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Anthropogenic litter is omnipresent in terrestrial and freshwater systems, and

can have major economic and ecological impacts. Monitoring and modeling

of anthropogenic litter comes with large uncertainties due to the wide variety

of litter characteristics, including size, mass, and item type. It is unclear as to

what the e�ect of sample set size is on the reliability and representativeness

of litter item statistics. Reliable item statistics are needed to (1) improve

monitoring strategies, (2) parameterize litter in transport models, and (3)

convert litter counts to mass for stock and flux calculations. In this paper,

we quantify sample set size requirement for riverbank litter characterization,

using a database of more than 14,000 macrolitter items (>0.5 cm), sampled for

1 year at eight riverbank locations along the Dutch Rhine, IJssel, and Meuse

rivers. We use this database to perform a Monte Carlo based bootstrap analysis

on the item statistics, to determine the relation between sample size and

variability in the mean and median values. Based on this, we present sample

set size requirements, corresponding to selected uncertainty and confidence

levels. Optima between sampling e�ort and information gain is suggested

(depending on the acceptable uncertainty level), which is a function of litter

type heterogeneity. We found that the heterogeneity of the characteristics

of litter items varies between di�erent litter categories, and demonstrate that

the minimum required sample set size depends on the heterogeneity of the

litter category. This implies that more items of heterogeneous litter categories

need to be sampled than of heterogeneous item categories to reach the same

uncertainty level in item statistics. For example, to describe the mean mass the

heterogeneous category soft fragments (>2.5 cm) with 90% confidence, 990

items were needed, while only 39 items were needed for the uniform category

metal bottle caps. Finally, we use the heterogeneity within litter categories to

assess the sample size requirements for each river system. All data collected for

this study are freely available, and may form the basis of an open access global
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database which can be used by scientists, practitioners, and policymakers to

improve future monitoring strategies and modeling e�orts.

KEYWORDS

macroplastic, sampling, Rhine, Meuse, heterogeneity, sample set size requirements,

anthropogenic litter, database

1. Introduction

Anthropogenic litter (hereinafter called litter) is

omnipresent in the natural environment and has major

economic consequences such as damage to vessels, and

ecological impacts including ingestion and entanglement (Lau

et al., 2020; van Emmerik and Schwarz, 2020). Litter is defined as

any solid manufactured waste item that enters the environment

through intentional or unintentional improper disposal

(McCormick and Hoellein, 2016). In response to these threats

many efforts have been made to reduce the amount of litter in

the natural environment. Understanding and quantifying litter

sources, transport, and accumulation processes may increase

the efficacy of prevention and reduction efforts. Previous studies

have demonstrated that the transport and accumulation of

litter in water, both in the vertical and horizontal dimension,

strongly depends on the interaction between the fluid dynamics

and the characteristics of the litter (Morales-Caselles et al.,

2021; Kuizenga et al., 2022). For example, the settling rate and

transport of litter in water is affected by the density, surface area,

and size of the litter (Kukulka et al., 2012; Chubarenko et al.,

2016; Kowalski et al., 2016; Schwarz et al., 2019). Pedrotti et al.

(2016) observed that in the Mediterranean Sea the abundance

of high-density polymers decreased when moving away from

the coast. Furthermore, wind driven transport of litter on land

strongly depends on the density, shape, and size of litter items

as well (Garello et al., 2021; Mellink et al., 2022a,b). Finally,

the retention of litter in (riparian) vegetation depends on the

size and shape of the litter (Cesarini and Scalici, 2022). To

improve our understanding of the behavior of litter in the

natural environment, such as litter transport pathways and fate,

and to improve litter monitoring and modeling, it is therefore

essential to identify the variability litter characteristic and the

corresponding statistics, and the implications of this variability

for sampling efforts.

Litter is a heterogeneous entity (Roebroek et al., 2021),

as it comes in many shapes (Ballerini et al., 2022), varying

in size, mass, density, and the rate at which it degrades

over time (Delorme et al., 2021). Uncertainty arises when a

generalized value, such as an average, is used to represent

a heterogeneous variable like litter (Schwarz et al., 2019).

However, it is unclear what the relation is between sample

set size and reliability and representativeness of the statistics.

Reliable item statistics are needed to improve monitoring

efficiency, when determining how many items need to be

sampled to characterize a system. Furthermore, transport

models should be parameterized with reliable item category

statistics, since litter transport and retention dynamics strongly

depend on the material characteristics. Roebroek et al. (2022)

show that litter transport model uncertainty decreases with

several orders of magnitude with increasing availability of

litter data. Consequently, litter transport models that do not

accurately capture litter heterogeneity, inevitably feature a

greater level of uncertainty. Furthermore, litter heterogeneity

introduces additional uncertainties in the conversion of

litter amounts (and fluxes) to mass (per unit time), and

vice versa (Van Calcar and van Emmerik, 2019). Such

conversions often rely on generalized litter masses to convert

the observed number of items to a total mass (Vriend et al.,

2020b). For specific rivers the uncertainty can be several

orders of magnitude (Roebroek et al., 2022). Due to the

heterogeneous nature of litter, a generalized conversion factor

based on generalized litter masses, induces higher uncertainty,

and consequently a representative value per litter type is

ideally needed.

