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Availability and quality of administrative data on irrigation technology varies greatly across

jurisdictions. Technology choice, however, will influence the parameters of coupled

human-hydrological systems. Equally, changing parameters in the coupled system may

drive technology adoption. Here we develop and demonstrate a deep learning approach

to locate a particularly important irrigation technology—center pivot irrigation systems—

throughout the Ogallala Aquifer. The model does not rely on super computers and thus

provides a model for an accessible baseline to train and deploy on other geographies.

We further demonstrate that accounting for the technology can improve the insights in

both economic and hydrological models.

Keywords: deep learning—artificial neural network, agricultural economic data, groundwater use, hydrologic

modeling, economic modeling

INTRODUCTION

Groundwater is a critical resource globally and in the U.S. While it can be a renewable resource, it
is rapidly becoming overexploited (Bierkens and Wada, 2019) with total extractions increasing by
8.3% from 2010 to 2015 while surface water use has declined by 13.9% in that same period (Dieter
et al., 2018). This overuse has led to declining groundwater levels, and the Ogallala Aquifer is a
prime example of this (Haacker et al., 2016). Irrigation water is the largest use of groundwater in
the U.S. accounting for some 57.2 billion gallons of water per day, and the states over the Ogallala
Aquifer make up more than a quarter of all irrigated land in the U.S. (Hrozencik, 2019).

Much of the decline in the Ogallala Aquifer’s water level can be accounted for by the agricultural
sector which has overwhelmingly adopted center pivot irrigation systems (CPIS) that allow farmers
to pump groundwater onto their fields efficiently (Gowda et al., 2018; USDA NASS, 2018). This
decline of the water level imposes a real cost on groundwater users in terms of electricity use and
well upkeep as they must drill their wells deeper which increases the effort necessary to transport
the water to the surface (USGS, 2013).

Despite growing concern over declining water tables, and the more localized impacts of
groundwater extraction such as cones of depression, very little data exists regarding the location
of CPIS. Historically, the data has been limited to aerial observation and the few states that keep
a record of irrigation technology. However, there has been a recent surge of interest in utilizing
machine learning tools to classify CPIS and irrigation more generally. Utilizing a random forest
classifier, Deines et al. (2019) mapped annual irrigation levels from 1984 to 2017, but the model did
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not specifically classify CPIS. Valencia et al. (2020) maps
groundwater abstractions from irrigated areas using a machine-
learning approach and crop evaporation rates to determine
groundwater extraction from CPIS in Saudi Arabia. Lastly,
Saraiva et al. (2020) utilize a U-Net deep learning model to
predict the locations of CPIS in Brazil.

This paper builds on the work of Saraiva et al. (2020) and seeks
to demonstrate how to address the data gap for CPIS locations
by applying a deep learning model to the task of identifying
CPIS in the Ogallala Aquifer. It can also be cheaply and quickly
implemented without the use of a graphics processing unit (GPU)
cluster or supercomputer by using only the resources available
from Google Colab Pro and Google Earth Engine. The model
is further distinguished by achieving a training time of <6 h by
utilizing 30 × 30m spatial resolution satellite imagery while still
maintaining an accuracy of 98% and recall of 88% at the pixel
level on test images.

We also demonstrate how the data can inform and improve
analysis of the food-energy-water nexus given that irrigation
technology plays an important role. The examples provide merit
for the inclusion of the CPIS data while the deep learning model
provides a basis from which additional CPIS systems can be
located in an accessible and computationally inexpensive way.

DATA AND DEEP LEARNING MODEL

Overview of Deep Learning
Deep learning is part of the field of machine learning that is
based on artificial neural networks (Schmidhuber, 2015). At the
most basic level, deep learningmodels used for image recognition
examine the features of an image, guess the user-defined object
those features belong to, check those guesses against an answer
key known as the ground truth, and repeat this process of guess-
and-check cycles called epochs until a user-defined goal has been
met (Goodfellow et al., 2016). At the end of each epoch, themodel
adjusts its parameters based on how close its guesses were to the
ground truth then uses these new parameters to go through the
next epoch (Goodfellow et al., 2016).

