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Extreme heat events in the Great Lakes Basin (GLB) region of eastern North America are

expected to increase in concert with greenhouse gas (GHG) induced global warming. The

extent of this regional increase is also influenced by the direct effects of the Great Lakes

themselves. This paper describes results from an ensemble of dynamically downscaled

global warming projection using the Weather Research and Forecast (WRF) regional

climate model coupled to the Freshwater Lake (FLake) model over the Great Lakes

region. In our downscaling pipeline, we explore two sets of WRF physics configurations,

with the initial and boundary conditions provided by four different fully coupled Global

Climate Models (GCMs). Three time periods are investigated, namely an instrumental

period (1979–1989) that is employed for validation, and a mid-century (2050–2060) and

an end-century (2085–2100) periods that are used to understand the future impacts of

global warming. Results from the instrumental period are characterized by large variations

in climate states between the ensemble members, which is attributed to differences

in both GCM forcing and WRF physics configuration. Results for the future periods,

however, are such that the regional model results have good agreement with GCM results

insofar as the rise of average temperature with GHG is concerned. Analysis of extreme

heat events suggests that the occurrence rate of such events increase steadily with rising

temperature, and that the Great Lakes exert strong lake effect influence on extreme heat

events in this region.

Keywords: FLake, CMIP5, WRF, climate change, extreme heat event, Great Lakes (North America)

1. INTRODUCTION

Record breaking extreme heat events have been occurring more frequently around the world in
recent years. Some, such as the extreme heat events over Europe in 2019 (Vautard et al., 2020) and
over western North America in 2021 (Philip et al., 2021) were especially severe, causing significant
loss of life and property. This trend of increasingly active heat events has attracted a great deal of
attention from the public, businesses and policy makers. Interest is particularly great in attempting
to understand the susceptibility of regions of interest, such as those at high risk of wildfires to
changes in the frequency of these events.

The Great Lakes Basin (GLB) region of North America is the largest fresh-water system on
Earth, by area, and supports a population in the tens of millions along with extensive agricultural
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and industrial activity. Extreme heat events can be very
debilitating to this region, and lead to impacts that would be
felt far-and-away. It is therefore of great interest to understand
climate change induced changes to extreme heat events and the
extent to which the influence of such events may be affected by
the presence of the Great Lakes. The purpose of the present paper
is to begin a discussion on the expected frequency of occurrence
of extreme heat events in the GLB in the future.

The climate of the GLB has traditionally been studied from
either an observational perspective (Scott and Huff, 1996) or
via the application of coupled Global Climate Models (GCMs;
Lofgren, 1997). In recent years, however, there have been
advances in the usage of high-resolution Regional Climate
Models (RCMs), often in conjunction with a lake model, to study
the impacts of global warming in this region at a resolution and
fidelity higher than that which is afforded by GCMs.

The first attempt to examine the GLB region with an RCM
together with a lake model was undertaken by Gula and Peltier
(2012) who employed WRF in a dynamical downscaling pipeline
wherein the NCAR CCSM3 global model (Collins et al., 2006)
was used to force a nested WRF configuration with an outer
domain covering the entire North American continent at 30 km
resolution and an inner domain covering the GLB at 10 km
resolution. The lakemodel in their study, FLake (Mironov, 2008),
was run in offline mode, nevertheless, it was apparent from the
study that FLake was able to accurately represent the area covered
by lake ice in winter as well as the timing of onset and retreat
of the lake ice. More importantly, the analysis demonstrated the
capability of nested dynamical downscaling to fully resolve lake
effect meteorological processes such the formation of snow belts
in the lee of the lakes during winter, and to describe the impacts
of the global warming in that region.