To obtain a representative value per litter type, a

representative sample size is needed. Many scientific disciplines

notice the relation between sample size and some sort of

measurement of error (e.g., Lamé and Defize, 1993; Cardini and

Elton, 2007; Hennig and Cooper, 2011; Maggio and Franklin,

2020) and sample size determination is considered an important

step in protocol design (Lenth, 2001). Where undersized studies

produce useless results, oversized studies use more resources

than necessary (Lenth, 2001). Especially in the highly dynamic

riverine environment, uncertainty can increase if the sample

size is not large enough, while resource investments are limited

(Droppo and Jaskot, 1995; Bartsch et al., 1998). Additionally,

potential measurement errors increase the need for a larger

sample size (Freedman et al., 1990). In litter studies this could

include errors such as misinterpretation or misclassification

of an object by the observer. All studies notice a decrease

in error or uncertainty when sample size increases, and most

studies advocate for a larger sample size. Deciding the trade-

offs between sample size and required statistical certainty,

requires technical, statistical, and scientific knowledge (Lenth,

2001). Therefore, a way to describe minimal required sample
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size is needed. A way to assess this, would be comparing

the “true value” of the desired parameter, to a subset of the

sample and study the resulting deviation in parameter value

(Cardini and Elton, 2007), which could be investigated using a

Monte Carlo Bootstrap analysis (e.g., Bauer, 1958; Kim, 2012;

Constantin et al., 2021). However, such an analysis has never

been done for litter studies, and suggestions for the sample

size have not been made. This study presents an approach

to determine what sample size is needed for representative

and reliable litter statistics, based on a Monte Carlo Bootstrap

analysis. This analysis is based on a dataset containing the

characteristics (item category, length, width, and mass) of more

than 14,000 riverbank litter items. We found that increasing

the sample set size decreases the uncertainty in the sampled

litter statistics. However, it was found that reducing uncertainty

through increasing sample set size, levels off beyond a certain

sample set size. We also found that the heterogeneity of the

characteristics of litter items varies between different litter

categories and demonstrate that the minimum required sample

set size depends on the heterogeneity of the litter category.

With the dataset and analysis presented in this study we aim

to contribute to improving the efficiency of litter monitoring

strategies, the accuracy of litter transport models, and the

conversion of litter item counts to litter masses for stock and

flux calculations.

2. Methods

2.1. Study area

The catchments of the studied rivers Rhine, IJssel, and

Meuse (Figure 1), are heavily industrialized and densely

populated (∼300 inhabitants/km2) (van der Wal et al., 2013).

The river Rhine (Bovenrijn) enters the Netherlands at Spijk,

161 km from the river mouth. At 147 km the Rhine bifurcates

into the Waal (67% of the discharge), Nederrijn (22%), and

IJssel (11%) (Schielen et al., 2007). TheWaal and Nederrijn then

converge at 42 km from the river mouth. The river Meuse enters

the Netherlands at Eijsden, 250 km from the river mouth, and

discharges 10% of the mean discharge of the Rhine-system (230

and 2,200 m3/s, respectively). Near the coast (∼80 km from the

sea), the branches of the Rhine and Meuse systems converge

and intertwine. Ultimately, the Rhine-Meuse system drains into

the North Sea, while the river IJssel drains into lake IJssel after

125 km.

Sampling locations were chosen to be at the upstream and

downstream end of the Dutch section of the rivers Rhine (R),

Meuse (M), and IJssel (IJ) (Figure 1). Supplementary material A

provides a detailed description of the sampling areas. The

sampling areas at Nijmegen (R1) and Rotterdam (R3) are located

along the river Rhine, while Arnhem (R2) is located at the

Nederrijn beyond the first major bifurcation of the Rhine.

Arnhem (IJ1) and Kampen (IJ2) are situated on the river IJssel,

while the river Meuse was sampled at locations in Maastricht

(M1), Ravenstein (M2), and Moerdijk (M3). Location M3 is

located beyond the point where the rivers Rhine and Meuse

merge, and is therefore affected by both river systems. Location

M3 and R3 are in the tidal zone, and can therefore be subject to

bidirectional currents.

2.2. Sample collection and processing

Riverbank macrolitter was collected once per month

between January and December 2021 at eight riverbank sites.

Location R2 was sampled only in January and December, and

location M1 was not sampled in January due to limited sample

collection and processing capacity. The width of the sampling

area was defined as the distance from the waterline to the high

waterline, having a maximum value of 25m (van Emmerik

et al., 2020). The waterline is defined here as the interface

between the river and the riverbank. The high waterline can

be identified in the field by the fact that a proportion of the

organic matter floating at the river surface is deposited at this

elevation along the water margin once the peak flow begins

to recede. Sampling was carried out until one of the following

criteria was met: (1) coverage of 100m length, (2) collection of

material equaling 80 L, or (3) a sampling time exceeding 90min.