Data
Very little GIS data appropriate for deep learning labels exist
for CPIS in the United States. Some GIS data are available
from the Illinois State Water Survey and a joint effort by the
U.S. Geological Survey and University of Delaware Agricultural
Extension for CPIS in Illinois and the Northern Atlantic Coastal
Plain (NACP), but the environmental factors in these areas are
significantly different than that of the Ogallala Aquifer, so these
datasets were not used (ISWS, 2015; USGS, 2021). However, in
2005, the state of Nebraska evaluated aerial imagery over the
entire state and labeled more than 50,000 CPIS manually (State
of Nebrasksa Open Data, 2019). As Nebraska is firmly over the
Ogallala Aquifer, this dataset was determined to be suitable for
the ground truth in training the deep learning model.

Satellite imagery recorded by Landsat 5 and Landsat 7 from
the 2005 growing season was gathered and formed into a cloud-
free mosaic using Google Earth Engine. The imagery is in 30
× 30m resolution meaning each pixel represents a single 900
m2 area. The labels were paired with their corresponding images

using ArcMap. In order to avoid overlap in the mosaics for the
training process, the state was divided into 13 sections with each
section containing 10,000 km2 of land. These sections were then
randomly assigned into three groups to be used for training,
validation, and testing. The training group contained nine of the
sections while the validation and testing groups each contained
two of the sections.

Model
To identify center pivots over the Ogallala Aquifer, a deep
learning approach that utilizes amodifiedU-Netmodel described
by Saraiva et al. (2020) was used. The primary advantage of using
this type of model is that it labels each pixel in the satellite
imagery, so the model is able to reliably predict CPIS locations
despite their various sizes and shapes unlike some other methods
(e.g., Zhang et al., 2018). However, the model is not able to detect
the boundaries between neighboring CPIS making it difficult to
determine the number of CPIS in a given area without manually
counting them. The original model was trained on 3.7 × 3.7m
resolution satellite imagery to predict the location of CPIS in
Brazil, and it performed poorly when directly applied to the task
of predicting CPIS locations over the Ogallala Aquifer. This is
likely due to the original model being trained to detect CPIS in
a tropical environment rather than the arid environment of the
land overlying the Ogallala Aquifer.

In order to retrain the model, the original parameter
specifications were maintained, but it was trained on the labels
and satellite imagery over Nebraska using a 25 GB share of a
P-100 GPU available through Google Colab Pro. The number
of labels used in the training process was increased by rotating
each image 90-, 180-, and 270-degrees during preprocessing,
ultimately resulting in nearly 200,000 labeled CPIS. The training
process went through 40 epochs and took <6 h to complete.

The trained model’s performance was evaluated using four
metrics for deep learningmodels common among CPIS detection
papers (e.g., Zhang et al., 2018; Saraiva et al., 2020; Tang
et al., 2020, 2021): accuracy, precision, recall, and specificity.
For clarity, TP, FP, TN, and FN in the equations below
represent true positives, false positives, true negatives, and false
negatives, respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

These metrics were calculated at the pixel level on the two images
in the test group, and the results can be seen in Table 1.

Even with the differences in imagery resolution used for
training, the model performed comparably to the original
deployed in Brazil by Saraiva et al. (2020) as evidenced by it
achieving the same recall rate and only slightly reduced accuracy
and precision scores. Test image 1 had a much larger share of
background pixels than test image 2 which accounts for much
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TABLE 1 | Model evaluation metrics.

Test image 1 Test image 2 Combined

Accuracy 99% 96% 98%

Precision 95% 97% 96%

Recall 84% 88% 88%

Specificity 99% 99% 99%

This table provides the performance metrics of the two test group images at the pixel

level for the deep learning model detecting CPIS over the Ogallala Aquifer. The combined

scores were calculated by treating the test images as a single image and recalculating

the scores.