The nested downscaling pipeline of Gula and Peltier (2012)
was enhanced further by fully coupling FLake to WRF and
the improved configuration was used by d’Orgeville et al.
(2014) to present the first study of the expected changes
to extreme precipitation in the GLB under the influence of
anthropogenic climate change. High resolution output from
the inner WRF domain was employed to drive an analysis of
precipitation extremes using a peak-over-threshold technique
to quantitatively assess the extent to which the return times of
extreme precipitation events of varying intensities are expected to
decrease through the current century under the RCP8.5 “business
as usual” radiative forcing scenario. It was found that the time
separating extremes of any given precipitation intensity would
decrease by at least a factor of two by mid-century. A follow
up study by Peltier et al. (2018) made use of a larger ensemble
of WRF physics configurations and investigated the “fattening
of the tail” of the probability distribution under climate change
by using the Generalized Extreme Values (GEV) distribution
methodology. The results for end-century for both temperature
and precipitation were in agreement with the earlier analyses of
d’Orgeville et al. (2014).

FollowingGula and Peltier (2012), results from the application
of RCMs to the understanding of the climate of the GLB
started to be reported by other researcher groups. Notaro
et al. (2013) reported on an RCM configuration that employed

the Abdus Salam International Center for Theoretical Physics
Regional Climate Model, version 4 (ICTP RegCM4), forced by
the National Centers for Environmental Prediction (NCEP)–
NCAR reanalysis and the Global Sea Ice and Sea Surface
Temperature (GISST) dataset from the UK Met Office, coupled
to a one-dimensional energy-balance lake model. By comparing
their results for the GLB with those obtained from another
model run in which the lakes were replaced by a landscape
similar to that of the surrounding region, they demonstrated
that the presence of the Great Lakes reduces the amplitude
of both diurnal and annual temperature change due to their
large thermal inertia. Subsequently, Notaro et al. (2015b) forced
their lake coupled RegCM4 model with the outputs of two
Coupled Model Intercomparison Project Phase 5 (CMIP5)
GCMs over the historical and future global warming periods. The
results demonstrated, unsurprisingly, that winter temperature
is expected to rise, and that reduced lake ice cover leads to
an increase in lake effect precipitation which gradually shifts
from snow to rain as the climate continues to warm. In an
accompanying paper, Notaro et al. (2015a) discuss the effect of
projected changes in precipitation and evaporation on future
lake levels.

Mallard et al. (2014) also employedWRF coupled to the FLake
model and showed that the configuration is able to simulate the
regional climate with higher accuracy than reanalysis that has
a lower spatial resolution. Xue et al. (2017) coupled RegCM4
with a different lake model based on the Finite Volume
Community Ocean Model (FVCOM) 3D hydrodynamic model
to obtain highly accurate lake fields. Recently, by coupling the
NASA-Unified WRF model (NU-WRF) to both a 1D lake model
and a 3D lake model, Notaro et al. (2021) showed that the 3D lake
model performed better over the Great Lakes region.

A major shortcoming in this extensive literature on the
application of RCMs to the GLB is that nearly all of these studies
used global forcing data from only one GCM. Therefore, the
effect of the choice of GCM data on the downscaled results
for the GLB remains largely unconstrained. Zobel et al. (2018b)
presented regional climate results over the Continent of US
(CONUS) from the WRF model forced by 3 different GCMs
and demonstrated that different GCM forcings lead to significant
differences over their domain. Therefore, we could expect to see a
similar variability in the downscaled climate over the GLB region
depending on the GCM data. Here we make progress on filling
this knowledge gap by using outputs from a selected set of GCMs
that have participated in the Coupled Model Intercomparison
Project Phase Five (CMIP5; Taylor et al., 2012) and whose data
have been uploaded to the project archive. The CMIP5 models
have been used to simulate both the twentieth century over which
their results can be verified against high quality instrumental
observations, and the twenty-first century over which we are
interested in performing downscaled projections. The CMIP5
archive was key to the findings reported in the IPCC Fifth
Assessment Report (IPCC, 2013a) and the data has been used for
understanding climate change projections over North America
(Sheffield et al., 2013a,b).