These limits were set based upon the availability of surveyors for

the sample collection, the state of the riverbank (the required

sampling time can be considerably higher if there is dense

vegetation), and available capacity for subsequent laboratory

analysis of the sampled material. The width of the sampled

locations varied between 1 and 10m and the length between

10 and 100m. It should be noted that riverbank sampling

is biased toward larger items, since smaller items are more

difficult to identify by eye (Hanke et al., 2019), hence statistics

for the smaller macrolitter items (<1 cm) should be taken

with caution.

Collected samples were analyzed in the Laboratory for

Water and Sediment Dynamics at Wageningen University.

First, the items were manually and superficially cleaned

of sediment and organic debris to preserve the state in

which they were sampled. Items may have fragmented

during transport, which may have led to more litter items

being analyzed in the laboratory than originally sampled.

Second, the items were categorized using the River-OSPAR

protocol (Supplementary material B), developed by the North

Sea Foundation (van Emmerik et al., 2020). This protocol is

based on the OSPAR guidelines for beach litter monitoring

(OSPAR Commission, 2010), with adjusted categories to better

account for items frequently found in (Dutch) rivers. The

protocol includes 111 specific item categories, divided over

nine parent categories (i.e., plastic, rubber, textile, paper, wood,

metal, glass, sanitary, and medical items). The River-OSPAR
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FIGURE 1

The study area (A) with the sample areas (Google Earth; Landsat and Copernicus). (B) The white line has a length of 100m.

Supplementary material B provides more detailed information on the riverbanks. Sampling locations are chosen at the upstream and

downstream end of the Dutch part of the river Rhine (R), Meuse (M), and IJssel (IJ). The river Meuse has an additional midpoint measurement,

and the river Rhine has an additional sampling area beyond the first major bifurcation. The sampling areas at Nijmegen (R1; sandy; 130 km from

the mouth), Arnhem (R2; sandy; 130 km from the mouth), and Rotterdam (R3; stones; 30 km from the mouth) characterize the river Rhine,

Arnhem (IJ1; sandy; 125 km from the mouth) and Kampen (IJ2; vegetated; 16 km from the mouth) characterize the river IJssel, and the river

Meuse was sampled at a location in Maastricht (M1; vegetated; 250 km from the mouth), Ravenstein (M2; vegetated; 138 km from the mouth),

and Moerdijk (M3; vegetated; 56 km from the mouth).

categorization system gives a detailed overview of the abundance

of various types of litter. To facilitate direct comparison

with other categorization methods in future research efforts,

we included a “conversion table” (Supplementary material F)

for rapid re-categorization in one of the other published

categorization methods (Nally et al., 2017; Kiessling et al.,

2019; Schwarz et al., 2019; Vriend et al., 2020a; Fleet et al.,

2021).

Finally, we determined the mass, length, and width of

the 14,052 items sampled between January and May, and

in the months of August and November. Due to limited

resources, items were not analyzed in the other months.

The mass was weighed on a scale (0.01 g accuracy). In

case individual items did not reach the minimum detectable

mass, multiple items of the same category were weighed

collectively, and a mean value assigned to each. For item

length and width, the two longest axes were measured with 0.1

cm accuracy.

2.3. Data analysis

2.3.1. Determination of item category
heterogeneity

Category heterogeneity Ψ [–] was used to assess item

category variability. This represents the normalized standard

deviation (also known as coefficient of variation) and is

defined as

Ψ =
σ

µ
(1)

in which σ is the standard deviation and µ is the mean of a

certain category parameter, such as item length or mass.
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2.3.2. Determination of sample set size
requirements

The number of items needed to accurately represent

category statistics depends on the category heterogeneity. We

studied the relation between statistical uncertainty and sample

size, which can be used to determine how many items are

required for a representative and reliable value of the mean item

mass across all riverbanks (sample set size requirement, SSR).

A representative value means that the subset of the population

accurately reflects the characteristics of the full population, while

a reliable value means that the method to determine this value

consistently has the same outcome. To this end, we randomly

drew a subset from the total set and calculated the mean mass.

The size of the subset ranged from one item to all items in

the total set. Next, a Monte Carlo based bootstrap analysis was

performed 10,000 times for each subset size to determine the

deviation of the subset from the dataset mean. From these runs,

we calculated the 50, 75, 90, and 95% confidence intervals.

These simulations were run using all litter categories lumped

together, and for each single item category with more than

10 sampled items (59 out of 111 item categories, representing

89% of the total number of items). In this way, the number of

items needed to give a representative estimate (within a certain

confidence interval) of the mean mass of an item category could

be determined. A deviation of 5, 10, or 20% of the actual mean

value (the mean mass based on the whole category) is given.

