulate radial distortion in the
image, to test sensitivity of the velocimetry results to the effects of
not performing a correction for radial distortion.

Use the input perturbations to calculate a simulated set of

coordinates: Using each set of input perturbations separately,
perform the extrinsic calibration, and calculate the simulated
(x, y) coordinates of the pixels from the reference set. The error
distance between the reference and simulated coordinates is
then calculated at each point, and interpolated over a regular
grid for each set of simulation inputs. The interpolation step
is important especially when the camera is oriented at an
oblique viewing angle because the corresponding (x, y) distance
between adjacent (u, v) pixel coordinates is not uniform, so a
regular grid in pixel coordinates will result in a concentration
of grid points close to the camera in physical coordinates.
Interpolating the error distance over a regular grid eliminates
sampling biases when calculating statistics of error across
the FOV.

Finally, calculate uncertainty statistics for each pixel: At
the end of n iterations, we will have a set of n different (x, y)
coordinates corresponding to each pixel in the reference set. We
can now calculate statistics of the range of values at each point.
Note that uncertainty in the intrinsic calibration stage, most
notably related to removal of radial distortion, is included in the
simulation implicitly in the form of uncertainty in identifying the
pixel (u, v) coordinates of the GCPs, however, it is also possible to
explicitly introduce this as an additional uncertainty parameter
in the Monte Carlo simulation.

2.3. Uncertainty Range for Georeferencing
Inputs
The simulated data set is generated by adding random
perturbations with a user-defined distribution to each of
the inputs of the georeferencing calculation. We assume
that when conducting a field measurement the errors in
these inputs are random and unbiased, and, therefore, select
perturbations from a normal distribution with zero mean,
and standard deviation selected based on our assumptions of
accuracy of each input parameter. We note that while the
perturbations are selected randomly, based on the assumption
of random and unbiased error to actual inputs, the effect
of a set of perturbed inputs is to introduce a bias error
into the georeferencing results, i.e., for a given set of input
perturbations, errors in the georeferenced results will be fixed and
not random.

The distributions from which perturbations of each of the
georeferencing inputs are randomly selected may be defined by
the user of the software tool, to match the camera being used or
other constraints of a particular measurement. In the following
we describe the distributions used in the simulations presented
in Section 3.

We estimate a standard deviation of 3 cm for the surveyed
x, y, z coordinates of GCPs. The uncertainty of the position of a
single survey measurement may be much smaller, on the order of
1 cm or less depending on the equipment used and the skill of the

operator. However, the precision with which the measurement
location on the face of the GCP targets is determined must
also be taken into account. Likewise, when identifying the u, v
(pixel) coordinates for GCPs within images, the accuracy is a
combination of operator skill, the relative size of pixel footprints
and the GCP target being identified, as well as factors such as
radial and perspective distortion. We generally use 0.5 pixels as
the standard deviation for this perturbation.

We estimate the WSE uncertainty as having a standard
deviation of 3 cm. This uncertainty includes a combination
of uncertainty from a number of sources, including the
measurement uncertainty of the sensor tracking the WSE, the
accuracy with which the sensor’s position is determined, and
variations in WSE across the FOV due to ripples or other
surface effects.

In direct georeferencing we use standard deviations of 0.8°
for heading, 0.1° for roll and pitch, and 5 cm for position.
These values are based on manufacturer specifications of
typical IMU systems (e.g., the one used by Eltner et al.,
2021). We note, however, that in practice there are additional
challenges to account for when considering direct georeferencing
uncertainty, including offsets between the IMU and camera
coordinate systems, and temporal synchronization of image
capture and IMU readings. Also, images acquired from a
mobile platform, such as a UAS, often require digital image
stabilization, which may introduce additional spatial uncertainty
(Ljubičić et al., 2021). Therefore, it is likely that in many
cases the uncertainty estimates for direct georeferencing used
here are not highly conservative, especially for images acquired
from mobile platforms, and we expect the actual uncertainty
when using direct georeferencing to at times be significantly
higher.