In addition to the mean climate state of the GLB region, the
modeling of extreme events and projections of their change into
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the future has also generated considerable interest. Modeling and
projection of changes in extreme precipitation using a lake model
coupled to a RCM has been previously reported (d’Orgeville
et al., 2014; Peltier et al., 2018), but in contrast much less effort
has been expended to studying extreme heat events using this
configuration. While some studies have attended to the question
of regional extreme heat events, those have been either based
on observations (Peterson et al., 2008) and so cannot be used
for future projections, or use low-resolution GCM data (Meehl
and Tebaldi, 2004; Kharin et al., 2013; Sillmann et al., 2013a,b)
or downscale GCM data without resolving lake dynamics (Jeong
et al., 2016; Byun and Hamlet, 2018). The latter two approaches
are unable to explicitly include lake effects in the Great Lakes
region. Studies have shown that lakes are not immune to climate
change (O’Reilly et al., 2015; Woolway et al., 2020), and therefore
interaction between a warmed lake and its surroundings needs to
be resolved by a lake model in order to obtain accurate climate
change signal over the surrounding region.

This study will employ the dynamical downscaling
pipeline that was recently used in Peltier et al. (2018) but
apply it to CMIP5 data to construct a new ensemble of
downscaled simulations. This new ensemble will be used

to explore the variability in the downscaling process when
forcing from different GCM models is employed, and
thereby attempt to address the impact of GCM selection
on regional climate results. Extreme heat event analysis is
performed on this ensemble to explore the evolution of
heat waves under the influence of different simulations for
climate change.

2. EXPERIMENTAL DESIGN, CLIMATE
MODELS, AND VALIDATION DATASETS

2.1. Experimental Design
The dynamical downscaling experiments presented in this paper
follow the two-step nesting procedure established in Gula and
Peltier (2012) and d’Orgeville et al. (2014) wherein the first of the
nested domains, namely the outer domain, covers the continent
of North America at a resolution of 30 km, and the nested inner
domain covers the GLB at 10 km resolution. Technical details are
described in Erler (2015). This pipeline has also been employed
to perform downscaling experiments in other regions, such as
Western Canada (Erler et al., 2015; Erler and Peltier, 2016, 2017),

FIGURE 1 | Mean winter season 2 m air temperature biases with respect to the NRCan dataset over the outer WRF domain for the GCMs (top row), WRF ensemble

members with G physics (middle row), and WRF ensemble members with T physics (bottom row). From left to right are experiments (GCM or GCM driven WRF)

associated with CESM1, GFDL-ESM2M, GFDL-CM3 and MIROC5 respectively.
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and India and South-east Asia (Huo and Peltier, 2019; Huo et al.,
2021).

2.2. CMIP5 GCM Models
The CMIP5 archive contains data generated by over 50 climate
models from 20 modeling groups from around the world. It
is a comprehensive source of global climate data for both
historical and future projection periods (Taylor et al., 2012).
Several studies have used the CMIP5 archive to investigate future
climate projections over various regions of the world (see for
example Kug et al., 2015; Song and Yu, 2015; Cheng et al., 2017;
Peings et al., 2017), and the relative performance of the models,
over North America has been evaluated for the historical period
(Kumar et al., 2013; Sheffield et al., 2013a,b) and the future
(Maloney et al., 2014).

Our downscaling pipeline requires the availability of several
atmospheric, sea ice and land surface variables from the GCM
at 6-h resolution. At the time of this study, only data from
MIROC5, GFDL-ESM2M and GFDL-CM3 stored on the CMIP5
archive satisfied these requirements. Accordingly, in this study
we use data from these three GCMs, together with data from
our own simulation using CESM1. Sheffield et al. (2013a) found

that these models cover a broad range of performance and
concluded that CESM1 is one of the better performing models,
while GFDL-CM3 is among the models that perform worse over
the historical period. Both GFDL-ESM2M and MIROC5 were
ranked in between CESM1 and GFDL-CM3.We therefore expect
this set of models to provide a good spread of climate states in the
RCM ensemble.