FIGURE 1 | Model output for predicted CPIS from test Image 1. The deep

learning model’s output (red) superimposed on the manually identified center

pivots (yellow). The model is capable of detecting CPIS of varying sizes and

shapes as can be seen near the top of the image.

of the difference between the images in performance metrics.
Because these metrics are calculated at the pixel level, they
are influenced by the difficulty the model has with accurately
predicting the boundaries of the CPIS as shown in the sample
image in Figure 1 where the red area is the model’s prediction
and the yellow area is the ground truth. These dropped pixels
lower the accuracy and recall of the model when evaluated at the
pixel level. In order to understand how the model performs from
a broader perspective, the test images were visually inspected as
well. Test image 2 contains 5,186 CPIS, and the model correctly
predicted 4,997 of these CPIS giving it a recall rate of about 96%
when evaluated at the structure level as seen in Figure 2 which
shows the model’s output in red.

After the model was trained, satellite imagery covering the
entire Ogallala Aquifer was obtained from the same sources for
2008. The model’s prediction of CPIS locations is provided in
Figure 3 for all of the land overlying the aquifer. The validity
of these predictions depends on the environmental factors over
the rest of the Ogallala Aquifer being similar enough to those of
Nebraska. The test results of the trained model along with the
prevalence of CPIS over the Ogallala and the semiarid climate of
the region suggest that this assumption holds true.

ECONOMIC APPLICATIONS

The knowledge of the location and extent of CPIS can improve
economic analysis at a variety of scales and applications. Here we
demonstrate its importance in a county-level model—a common
unit of analysis in agricultural economics—and also discuss

FIGURE 2 | Deep learning model output for test Image 2. This figure shows

the predicted CPIS locations (red) from the deep learning model over a 100 ×

100 km test image. This image was not used in the training process of the

model, so it should be indicative of how the model performs on previously

unseen images with environments similar to the training images. As can be

seen in the upper right hand side of the figure, the model is able to distinguish

farmland irrigated by CPIS from farmland that is irrigated by some

other technology.

other potential uses. In economics many studies have considered
irrigation uptake and its effects on farming across the U.S. and
the Ogallala specifically (Hornbeck and Pinar, 2014; Edwards and
Smith, 2018; Smith and Edwards, 2021). Many have been Kansas
specific due to its high-quality data (Hendricks and Peterson,
2012; Pfeiffer and Lin, 2012, 2014; Edwards, 2016; Drysdale
and Hendricks, 2018). To get greater geographic coverage and
additional outcomes, a popular source of data comes from the
USDA Agricultural Census gathered roughly every 5 years back
to 1920 and each decade back to 1860. Data is publicly available
at the county level and irrigation information has been reported
since 1890 (Haines et al., 2018). However, CPIS specific data was
only gathered in 1959 and 1969. To illustrate the importance of
irrigation technology, we combine the deep learning CPIS data
with the USDA data.

Hornbeck and Pinar (2014) demonstrate that irrigation
uptake for counties over the Ogallala Aquifer increased
dramatically both in absolute terms and relative terms compared
to nearby counties not over the aquifer after the arrival of
CPIS technology circa 1948. This led to greater production and
increased farm values. Other work has shown that not only did
average production increase, resilience to drought is greater when
counties are over an aquifer even compared to counties with
similar irrigation levels but sourcing from surface water (Smith
and Edwards, 2021). Neither paper, however, considers the role
of the CPIS technology in specifically shaping these relationships.
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FIGURE 3 | Predicted CPIS in the Ogallala Aquifer region. This figure shows

the final product of the deep learning model when used to predict CPIS

locations for the Ogallala Aquifer region, including a 100 km buffer zone.

Predicted CPIS locations are depicted as blue dots which are largely

concentrated in the central Ogallala and become less prevalent in the

buffer zone.

Because ourmodel used data from 2008, we begin with the closest
USDA NASS (2009) to provide a few insights.

First, in Figure 4, we show that CPIS is not ubiquitous
across the Ogallala region and “irrigated hectares” are not all
using the same technology. The scatter plot compares the fraction
of the county with irrigated hectares from the census compared
to the fraction with CPIS technology from our deep learning
model. Using the 45-degree line for reference, many areas
had more irrigated hectares than CPIS hectares, meaning that
other technologies are deployed, even over the Ogallala Aquifer.
However, it also shows that CPIS share can be greater than
irrigated share in a given year. Although some of the discrepancy
could be related to model error, particularly at lower shares, it is
also consistent with other findings that irrigators of groundwater
generally (Smith and Edwards, 2021) and over portions of the
Ogallala specifically (Deines et al., 2017) are more flexible in
reducing and expanding irrigated area than surface water users.
In other words, our detection of CPIS captures a measure of
irrigation capacity which may or may not be deployed in a given
year for reasons related to farm-level decisions.