All subsequent analysis was performed for the 90% confidence

interval with a 10% deviation from mean, and the results might

change for different combinations of those. Finally, the same

analysis was carried out to calculate the values for median mass

and mean length for all items, and as an example for two item

categories (soft fragments >2.5 cm and metal bottle caps). This

analysis could be performed for other item variables (e.g., length,

width) and statistics (median) as well, but was considered out of

scope for the present study.

2.3.3. Determination of river system
heterogeneity

The concept of litter heterogeneity and SSRs per item

category can be upscaled to a riverbank location or even a whole

river-system, to allow for characterization of heterogeneity at

various scales. The heterogeneity of a location or a river system is

based on the items found in this system, and the corresponding

SSRs. Based on the SSR for a 90% confidence interval and a

deviation of 10% from the mean, an item category is defined

as homogeneous, heterogeneous, or mixed based on the median

SSR, the median SSR, and mean SSR of all categories:

Homogeneous: SSRi < η(SSRall)

Mixed :η(SSRall) ≤ SSRi ≤ µ (SSRall)

Heterogeneous :µ(SSRall) < SSRi

in which µ is the mean and η the median of SSRi. SSRi is the

sample set size requirement for item category i, while SSRall
represents the SSRs of the whole population.

Finally, if less than 10 items were collected, no SSR was

calculated, and the item heterogeneity was left undefined.

All items found within a system were classified this way,

and subsequently the ratio between homogeneous, mixed,

heterogeneous, and undefined items were determined on

multiple scales. This allowed for comparison between the

riverbank locations, and between the Meuse, Rhine, and IJssel

river systems.

3. Results and discussion

3.1. Riverbank macrolitter classification

In total 16,488 items (184 kg) were collected and categorized

from eight riverbanks over 12 months, of which 14,052 (85%)

were measured and weighed. For a detailed description of the

length distribution of the items, see Supplementary material E.

The majority of items were plastics (70% of item count, 33%

of total mass) and mainly composed of unidentifiable plastic

fragments (50% of all items) (Table 1). This result is in line with

the findings of van Emmerik et al. (2020), who found 55.8% of

riverbank litter items to be fragments along the Dutch Rhine-

Meuse system. Although plastic dominates the collected item

count (Table 1), local spatial variations exist (Figure 2). This

can mainly be contributed to the type and use of riverbank

(Supplementary material A), which play a role in which items

are trapped and retained (Liro et al., 2022). For example,

recreational areas, such as R1, show a lower percentage of plastic

items (for example only 15% of item counts for R1) and are

dominated by consumer items such as cigarette filters, metal

bottle caps, and glass bottles.

The average item mass was 11.1 g (6.1 g for plastics), and

the median mass was 0.55 g (0.53 g for plastics) (Table 1).

The summarizing statistics per item category can be found

in Supplementary material C. The difference between the

mean and median mass indicated a highly positively skewed

distribution with many light items and relatively few heavy

outliers. The large number of fragments (for example soft

fragments, hard fragments, foam fragments) are responsible for

this skewedness (Figure 3A). Heavy outliers include items of

scrap metal such as bikes, and metal pipes (Figure 3B). The

skewed distribution may have far reaching consequences for

setting up a mass-balance using only summarizing statistics. For

example, estimates of floating plastic flux, based upon items per

hour (which is subsequently converted to mass per year), can

differ by an order of magnitude when using either the mean or

the median mass for this conversion (van Emmerik et al., 2022).

The 10 most frequently found items (Figure 3) represent

56% of the total amount of items and 65% of the total
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TABLE 1 Statistics of all the collected litter.

Location Length of
measurement
periods∗

Most commonly
found item
(Supplementary
material D)

Total
number
of items

Total
mass of
items
(kg)

Total
number
of plastic
items

Total
mass of
plastic

items (kg)

Median
mass (g)

Mean
mass (g)

Mean
item

density
(items/m)

Mean
mass
density
(g/m)

All – Soft fragment

(≥2.5 cm) (14%)

16,488 184 11,596 (70%) 61 (33%) 0.55 11 8.13 38.5

R1 12 (7) Cigarette filter (49%) 3,193 12 471 (15%) 2.7 (22%) 0.55 4.8 3.32 7.01

R2 2 (1) Other metal

(<50 cm) (26%)

378 1 231 (61%) 0.29 (27%) 0.55 3.1 2.55 6.79

R3 12 (7) Soft fragment

(≥2.5 cm) (23%)

1,141 47 702 (62%) 10 (22%) 3.30 49 2.52 41.0

M1 11 (9) Hard fragment

(≥2.5 cm) (9%)

4,983 20 4,540 (91%) 13 (66%) 0.53 4.3 15.1 54.4

M2 12 (7) Soft fragment

(≥2.5 cm) (27%)

1,286 33 1,130 (88%) 12 (38%) 0.70 28 3.27 23.3

M3 12 (7) Soft fragment

(≥2.5 cm) (24%)