The Model for Interdisciplinary Research on Climate
(MIROC; Watanabe et al., 2010) is developed and operated by
the Japanese research community. The atmospheric component
of the model has a spectral dynamical core that operates at a
horizontal resolution of T85 (1.4◦ × 1.4◦) and has 40 layers in
the vertical. The ocean grid uses stereographic projection and
conformal mapping to transfer the north pole to 80◦N, 40◦W and
the south pole to 80◦S, 40◦W in order to prevent the geometric
singularity due to the convergence of the meridians from existing
in the oceanic domain. The grid resolution in the zonal direction
is fixed at 1.4◦ but the meridional resolution decreases from
0.5◦ at 8◦ equivalent latitude to 1.4◦ at equivalent latitudes
poleward of 65◦. The vertical discretization includes 49 layers
that are unevenly distributed with greater concentration near
the surface. The atmospheric component uses parametrization

FIGURE 2 | Winter season zonally mean zonal wind speed at 250 hPa pressure level. Left panel shows results for the historical period where ERA-Interim reanalysis

result is plotted in black as reference, and the right panel shows result for mid-century period. 30◦and 40◦ latitude are marked to enable easier comparison between

plotted curves.
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schemes that includes a cumulus convection scheme, cloud and
cloudmicrophysics schemes, turbulence diffusion scheme and an
aerosol model. Sea ice is treated on ocean cells with dynamics
and thermodynamics included. The land component operates
with 6 soil layers and includes snow and ice albedo effects, and
a lake submodel.

The Global Coupled Carbon–Climate Earth System Model
(GFDL-ESM2M) is developed by the Geophysical Fluid
Dynamics Laboratory (GFDL) of the National Oceanic and
Atmospheric Administration (NOAA; Dunne et al., 2012,
2013). This model uses a finite volume dynamical coreon an
atmospheric grid with 2.5◦ longitude and 2.0◦ latitude horizontal
resolution and 24 vertical levels. The tripolar ocean grid has a
horizontal grid spacing of 1◦ that gradually decreases to 1/3◦

meridionally at the equator and has 50 vertical levels. The land
model parameterizes all physical and biological processes and the
included carbon cycle simulates carbon transport between the
model components. Components that treat sea ice and icebergs
are also included in the model.

The GFDL Global Coupled Model (GFDL-CM3 Donner et al.,
2011; Griffies et al., 2011) is also from GFDL. This model uses
a finite-volume dynamical core with a cube-sphere grid that
has 48 vertical levels and 48 cells along each edge of the cube,
leading to grid cell sizes that range from 163 km to 231 km.
The output data of this model are projected to an atmospheric
grid with 2.5◦ longitude × 2.0◦ latitude resolution. This model
includes the same ocean and land model components as GFDL-
ESM2M. This model also employed various parametrization
schemes including aerosol physics, cloud physics, and schemes
for trace gas and ozone.

FIGURE 3 | Winter season sea level pressure biases with respect to the CFSR

dataset for the GCMs over the WRF model outer domain.

Using multi-millennial runs performed with the two GFDL
models, Paynter et al. (2018) show that GFDL-CM3 model has
a higher equilibrium climate sensitivity than GFDL-ESM2M.
Furthermore, Maloney et al. (2014) show that the GFDL-
CM3 model experiences more warming compared to other
models in the CMIP5 archive at the end of the twenty-first
century. Therefore, we expect the GFDL-CM3 forced RCM
experiments to be warmer than other members during the future
projection periods.