Second, we show the positive relationship between center
pivots and farm value are stronger than just irrigation and land
value over the Ogallala. We regress

Yis = γ1Irris + γ2CPISis + Xis + θs + εis (5)

FIGURE 4 | Irrigation share vs. CPIS share, Ogallala. This provides a scatter

plot of irrigated share, reported in the 2007 Census, and the CPIS share

calculated, from our model, for the Ogallala counties (within 100 km of the

aquifer boundary).

For dependent variables we consider farm value per county
hectare and total value of crops sold per county hectare in
county i of state s. We take the natural log of both so the
coefficient estimates can be interpreted as the percent change
of the dependent variable. The coefficients of interest are the
γ ’s on Irris (share of county irrigated) and CPISis (share of
county with a CPIS). The vector Xis includes covariates (and their
coefficients) that may also affect crop and farm value: population
density, elevation, elevation variation, soil, share within 24 km of
a Strahler order 3 or higher stream, 30-year average temperature
and precipitation, average wind class, maximum wind class,
kilometers of transmission lines, and latitude and longitude.
Finally, θs is included as a state fixed effect, controlling for
similarities of all counties within a given state.

Table 2 shows the results. While counties with an additional
10 percent of irrigated land have 9.79 percent higher farm values
on average (column 1), another 10 percent more of CPIS is
associated with 13.1 percent more valuable farm land.When both
controls are included in the same regression (column 3), the
relationship still holds and the effect of CPIS is statistically and
economically significantly different from just irrigation alone.
Additional results with crop revenue as the dependent variable
(columns 4–6) follow similar lines, although the additional value
related to CPIS above and beyond irrigation is relatively more for
this outcome.

These results are not causal. They do not claim the CPIS
leads to the higher values and it remains plausible that higher
productivity, for reasons not captured by the covariates, makes
the return on investing in CPIS technology higher. In other
words, the higher value could drive more CPIS. The truth of the
causality surely lies somewhere between. However, the point is
that the irrigation technology information provides additional
insights beyond what the simple metric of irrigated area does.

As a third exercise, we consider the resilience irrigation
provides agriculture production to various weather anomalies,
comparing results for irrigated shares and CPIS shares
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TABLE 2 | Irrigation, farm value and production, 2007.

Farm value per hectares (ln) Crop value sold per hectares (ln)

(1) (2) (3) (4) (5) (6)

Irrigated share 0.979*** 0.680*** 2.994* 0.322

(0.205) (0.169) (1.328) (1.165)

Center pivot share 1.310*** 0.493*** 4.761*** 4.376***

(0.151) (0.131) (0.938) (0.632)

Observations 370 370 370 356 356 356

Adjusted R-squared 0.871 0.868 0.871 0.716 0.727 0.726

DV sample average (levels) 2,680.2 2,680.2 2,680.2 294.5 294.5 294.5

DV sample standard deviation (levels) 1,849.3 1,849.3 1,849.3 278.2 278.2 278.2

Coefficient estimates of equation 5. Total county farm value divided by county hectares (logged) is the dependent variable in columns (1)-(3). Total county crop value sold divided by

total county hectares (logged) is the dependent variable in columns (4)-(6). Irrigated share is the fraction of the entire county under irrigation in 2007. Center pivot share is the fraction

of the entire county with CPIS technology in place. Additional unreported covariates are county population density, length of transmission lines, elevation, elevation variation, soil, share

within 24 km of a Strahler order 3 or higher stream, 30-year average temperature and precipitation, average wind class, maximum wind class, latitude and longitude, as well as state

fixed effects. The sample is limited to “Ogallala Counties” (within 100 km of the boundary). “DV” is “Dependent Variable.” Robust standard errors, clustered by state, in parentheses.