3,429 25 3,119 (91%) 17 (69%) 0.49 9.3 32.7 154

IJ1 12 (7) Wet tissue (19%) 422 35 231 (55%) 0.42 (1%) 0.67 90 0.346 4.44

IJ2 12 (7) Soft fragment

(≥2.5 cm) (27%)

1,656 11 1,172 (71%) 4.0 (36%) 0.30 8.4 5.29 17.12

∗In parentheses: the number of months in which lab analysis was performed.
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FIGURE 2

Map showing the eight riverbank locations along the Dutch Rhine (R1, R2, and R3), Meuse (M1 and M2), and IJssel (IJ1 and IJ2) rivers. For each

location, the total number of litter items (left pie chart) and the total mass of litter items (right pie chart) found for the nine parent litter

categories (plastic, rubber, textile, paper, wood, metal, glass, sanitary, and medical) is shown. The diameters of the pie charts indicate the total

amount and mass of the items.

mass. The 20 most abundant items represent 66% of the

total item count and 87% of the total mass, respectively.

The top 10 items vary strongly when considering the item

count or mass as demonstrated in Figure 3. In terms of

frequency, plastic fragments, food packaging, and items related

to consumables and cigarette filters are the most abundant
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FIGURE 3

List of the top 10 most frequently found items based upon (A) item amount and (B) mass. Item categories are defined as homogeneous (italic),

heterogeneous (bold), mixed (normal), or undefined (gray) based on the analysis below.

categories (Figure 3A). In terms of mass, the top 10 items

mainly consist of higher-density items such as metal (mean

mass 41 g), wood (mean mass 176 g), and glass (mean mass

27 g) (Figure 3B). This discrepancy between abundance in count

and mass emphasizes the importance of mass statistics for

reliable estimates of litter mass balances. Although accumulated

material on riverbanks is often expressed in item count per

surface area, item mass per surface area is more relevant for

closing the mass balance. Considering that items will likely

increase over time due to fragmentation, we consider item mass

per surface area a more appropriate indicator for riverbank

litter accumulation.

3.2. Item category heterogeneity

Item characteristics in the dataset can vary significantly

within and between litter categories. To be able to give an

accurate measure of mean, median, and standard deviation of

litter item categories (Supplementary material C), the sample

size must be large enough to capture the mass and length

variability within a category. The number of items needed

to accurately represent category statistics (within a certain

uncertainty level), depends on the heterogeneity of the category.

Aggregated categories in the River-OSPAR system (e.g., soft

fragments larger than 2.5 cm), may have large variability in item

mass and size. For categories consisting of relatively uniform

items (e.g., cigarette filters) this may be the opposite. The

variability within a category can be characterized by a category

heterogeneity Ψ (Equation 1) and is presented as histograms

of length and mass (Figure 4). Wider distributions, such as

that of soft and hard fragments, belong to more heterogeneous

item categories, which is reflected in Ψ (1.03 and 0.92 for item

length, respectively). Note the axis scale break in the x-axes of

Figures 4F–J, which indicate a wider histogram than inferred

from the visible histogram. Narrower distributions, such as

cigarette filters and metal bottle caps are described by a lower

category heterogeneity (Ψ = 0.08 and Ψ = 0.14 for item length,

respectively). Item heterogeneity is one of the most important

factors that determines how many items should be sampled

to obtain representative item statistics and these SSRs are

discussed below.

3.3. Sample set size requirements

By collecting more litter items, the item statistics (such

as median and mean mass or length for example) become

less uncertain, and this is especially relevant for heterogeneous

litter categories. The amount of statistical uncertainty decreases

with increasing sample size, meaning that the possible range

of outcomes of the mean or median from the subset,

differs increasingly less from the total population. However,

uncertainty shows an inverse exponential decrease with sample

size. Larger sample sizes only reduce statical uncertainty to a

minor extent after a certain threshold. This threshold represents

the minimum number of item samples that is required in order

to obtain a representative number (within certain confidence

bounds) of mass and length statistics.

To describe themeanmass of all litter at the sample locations

with a maximum deviation of 10% of the mean based upon

the total population with 90% confidence, at least 8,900 items

need to be sampled and measured (63% of the total amount

of weighed items). To capture the representative mean length
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FIGURE 4

(A–J) Length (left column, green) and mass (right column, purple) distribution of the five most commonly found items, and their corresponding

category heterogeneity Ψ . The scale break in the x-axis of panels indicate a wider histogram than inferred from the visible histogram.

1,200 items (9%) need to be collected, while only 173 items

(1%) are needed to describe the median mass (Figures 5A–D).