The fourth member of our ensemble is driven by the
Community Earth System Model version 1 (CESM1; Gent et al.,
2011), which has been used in previous studies from the Toronto
group. CESM1 is a fully coupled global climate model developed
by the National Center for Atmospheric Research (NCAR) and
contains submodels for all major components of the climate
system. The atmospheric component, called CAM4, (Neale et al.,
2013) operates on a latitude-longitude grid with resolution
1.26◦ × 0.9◦ and 26 vertical layers. The ocean component,
called the Parallel Ocean Program (POP) version 2 (Danabasoglu
et al., 2012), uses a displaced-dipole grid with 1◦ longitudinal
resolution, varying latitudinal resolution from 0.27◦ near the
equator to 0.54◦ near the pole and has 60 vertical level. The land
component, Community LandModel version 4 (CLM4 Lawrence
et al., 2012), runs on the same grid as the atmospheric component
and has 15 soil layers. The sea ice component is the Community
Ice Code version 4 (CICE Holland et al., 2012) that runs on the
ocean grid and simulates both dynamics and thermodynamics.

The CESM1 data used in this study (and in other studies from
this group) is from a local simulation performed with the model
and therefore there will be subtle differences between this data
and that on the CMIP5 archive. Peings et al. (2017) examined
internal variability in a large ensemble of 40 CESM1 simulations
and concluded that the model does not display significant
internal variability. Therefore, using a local CESM1 simulation
as forcing should not affect its reliability and the results can still
remain comparable to those obtained using CESM1 data from the
CMIP5 archive. Previous studies have thoroughly discussed the
behavior of CESM1 forced dynamical downscaling experiments
(d’Orgeville et al., 2014; Li et al., 2018; Peltier et al., 2018; Zobel
et al., 2018b) with most of the studies concluding that CESM1
forced climate results match observations closely. Henceforth,
to distinguish between the models whose data were directly
obtained from the CMIP5 archive and CESM1 for which we use
local data, we will use the phrase CMIP5 models to refer to the
collection of GFDL-CM3, GFDL-ESM2M and MIROC5, and the
term CMIP5 data as data for these three models. These terms will
not refer to the CESM1 GCM or data from that model.

The representation of lakes in the GCMs and their
performance deserve attention since we are interested in the
GLB region. All GCMs that we employ in this study contain a
lake submodel within the land component. However, given the
resolution of the GCMs (1◦ for CESM, T85 for MIROC5, and
2◦ for the GFDL models), the representation of lakes is very
coarse and they are often defined in terms of fractional units
of land grid cells. This leads to a poor representation of lake
extents and of land-lake contrast. As a result, those lake models
cannot represent lake effects in a manner that is achievable when
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using a high-resolution lake model within an RCM (Notaro et al.,
2013). Briley et al. (2021) analyzed how CMIP5 models simulate
the Great Lakes and concluded that representation to not be
very credible.

Each GCM is forced by historical greenhouse gas
concentrations for the historical period (pre-industrial to
2005) and by Representative Concentration Pathway 8.5
(RCP8.5) emissions scenario from year 2006 to year 2100.

2.3. RCM Model Configuration
The regional climate model employed for this study consists of
the Weather Research and Forecasting (WRF) model, version
V3.4.1, with the Advanced ResearchWRF (ARW) dynamical core
(Skamarock and Klemp, 2008), fully coupled to the Freshwater
Lake (FLake; Mironov, 2008) model. The FLake model is
configured with a 70 m false bottom as in d’Orgeville et al. (2014)
and Peltier et al. (2018). In these two studies, five different sets of
physics configurations were employed and discussed, and here
two of the sets, namely G and T (see Table 1 of Peltier et al.,
2018, for details of the two sets), will be used so that variations
in modeled result caused by differences in GCM forcing data
could be cross compared with variations caused by different

physics configuration sets. The T physics set use the WRF single-
moment 6-class microphysics (Hong and Lim, 2006) and the
Kain-Fritsch cumulus parameterization (Kain, 2004) schemes
while the G physics set uses the Morrison microphysics scheme
(Morrison et al., 2009) and the Grell-3 cumulus scheme (Grell
and Dévényi, 2002). Other configurations, which are common
to both sets, include the Noah land surface model (Chen and
Dudhia, 2001), the Rapid Radiative Transfer Model for General
CirculationModels (Iacono et al., 2008) radiation scheme and the
Mellor-Yamada-Nakanishi-Niino level-2.5 (Nakanishi andNiino,
2009) planetary boundary layer parameterization scheme.