*p < 0.1, ***p < 0.01.

specifically. The analysis is similar to that in Smith and
Edwards (2021) in that it considers the production change
within a county under positive and negative deviations from the
counties’ 100-year temperature and precipitation averages. The
analysis encompasses the 15 Agricultural Censuses going back
to 1950, once center pivot technology emerged. The baseline
weather is “normal” and the coefficient estimates shown in
Figure 5 represents the percentage change in crop production
(by value) with no irrigation (zero irrigated hectares), for
counties’ irrigated hectares, and counties’ CPIS hectares, both
scaled to a one-standard deviation increase in the share of
the county irrigated (0.15). Full details are provided in the
SI appendix.

In Figure 5 we provide the estimated coefficients. The left
panel (A) uses temperature as the weather variable. Here,
abnormally cool years increase production across the board,
but warmer and significantly warmer years reduce baseline
production. Irrigation mitigates the losses. Estimates for CPIS
indicate a more positive effect in addressing warmer weather,
although it is not statistically distinct from irrigation on its own.
Resilience to local precipitation shocks is shown in the right panel
(B). Here, no matter the irrigation, significantly wetter years hurt
production for all counties. Irrigation offsets losses in dry and
significantly dry years, but CPIS does even better at maintaining
production levels closer to that in normal years.

The upshot of these three exercises is that economic
relationships are sensitive to the irrigation technology present
and the deep learning model can provide improved inputs for
the economic models. Beyond these examples, the deep learning
model could be used to develop a panel data set and analyze the
adoption of CPIS systems as well as the effects of that adoption.
Additionally, these economic models here aggregate data to the
county level but the deep learning model outputs a raster and
can be deployed at many scales to better characterize economic
irrigation decisions (see Smith and Cooley, 2021 for a Public
Land Survey System grid example at the square mile, or 2.6
km2, scale). Given the relative ease of running the deep learning
model, it could pick up on new CPIS systems so that we can

better model and understand its adoption and effects on the
food-energy-water nexus.

IMPLICATIONS FOR HYDROLOGIC
MODELING

Hydrologic models that include pumping and irrigation are
commonly used to assess the effects of agriculture on water
availability, particularly groundwater (see e.g., the review by
Haacker et al., 2019 and references therein). Such models can
be powerful tools for planning and resource management and
have grown in scale to include global groundwater use for food
production (e.g., Wada et al., 2010; de Graaf et al., 2019) to
study economic and environmental limits to pumping. These
models all require many input parameters to define the location
and extent of irrigated area and pumping wells. As these input
data are often not directly available, they are often based on
coarser resolution (e.g., county level) information or land cover
classification fromnation datasets (e.g. Gilbert et al., 2017; Thatch
et al., 2020), depletion estimates lumped over major aquifers
(e.g., Konikow, 2013), or combined from model simulations and
administrative databases (e.g.. Siebert et al., 2010).

As these models grow in size to the national scale and decrease
in resolution, these inputs become problematic due to lack of
records and inconsistencies across administrative boundaries.
As an example, a recent study (Condon and Maxwell, 2019)
combined two different datasets (the coarse scale Konikow
depletions and the model derived pumping and irrigation from
the Wada et al. model simulations) to reconstruct groundwater
depletion and ongoing pumping at the national scale. The results
of our deep learning model allow for direct input of CPIS into
hydrology models, providing a new way to estimate the effects on
groundwater pumping. The results of this current work provide
an unprecedented, high resolution input dataset for the location
of irrigation and pumping wells in the Ogallala Aquifer. The
CPIS estimates in Figure 3 were converted to pumping estimates
and compared to the groundwater pumping used to drive the
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FIGURE 5 | Effect of irrigation on crop revenue resilience. Coefficient estimates of equation SI.1 from the SI Appendix. The dependent variable is the natural log of

crop value sold per county hectare from the 1950, 1954, 1959, 1964, 1969, 1974, 1978, 1982, 1987, 1992, 1997, 2002, 2007, 2012, and 2017 Agricultural

Censuses. The estimates represent deviations from a county’s average relative to normal levels of temperature (A) and precipitation (B). Irrigated and CPIS shares are

the fractions of the county irrigated or with CPIS available, respectively, as of 2007. The effect shown is for a one standard deviation increase of irrigated share (0.15).