Radial lens distortion can optionally be added to the analysis.
We introduce radial distortion as a way to simulate the result of
neglecting to correct for radial distortion when acquiring images.
Radial distortion is often modeled as a polynomial function of
distance from the image center (e.g., Holland et al., 1997). We
use a polynomial of the form 1r = k5r

5
+ k3r

3
+ k1r, where r is

the distance (in pixels) from the image center and 1r represents
the pixel displacement due to distortion, with the coefficients
k5 = −8.6 × 10−14, k3 = −3.156 × 10−8, k1 = 0.021,
calculated from an intrinsic calibration of the camera described
in Schweitzer and Cowen (2021).

Since velocimetry applications such as LSPIV use the distance
a parcel of water has been advected over some finite amount
of time to calculate velocity, it is important to know not only
what is the uncertainty at any point within an image, but how
the uncertainty changes throughout the image. If the start and
end locations over which a parcel of water is displaced have the
same bias (or fixed) uncertainty error, this constant offset will
not affect the relative distance between the two coordinates. In
order to estimate the effects of spatial uncertainty on velocity
measurements we, therefore, calculate the spatial gradient of
uncertainty at each point within the image. If the gradient of
uncertainty is small at any position within the image, it follows
that the uncertainty of a velocity measurement at that location
will also be relatively low. This is illustrated in Section 3.1.
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FIGURE 1 | Contours of the 95th percentile of spatial uncertainty estimated at each pixel footprint in an oblique view camera setup, after correcting the images for

radial distortion. (A) Using 4 GCPs located near the corners of the FOV (red dots). (B) Using direct georeferencing.

3. RESULTS AND DISCUSSION

Here, we present examples of spatial uncertainty analysis
from two field setups, one with the camera oriented
at an oblique viewing angle, the second simulating an
unoccupied aerial vehicle (UAV) with a vertically oriented
camera. The oblique view setup used here is based on the one
described in Schweitzer and Cowen (2021), in which a camera
was installed at an elevation of approximately 25m above the
water surface, oriented to view across a 50m wide channel. In
that study an infrared camera was used, but the uncertainty
analysis is the same regardless of the operating wavelength of the
camera (i.e., infrared or visible light).

Analysis of uncertainty is presented for these two setups

both for the case of GCP-based georeferencing and direct
georeferencing. Additional plots describe the uncertainty under

similar conditions, but in the presence of uncorrected radial

distortion in the lens system. In all plots the distances indicated
are horizontal distances in the plane of the water surface,

measured from directly beneath the camera.We report the results
as contours of uncertainty. We calculate, at each pixel location
within the FOV, the distance between the nominal x, y position
of the reference set of coordinates and the position calculated in
each of n simulations. We then take the 95th percentile of this set
at each pixel location, and use this to plot the contours.

In the GCP-based georeferencing cases presented here a total
of four GCPs were used, in positions selected at random from a 50
× 50 pixel region in each corner of the image. The position of the
GCPs are plotted as red dots in the figures. The GCP coordinates
are not identical in all plots, since each plot describes a distinct set
of simulations, and each set used a separate, randomly selected,
collection of GCPs. However, in each case GCP coordinates were
selected using the same constraint on distance from the corners
of the image. The plotted position of the GCPs corresponds to

the reference set of coordinates, as described in the first step of
the simulation process (Section 2.2).

This distribution of GCPs was selected to illustrate the
uncertainty analysis tool, and the resulting uncertainty when
using this near-optimal distribution of GCPs. However, the
number of GCPs to use, and constraints on their placement, are
input parameters that may be defined by a user of the software
tool in accordance with any desired experimental setup.

Figure 1A shows contours of the 95th percentile of
uncertainty at each location within the FOV, using GCP-
based georeferencing. Figure 1B is similar, but is calculated
using direct georeferencing. In this oblique view scenario,
direct georeferencing has significantly more uncertainty than
GCP-based georeferencing, up to approximately a factor of
five (for this camera and setup geometry) when assuming the
same level of uncertainty in the inputs to the georeferencing
calculation. In Figure 2A, the GCP-based analysis is repeated,
but without correcting for radial distortion from the camera
lens. The corresponding direct georeferencing case is shown in
Figure 2B. If radial distortion is not accounted for, the spatial
uncertainty can increase by as much as a factor of five, even when
using a GCP-based calculation.