The dynamical downscaling process follows the procedure
established in Gula and Peltier (2012), wherein forcing in the
from of large-scale GCM data is used as initial condition
and boundary condition for WRF. The boundary forcing data
includes 6-h temperature, wind, humidity and pressure, whereas
the initial conditions include land surface temperature, sea
surface temperature, sea ice cover and assorted variables required
for the initialization of the land component. A relaxation
zone is used to apply boundary forcing smoothly into the
WRF outer domain. Spectral nudging is also applied to the
pressure, wind, potential temperature and humidity fields in

FIGURE 4 | Mean winter season 2 m air temperature biases with respect to the NRCan dataset over the inner WRF domain for the GCMs (top row), WRF ensemble

members with G physics (middle row), and WRF ensemble members with T physics (bottom row). From left to right are experiments (GCM or GCM driven WRF)

associated with CESM1, GFDL-ESM2M, GFDL-CM3 and MIROC5 respectively. The Great Lakes basin is outlined in black.
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the outermost domain in all ensemble members in order to
preserve the large-scale circulation features of the GCMs. For
each ensemble member, we perform experiments for three
different time periods: historical (1979–1989), mid-twenty-first
century (2050–2060), and end-twenty-first century (2085–2100).
TheWRF simulations also employ the RCP8.5 emission scenario,
so the strength of anthropogenic forcing is kept the same as in
the GCMs. Lake data is not used to force WRF runs in this study,
so the WRF results presented here are not affected by the lake
representation in GCMs.

2.4. Validation Datasets
To validate simulations for the historical period, observational
and reanalysis datasets are employed. The Natural Resource
Canada (NRCan; McKenney et al., 2011) observational data
is used to provide ground truth for surface temperature,
precipitation, and incoming shortwave radiation. It should be
noted explicitly that the NRCan dataset does not have direct
measurements over the lakes, so surface temperatures over the
lakes are interpolated from nearby land stations and therefore
might deviate from true values. The Climate Forecast System
Reanalysis dataset (CFSR; Saha et al., 2010) is used to compare
surface pressure fields.

Throughout the paper, summer includes the months June,
July, and August while winter includes December, January and
February. Unless otherwise stated, model results presented are
averaged over all years in the respective time periods.

2.5. Methods and Data Used for Extreme
Heat Event Analysis
Before performing any analysis of extreme heat events, it is
necessary to fix a working definition for such extremes. Several
definitions have been proposed and used in the literature and
studies have found that the detected heat events are sensitive to
the choice of definition (Robinson, 2001; Perkins and Alexander,
2013). It has also been suggested that the definition of a heat event
should be customized to suit the climate of the region of interest.
For this study, this requires being cognizant of the lake effects
that would be accurately simulated by our setup which includes a
lake model. During summertime the lakes reduce the maximum
atmospheric temperature achievable by absorbing heat, resulting
in a cool zone around the lakes (Scott and Huff, 1996). This
cooling effect will dampen the tail end of the distribution of
extreme heat events extracted by percentile thresholds, so a static
threshold method is preferred. For this reason, we choose the
Environmental and Climate Change Canada’s definition of a heat

FIGURE 5 | Similar to Figure 4 but for the mean winter precipitation differences.
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wave as ‘a period with more than three consecutive days of
maximum temperatures at or above 32◦C/90◦F’ in this study.

At the same time, the lakes also serve as a source of moisture
during the summer season. Although the evaporation process
absorbs heat and moderates the temperature, the increase in
relative humidity itself increases the risk to the health of the
inhabitants of the region. Therefore, here we also use the Heat
Index (HI) method from NOAA/National Weather Service
(Anderson et al., 2013) which combines temperature and
relative humidity into a single index (Appendix A1). There are
several other widely used measures that also seek to combine
temperature and humidity, including Environmental and
Climate Change Canada’s Humidex, (https://www.canada.ca/en/
environment-climate-change/services/sky-watchers/glossary.
html) and the wet bulb globe temperature (Li et al., 2017).
Exploring their differences is beyond the scope of this study.