The more heterogeneous an item category, the more samples

need to be collected to obtain representative mass and length

statistics. An example for the SSR of a homogeneous and

a heterogeneous subclass is presented for the heterogeneous

category “soft fragments larger than 2.5 cm,” 990 items (42%

of full sample) are needed to find a mean mass (within 10%

of the mean mass based on the full population) with 90%

confidence (Figures 5E–H). When determining the mean mass

of homogeneous item categories such as “metal bottle caps”

(Figures 5I–L), only 38 (6% of full sample) items suffice.

The number of samples to be collected and measured

depends on the acceptable confidence boundary and amaximum
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FIGURE 5

Examples of the sampling size requirement based on all items (A–D), soft fragments >2.5 cm (E–H), and bottle caps (I–L). The sampling size

requirement is shown for an accurate representation of mean mass (B, F, J), median mass (C, G, K), and mean length (D, H, L), based on a 95%

confidence interval, represented as a deviation from the value based on the complete dataset. The dashed horizontal lines indicate ±10%. In

(A, E, I) the distribution of the items is shown, including the standard deviation (std), skewness (sk), and kurtosis (kur), indicating item class

homogeneity.

level of deviation from the mean of the total population. In

the aforementioned examples, a maximum deviation of 10%

was allowed and estimated with 90% confidence. With these

conditions, an accurate representation of the mean mass of food

packaging is reached when 150 items are measured. However,

if a deviation of ±20% is permitted, only 110 items are needed

to reach the uncertainty required. Similarly, if a confidence

boundary of 50% is permitted, only 95 items are required

to represent the mean mass (±10%). The level of confidence

and maximum level of deviation allowed therefore impact

the SSR.

We show the SSR of 59 item categories with more than 10

items in Table 2, which may be used in to find a balance between

statistical uncertainty and sampling effort in future monitoring

efforts. These 59 item categories make up 89% of total amount

of collected items. The mean SSR equals 158 items, while the

median equals 40 items. Our dataset does not include sufficient

samples for all categories to provide an estimate of the mean

mass within the selected confidence boundaries and deviations

of the mean in this study. When the number of items needed to

represent the mean mass is equal to the total number of items

collected (indicated by the red shade in Table 2), or when a

level of uncertainty (confidence boundary and deviation from

the mean) is never reached (represented by N/A in Table 2),

it is not possible to provide a SSR. For the highest confidence

boundary (95%) and lowest deviation from mean (5%), this is

the case for 37 items categories. Table 2 also shows the category

heterogeneity for each item category, calculated based upon the

available dataset, even if it was not sufficiently large enough

to determine SSRs. As demonstrated in the aforementioned

examples, to obtain the same uncertainty levels in the mass-

size statistics of riverbank litter, the SSRs of heterogeneous item

categories are higher than of homogeneous item categories. This

is underlined by the correlation (R-squared) between SSR and

category heterogeneity for these 59 item categories, which is on

average 0.45, but varies between 0.12 and 0.60.

The SSRs can be the baseline for monitoring protocol design

and serve as a rule of thumb or indication whenmaking an initial

design. If required, the SSR analysis can be expanded to calculate

SSR based on median mass, mean, or median length and mean

or median width, based on this dataset. Since the SSR analysis

depends on the used item categorization method, we included

a “conversion table” (Supplementary material F) for rapid re-

categorization in one of the other published litter categorization

methods (Nally et al., 2017; Kiessling et al., 2019; Schwarz et al.,

2019; Vriend et al., 2020a; Fleet et al., 2021).
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TABLE 2 Sample set size requirements (number of items) based on mean mass for a selection of categories in the study database with more than 10 items.

OSPAR-ID Name Total
number
of items

µmass
(g)

σmass
(g)

Ψ (–) Deviation from mean

20% 10% 5%

Confidence boundary

0.5 0.75 0.9 0.95 0.5 0.75 0.9 0.95 0.5 0.75 0.9 0.95

3 Small bag 44 12.5 26.4 2.1 30 36 39 40 34 39 42 43 38 41 43 44

4.1 Bottle (≥0.5 L) 34 80.0 176.7 2.2 1 1 29 30 1 32 34 34 30 32 34 34

4.2 Bottle (<0.5 L) 127 40.4 75.1 1.9 34 63 82 90 74 110 120 120 110 120 N/A N/A

4.3 Bottle label 23 4.6 9.4 2.1 18 21 22 23 21 22 23 23 22 23 23 23

6 Food packaging 170 9.1 18.6 2.0 42 79 110 120 95 140 150 160 150 160 170 170

7 Cosmetics packaging 19 17.0 16.7 1.0 8 13 15 16 14 17 18 18 18 19 19 19

15 Caps and lids 300 3.2 7.5 2.4 50 130 170 190 160 220 250 260 240 270 290 300

16 Lighter 38 11.7 3.5 0.3 1 3 6 8 4 10 16 18 12 22 28 30

20 Toy 18 52.3 111.2 2.1 14 16 18 18 15 17 18 18 17 18 18 18

21 Cup 116 3.2 7.7 2.5 51 77 90 95 88 110 110 N/A 110 110 N/A N/A

Full table can be accessed in Supplementary material G. Requirements are given for various confidence boundaries and deviations from the mean. µ indicates the category mean mass, σ the standard deviation, and Ψ the category heterogeneity. Red

numbers indicate that the number of items needed to represent the mean mass is equal to the total number of items collected. N/A means that this level of uncertainty (confidence boundary and deviation from the mean) is never reached, and more

items need to be collected.
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3.4. River system heterogeneity