Because “Irrigation” and “CPIS” are not nested, the coefficients come from separate estimations. Year and county fixed effects are included as well as a third-order

polynomial of temperature. The sample are the arid counties (west of the 98th meridian) from the “Ogallala counties” (within 100 km of the aquifer boundary).

Condon and Maxwell (2019) study (Figure 6). The CPIS image
was converted to an estimate of groundwater pumping in Kansas
based on a detailed study by Pfeiffer and Lin (2014). This study
estimated an annual groundwater extraction of 1.995 × 105 m3

(161.73 AF) per center pivot, which can be scaled to an aerial
estimate of 1,332 m3. Applying this value to each identified CPIS
pixel, we scale up to a 1 km resolution to estimate the location
and extent of groundwater pumping in 2008. The result is shown
in Figure 6A. The Condon and Maxwell (2019) study combined
two long term groundwater depletion and pumping estimates
into one product. This product resulted from combining the
Wada et al. (2010) pumping estimates at a 6-min (∼11 km) native
resolution and the Konikow (2013) estimate of total aquifer
depletions, is plotted in Figure 6B and represents an estimate of
average pumping per year from 1960 to 2010.

Several things are striking about these results. First is the
dramatic increase in resolution the ML-based approach provides.
Second is the general similarity between the two images; both
images show similar patterns in pumping location, despite being
derived using very different approaches. Third, and perhaps
most importantly, is the difference in overall pumping amount
shown in Figure 6C. The ML-based approach estimates a much
larger pumping volume than the Condon and Maxwell (2019)
estimate. A summation of the two pumping estimates quantifies
this difference: the Condon and Maxwell (2019) estimates 6.68×
109 m3/y (5.42× 106 AF/y) of total pumping, while theML-based
approach presented here estimates 1.96 × 1010 m3/y (1.59 × 107

AF/y) of pumping in 2008.
This dramatic (almost three times greater) estimate is likely

due to several reasons. First, pumping is likely to have increased
during the 1960–2010 time period; the average rate over a
half century likely underestimates the rate in 2008. Second,

the estimates of pumping in the Condon and Maxwell (2019)
dataset rely heavily on the Wada et al. (2010) model simulations
which are global in extent and driven to a large degree by
water demand. These source data may be subject to uncertainty
and are at a coarser resolution than the current study, which
might further underestimate the magnitude of pumping. Lastly,
the approach used to convert the CPIS density to groundwater
pumping is well-validated in Kansas, but may have uncertainties
when applied to the entire Ogallala. Nevertheless, these ML-
based results suggest an underestimation of pumping in the Great
Plains region by prior studies and offer an additional avenue for
estimating these quantities.

In addition to the dramatic differences in the estimates of
annual pumping rate, the results shown in Figure 6 may be
directly input into models used for planning (e.g., Haacker et al.,
2019) to improve their representation of agricultural processes.
Additionally, the methodology used here can be applied over
time to understand the expansion of groundwater pumping
and depletion.

CONCLUSION

We have refined and described a deep learning model that
identifies CPIS technology across the Ogallala Aquifer region.
The model is meant to overcome the lack of consistent spatial
data on irrigation technology adoption across jurisdictions.
Manually identifying CPIS from aerial or satellite imagery is
a time-consuming and tedious process that may be cheaply
replaced by utilizing the open-source deep learning model
presented in this paper. It utilizes readily available satellite images
and a combination of Google Colab Pro and Google Earth

Frontiers in Water | www.frontiersin.org 6 December 2021 | Volume 3 | Article 786016

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Cooley et al. Detecting Center Pivot Irrigation Systems

FIGURE 6 | Comparison of groundwater pumping estimates in the Ogallala Aquifer. The maps in all panels are in 1 × 1 km resolution which involved resampling the

underlying data from 30 × 30m resolution for the deep learning model’s output and 11 × 11 km resolution for the Condon and Maxwell (2019) data. The map in (C)

shows where the estimates in (A) are less than the estimates in (B) in red while the areas marked in blue show where the estimates in (A) are greater than the

estimates in (B). Areas with a high concentration of CPIS along with the surrounding land show the most remarkable differences between the two approaches.