Radial distortion violates the assumption of collinearity
between the camera’s optical center (xc, yc, zc), pixel coordinates
(u, v), and physical coordinates (x, y, z); that a straight line
drawn between the camera’s optical center and an object
in space will extend through the (u, v) coordinate in the
pixel array where the object is observed in an image
(Holland et al., 1997). As a result, uncorrected (u, v) pixel
coordinates identified in an image that is affected by radial
distortion will have an offset from their coordinates in a
distortion-free system, which impacts georeferencing in two
ways. First, in the case of GCP-based georeferencing, failing
to account for radial distortion will lead to the use of
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FIGURE 2 | Contours of the 95th percentile of spatial uncertainty estimated at each pixel footprint in an oblique view camera setup, without correcting the images for

radial distortion. (A) Using 4 GCPs located near the corners of the FOV (red dots). (B) Using direct georeferencing.

FIGURE 3 | Contours of the 95th percentile of spatial uncertainty estimated at each pixel footprint in a nadir view camera setup, after correcting the images for radial

distortion. (A) Using 4 GCPs located near the corners of the FOV (red dots). (B) Using direct georeferencing.

inaccurate GCP pixel coordinates during the extrinsic calibration
step, resulting in an incorrect georeferencing transformation.
Second, for both GCP-based and direct georeferencing, even
if the position and orientation of the camera were perfectly
determined and an error-free coordinate transformation was
found, using pixel coordinates that are not corrected for radial
distortion as inputs will lead to errors in the transformed
x, y coordinates. Uncorrected radial distortion will, therefore,
lead to an increase in uncertainty, since it will magnify
georeferencing errors in regions of the image affected by
radial distortion.

Figures 3A,B show 95th percentile uncertainty contours in a
nadir view camera setup, such as might be collected from a UAS.
The estimated uncertainty is again on the order of five times
or more larger when using direct georeferencing relative to the

GCP-based method, especially in regions not directly beneath
the camera (i.e., in locations where the viewing angle becomes
relatively oblique).

Figures 4A–C illustrate the effect of introducing perturbations
to only one of the georeferencing inputs. In the setup described
here, and with the selected distribution of input perturbations, it
is clear that the primary source of uncertainty in georeferencing
in this setup is due to uncertainty in determining the correct
x, y, z coordinates of the GCPs, as the uncertainty introduced by
perturbing only this input is larger by 50% or more than the
uncertainty introduced by perturbing the u, v pixel coordinates
or the WSE.

The setup described here, with GCPs distributed near each
corner of the FOV, leads to minimal uncertainty. This is a near
ideal distribution of GCPs within the FOV that an experimental
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FIGURE 4 | 95th percentile contours of spatial uncertainty, resulting from perturbing only one input to the georeferencing calculation. Red dots indicate positions of

GCPs. (A) Perturbations applied only to the physical (x, y, z) coordinates of each GCP. (B) Perturbations applied only to the pixel (u, v) coordinates of each GCP.

(C) Perturbations applied only to the water surface elevation.

FIGURE 5 | 95th percentile contours of spatial uncertainty, with 6 GCPs (red

dots) distributed unevenly within the FOV, resulting from perturbing only the

water surface elevation.

plan might attempt to achieve, and it simplifies comparisons
of different sources of uncertainty. In practice, it might not be
possible to achieve this type of distribution of GCPs. When
the camera’s viewing angle is oblique, uncertainty grows as a
function of distance from the camera (due to increasingly oblique
viewing angles at larger distances), and distance from the GCPs.
This is illustrated in Figure 5 in which 6 GCPs are distributed
unevenly throughout the FOV. The uncertainty in this case is
approximately four times higher than observed in Figure 4C

(in both of these figures uncertainty is calculated considering
perturbations only to the water surface elevation).

The software tool allows us to simulate a range of possible
FOV configurations, and either select locations to position each

GCP, or randomly assign them to specific regions of the FOV, in
order to optimize an experimental plan.