The SSRs of the litter items can be used to assess

the heterogeneity of specific locations or entire rivers. This

application is shown in Figure 6, which displays the litter

heterogeneity based upon item count in the Rhine (R1, R2,

R3), Meuse (M1, M2, M3), and IJssel (IJ1, IJ2) rivers, assuming

a 90% confidence interval with maximum deviation of 10%.

The litter on the riverbanks of the river Meuse and IJssel

belong mainly to heterogeneous categories such as the large

amount of hard and soft plastic fragments >2.5 cm (SSR

1,300 and 1,000, respectively). Contrastingly the river Rhine

riverbanks encompass mostly homogeneous categories. When

zooming to location-level heterogeneity (Table 3), it is clear

that location R1 accounts for this. Location R1 can largely

be described as a homogeneous sampling location, which

contributes to the large number of homogeneous items in

location R1 (Table 3), such as cigarette filters (SSR 11) and

metal bottle caps (SSR 38) (Supplementary material D). The

heterogeneity of each sampling location (assuming a 90%

confidence interval with maximum deviation of 10%) as shown

in Table 3 strongly corresponds to the heterogeneity of its top 10

items (Supplementary material D).

Heterogeneity and SSRs vary considerably within and

between rivers, which emphasizes the need for river and site-

specific data collection. For example, more data should be

collected for heterogeneous systems. Therefore, identifying litter

heterogeneity per system can give an indication as to the

resource investment required to accurately capture the systems’

riverbank litter. When performing a Monte Carlo bootstrap

analysis on all items found within a river system, with a 90%

confidence boundary and a deviation of 10%, the river Rhine

can be sampled by measuring 3,000 items (78% of all items

found along the river Rhine). Similarly, 6,900 items (71%) are

needed for the river Meuse, and 2,000 (96%) for the river IJssel.

These items would give enough data to derive representative

mean mass statistics, but it does not provide any spatiotemporal

information. The SSR of river IJssel comprise of almost all items

in our database, and more items should be collected to confirm

the calculated SSR. The smaller SSR for river Rhine indicates

its homogeneous character, while the larger SSR for river Meuse

again confirms its more heterogeneous character. Furthermore,

due to the intrinsic uncertainty within heterogeneous items,

the uncertainty in litter statistics will always be larger for

heterogeneous systems than for more homogeneous systems.

4. Synthesis and outlook

This study quantifies the sample size requirements of

anthropogenic litter items and assesses their heterogeneity,

based upon more than 14,000 riverbank items. Our results show

that statistical uncertainties decrease with increasing sample

set size, as might be expected, but the amount information

gain gradually diminishes when increasing the sample size.

Therefore, determining the appropriate sample size requires

finding an optimum between the acceptable uncertainty and the

requisite sampling effort. In addition, the results demonstrate

that heterogeneous litter item categories require larger sample

set sizes than homogeneous categories in order to obtain similar

uncertainty levels in the size and mass statistics.

The determination of litter heterogeneity and the derived

required sample set sizes are crucial for optimizing the efficiency

of litter monitoring protocols. Sample set size requirements can

make data collection more efficient, as it is known for what item

categories more and less items need to be collected and analyzed.

The SSR can serve as a limit on data collection to avoid wasting

resources on collecting data with uncertainty levels beyond the

scope of the research question for which the data are used.

This study provides a method to estimate SSR, and gives a

first indication of the order of magnitude of the number of

items that should be sampled for certain uncertainty levels for

specific litter items. The approach taken in this research can be

transferred to other systems, and the findings can be used as a

starting point for studies in other river systems. For example,

collecting homogeneous item categories can be performed in

less detail than measuring heterogeneous categories in future

monitoring campaigns. Furthermore, the analysis needed to

optimize monitoring in these different systems can be adopted

from this study. By starting with collecting very detailed data,

subsequent sample collection can be downscaled to ensure more

efficient monitoring. This can take the form of an iterative

process, during which, at any point in the study, the data

needs can be reassessed by performing a Monte Carlo based

bootstrap analysis.

Litter transport and fate models can benefit from including

litter statistics generated in this study. For example, models used

to study the transport behavior of litter could include the mass

and size of specific item categories. These parameters affect litter

behavior associated with buoyancy or wind sensitivity (Kuizenga

et al., 2022; Mellink et al., 2022a). Including such parameters

will therefore help to account for the fundamental transport and

retention behavior of different litter categories in river systems,

and potentially improve model results.