Engine that avoids the need for a GPU cluster or supercomputer,
yet trains relatively quickly and performs well on a 30-m
spatial resolution.

Furthermore, we provide evidence that CPIS are economically
distinct from other forms of irrigation technology and their
locations are a useful input to hydrologic models involving
groundwater pumping. The final raster produced by the deep
learning model used in this paper can provide a valuable input to
future economic and hydrologic research concerning the Ogallala
Aquifer. The model itself can be applied to identify CPIS in other
instances where the climate variables are similar enough to the
original dataset. Most immediately, this would be the Ogallala
itself in different time periods to explore the dynamic changes
in irrigation technology.

In order to keep within the confines of the processing power
offered by Google Colab Pro, the model was only trained on
data from Nebraska. However, there are a few other sets of
manually identified CPIS data (e.g. ISWS, 2015; USGS, 2021) that
could be incorporated into the model’s training to allow it to be
even more generalizable and more accurate. The model, as is,
struggles in more humid regions because the boundary between
land irrigated by a CPIS and the surrounding area is less clear,
yet the technology is increasingly deployed as a climate resiliency
tool in humid regions like Illinois (Cooley and Smith, 2021). This
shortcoming can be circumvented by drawing on times of major
drought when the iconic circular pattern of the CPIS is more
distinguishable (e.g., Cooley and Smith, 2021), but additional

refinement of the model could improve detection under a wider
range of climactic conditions, leading to better temporal and
spatial coverage. Finally, the model could also be altered to
identify irrigation technologies other than CPIS. While all of
these would require more costly and time-consuming methods
to run, it could also provide an even more valuable resource
to economists and hydrologists making it a useful endeavor for
future research.
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SI APPENDIX

The regression framework for resilience is as follows:

Yit =

2∑

j=−2

αj
· Bin

j
it +

2∑

j=−2

β j
· Irri × Bin

j
it + f (tempit)

+ τt + γi + uit (SI.1)

Yit is the natural log of total farmland value (buildings and land)
in county i in year t divided by total county area or the total
crop value in county i in year t divided by total county area.
County borders are fixed to their 1910 boundaries and USDA
census data is reweighted under the assumption of spatially

uniform distribution. Bin
j
it is a series of indicators of weather

indicators for where in the county-specific weather distribution
for the growing season (April-September) falls in its standardized
distribution built from annual data from 1900 to 2017 (PRISM
Climate Group, 2004). The omitted bin is “normal”, taken as
-0.5 to 0.5 standard deviations. Higher bin numbers are more
drought oriented with bin 1 indicating the year is 0.5 to 1.5
standard deviations less rain (or higher temperatures) and bin 2

indicates the county year observation is greater than 1.5 standard
deviations of less rain (or higher temperatures). Bins -1 and -2 are
similarly defined as wetter and cooler years. Irri is a continuous
measure of share of the county irrigated, either irrigated hectares
reported in the 2007 census or the share of CPIS systems from
our deep learning model. αj coefficients provide the baseline
with no irrigation and the β j estimates how an irrigated county
performs differently from no irrigation. The figure in the text
provide αj for the baseline and αj

+ β j
× 0.145, where 0.145

is one standard deviation of the irrigated share in the sample.
f (tempit) is a flexible polynomial for the temperature (a third
order polynomial). τt is a series of year fixed effects to absorb
macroeconomic conditions and price variation among other
elements that vary equally for all counties in that year. γi is a series
of county level fixed effects to absorb any time-invariant features
of the county that affects its production. On net, the estimates
use variation from the county average and the annual average of
production and weather shock. The sample is limited to counties
within 100 km of the outer border of the Ogallala Aquifer and
west of the 98th Meridian. Sample includes census observations
from 1950, 1954, 1959, 1964, 1969, 1974, 1978, 1982, 1987, 1992,
1997, 2002, 2007, 2012, and 2017.
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