3.1. Gradients in Spatial Uncertainty
The analysis described previously allows us to quantify the
positioning uncertainty at any point within the camera’s FOV,
that is, to quantify the uncertainty of the conversion between
pixel and physical coordinates. However, when considering the
uncertainty of a velocity measurement we need to consider
how this uncertainty changes over space. Velocity calculations
are based on finding the distance between the origin and final
locations over which a parcel of water has been advected over
a known period of time. If the error in calculating the origin
and final locations is the same it will not affect the velocity
calculation, even though it will lead to an error in the location
to which that velocity measurement is assigned. To extend the
uncertainty analysis to uncertainty of velocity measurements, we,
therefore, calculate the gradient of uncertainty at each point in
the FOV. Velocity calculations in regions of the image where this
gradient is small will have low velocimetry uncertainty, whereas
regions with a larger gradient will correspondingly have a higher
uncertainty in the velocity calculation, since a larger gradient
indicates increased likelihood of different georeferencing error at
the origin and final positions over which a parcel of water has
been advected over a given period of time.

Similar to the analysis presented in the previous section, we
calculate spatial gradients in uncertainty independently for each
of n simulations, and calculate statistics on this set of simulations
at each point (e.g., the 95th percentile at a certain pixel- or
physical-coordinate). Figure 6 illustrates gradients in uncertainty
within an oblique-view FOV, using GCP-based (Figure 6A) and
direct- (Figure 6B) georeferencing. The gradients are presented
as the non-dimensional, absolute value of the ratio of length
change in local uncertainty per length change in distance from
the camera. Uncertainty in the direct georeferencing case is
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FIGURE 6 | Contours of the 95th percentile of the gradient of spatial uncertainty estimated at each pixel footprint in an oblique view camera setup, after correcting the

images for radial distortion. (A) Using 4 GCPs located near the corners of the FOV (red dots). (B) Using direct georeferencing.

FIGURE 7 | Contours of the 95th percentile of the gradient of spatial uncertainty estimated at each pixel footprint in a normal view (UAV) camera. (A) Using 4 GCPs

located near the corners of the FOV (red dots), and correcting for radial distortion. (B) Using direct georeferencing, without correcting for radial distoriton.

on the order of 5 times greater than the GCP-based case.
Figure 7 shows similar gradients of uncertainty calculated in a
normal-view case. Figure 7A shows GCP-based georeferencing,
with correction for radial distortion in the images, whereas in
Figure 7B direct georeferencing is presented without correcting
for radial distortion. In this case, the estimated gradient in
spatial uncertainty, and hence the expected uncertainty in the
velocimetry calculation, is on the order of 10 times larger
throughout much of the FOV, and even greater in regions near
the corners of the image.

4. CONCLUSION

We have presented a methodology and software tool used
for analysis of spatial uncertainty in image based surface flow
velocimetry. The tool is based on a Monte Carlo simulation of
changes to the calculated, georeferenced x, y, z coordinates of

pixels in the camera’s FOV, as a function of perturbations of
the input parameters used to find the georeferencing coordinate
transformation. These input perturbations were selected from
distributions corresponding to the estimated uncertainty of each
of the respective inputs (GCP coordinates in physical and pixel
space, or camera position and orientation angles when using
direct georeferencing, and WSE in either case), and hence
the Monte Carlo simulation estimates the level of uncertainty
expected in the georeferenced coordinates. This tool can be used
as a planning aide before making a measurement, or to bound the
uncertainty after images are collected.

For the example experimental setups presented here, GCP-
based georeferencing methods were shown to be significantly
more accurate than direct georeferencing methods, with
uncertainty reduced by a factor of five or more. In addition, the
presented results illustrate the importance of correcting radial
distortion in the optical path.

Frontiers in Water | www.frontiersin.org 9 April 2022 | Volume 4 | Article 744278

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Schweitzer and Cowen Analysis of Spatial Uncertainty in Image Velocimetry

The effects of spatial uncertainty on velocity measurements
were also examined by analyzing spatial gradients in
georeferencing uncertainty. With oblique camera views,
uncertainty in velocity measurements associated with direct
georeferencing was found to be five times larger than when using
GCP-based georeferencing. In nadir-view camera orientation,
velocimetry uncertainty was found to be ten times larger when
using direct georeferencing without considering radial distortion
than when using GCP-based georeferencing corrected for
radial distortion.

The software tool can be easily adapted to explore other factors
affecting spatial uncertainty in this type of image, such as the
number of GCPs used, and their distribution within the FOV.
The authors have made this software tool freely available to
the community.
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