Similarly, the data presented in this study can be used

to improve models used to estimate the mass transport of

litter in rivers (see for example Meijer et al., 2021). Recent

insights gained by Roebroek et al. (2022) indicate that item-mass

conversion is a significant contributor to model uncertainty

in this type of model. Our dataset on items-specific mass-

statistics can thus be used to more accurately perform this

conversion, decreasing uncertainty in model results. The mass

statistics of litter categories can further be used to improve

item count-to-mass conversion in studies that currently do

not include mass. Including mass in these datasets allows for

data on environmental litter pollution to be compared with
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FIGURE 6

River system heterogeneity based on a 90% confidence boundary and 10% deviation from the mean, in the river Rhine (R1, R2, R3) (A), Meuse

(M1, M2, M3) (B), and IJssel (IJ1, IJ2) (C). Homogeneous: SSRcategory ≤ median SSRall (40 items). Heterogeneous; SSRcategory ≥ mean SSRall (158

items). Mixed: median SSRall < SSRcategory < mean SSRall. Undefined: SSR could not be determined.

TABLE 3 Litter heterogeneity per sample site, based on mean mass with a 90% confidence boundary and 10% deviation from the mean, in the river

Rhine (R1, R2, R3), Meuse (M1, M2, M3), and IJssel (IJ1, IJ2).

Location Homogeneous (%) Mixed (%) Heterogeneous (%) Undefined (%)

All 16 13 64 7

R1 73 9 16 2

R2 7 5 62 26

R3 12 25 57 5

M1 8 10 81 1

M2 9 13 75 4

M3 7 13 78 2

IJ1 8 12 73 8

IJ2 6 17 72 4

litter production, leakage, and transport, since all data are then

expressed in the same units (mass per unit time). This allows for

the study of the relation between these fluxes. For example, our

litter-statistics can be used to include mass in datasets that were

previously collected in item-count based studies (e.g., Crosti

et al., 2018; González-Fernández et al., 2021; Morales-Caselles

et al., 2021). This can now be directly compared with data from

mass-based studies on, for example waste production and plastic

transport (e.g., Lebreton and Andrady, 2019; Borrelle et al., 2020;

Meijer et al., 2021). Including the mass statistics from our study

may also reduce the uncertainty in studies that perform item-

to-mass conversion using limited data (e.g., van Emmerik et al.,

2018; Vriend et al., 2020b).

Several steps can be taken to assess and improve the

applicability of the data presented in this study. First, it should

be explored as to whether the SSR determined from the current

data are river-system specific or whether relevant parameters

such as item-specific mass of SSRs are transferable between

river systems. Our findings will most likely be applicable to

riverine systems with similar climatological characteristics and

similar industrial and consumption patterns. Differences in

consumption, activities (Nelms et al., 2021), waste management,

riverbank morphologies, and vegetation (Liro et al., 2022) might

lead to other types of litter being present and different size

and mass statistics in other river environments. By applying

our methodology to existing litter datasets (e.g., Tramoy et al.,

2019) or by collecting a new dataset in a different type of river

system, the universality of our SSRs can be assessed. If the

results are comparable between different types of river system,

the sample size requirements presented in this study could act

as guidelines for future research thus guiding the scale of future

sampling efforts.

Second, the dataset presented in this study could form the

basis for an open-access global database. This is essential

for improving litter monitoring and modeling efforts.

Although global modeling studies are extremely relevant

to understand litter fluxes, litter data varies locally (Schwarz

et al., 2019), and local data are necessary to reduce the
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uncertainty in results. This local data can in turn be upscaled

to regional or global domains. The suggested open-access

database can be used by scientists, policymakers, and

stakeholders to improve future monitoring, policymaking,

and solution designs.

5. Concluding remarks

We present a method to determine the sample size

requirements for specific item categories and for river systems.

These may be used to optimize data collection efforts, by

prioritizing the collection and analysis of items that have a larger

heterogeneity. The same size requirements vary considerably

between item categories and river systems. For a heterogeneous

item class such as soft fragments larger than 2.5 cm, 990 items

were needed to describe the mean mass with 90% confidence,

and when determining the mean mass of uniform items, such

as metal bottle caps, only 39 items were necessary. At least

8,900 items had to be sampled in order to describe the mean

mass of all litter items on all locations with a confidence level

of 90% and a maximum of 10% deviation from the mean.

For representative aggregated statistics on the river basin scale,

1,645, 2,065, 2,033 items have to be sampled for the Rhine,

Meuse, and IJssel, respectively. All collected data are openly

available, and can be used to optimize future monitoring efforts,

and constrain model parameters. Future monitoring strategies

can benefit from this work, by applying a similar strategy in

which a detailed data collection and a subsequent bootstrap

analysis, can lead to the downscaling of subsequent sample

collection. An example could be reducing the sampling effort for

homogeneous categories. With this paper we aim to contribute

to reducing uncertainties in litter monitoring and modeling, to

better understand and quantify litter abundance, transport, fate,

and impacts.
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