Calculating HI requires both temperature and relative
humidity which are provided on daily interval by WRF. Days
in each model year that experience extreme heat events are
determined using the HI definition above (similarly extreme
heat days are identified using temperature only when using the
temperature metric). The threshold values for the definition of

heat waves is kept the same in both the temperature and HI
methods, and for all time periods without any bias correction.
Original GCM output is not included in this analysis for two
reasons: firstly, as discussed above none of the GCMs include
a lake model that can suitably capture lake effect and secondly,
extreme heat event analysis with GCMs has already been covered
by other studies (e.g., Kharin et al., 2013; Sillmann et al., 2013a,b).

3. MEAN CLIMATE AND EXTREME HEAT
EVENT ANALYSIS FROM DYNAMICAL
DOWNSCALING

3.1. Simulation Results Over the Historical
Period
The winter average near surface temperature (T2) biases with
respect to the NRCan dataset (henceforth bias is defined as
model minus observation) over the outermost WRF domain are
presented for the selected GCM results and the GCM driven
downscaled results in Figure 1. It is readily apparent that the
downscaled experiments are producing results that are distinctly
different from the GCM data that is used as their forcing. This

FIGURE 6 | Mean summer season 2 m air temperature biases with respect to the NRCan dataset over the outer WRF domain for the GCMs (top row), WRF ensemble

members with G physics (middle row), and WRF ensemble members with T physics (bottom row). From left to right are experiments (GCM or GCM driven WRF)

associated with CESM1, GFDL-ESM2M, GFDL-CM3, and MIROC5, respectively.
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is particularly the case for WRF simulations forced with CMIP5
models, whereas WRF results forced with CESM1 show the
smallest (but still sizeable) differences with the GCM data. The
strongest biases in CESM1 are the warm bias over Alaska and
northeastern Canada and the cold bias over northern Canada.
These features are retained to varying degrees in the downscaled
experiments, with the G physics version greatly attenuating the
cold bias without effecting the warm bias and the T physics
version being successful in reducing the magnitude of both
biases. On the other hand, while the G physics version is able to
improve the performance by attenuating the moderate warm bias
throughout the interior of the continent, the T physics version
replaces that with a moderate cold bias.

The MIROC5 model does not have a strong bias over North
America, but the two GFDL models produce strong warm bias
over Canada, Alaska and northwestern US. In contrast, the WRF
results associated with these models all have a large cold bias
over the continent, up to 5◦ C in most regions and up to 10◦ C
in the coldest regions. The magnitude of this bias is larger than
the natural variability in the models for this region as previous
studies (d’Orgeville et al., 2014; Peltier et al., 2018) have shown
that the typical range of bias with physics or initial condition
ensemble is ∼ 4◦ C. This range is also applicable for other
regions such as western Canada (Erler and Peltier, 2017), India
(Huo and Peltier, 2019), andNorth America (Zobel et al., 2018b),

and is in general also true for other models (for a discussion of
variability in GCM results, see Deser et al., 2012, 2014; Peings
et al., 2017).

The source of this large cold bias in WRF results with CMIP5
models can be traced to the large-scale wind and pressure fields,
and the jet stream position. We begin with an examination of
the jet stream position first. The left panel of Figure 2 reveals
that in WRF there is a 10◦ difference in the position of the
jet stream between CESM1 forced and CMIP5 forced results.
This bias in jet stream position is inherited from CMIP5 forcing
data through the spectral nudging process. In order to give a
reasonable ground state as reference, the zonal wind from ERA-
Interim reanalysis data (Dee et al., 2011) is also plotted, and
the ERA-Interim results lie right between the northward biased
CESM1 and southward biased CMIP5 results. Since the position
of the sub-tropical jet stream marks the northern extent of the
Hadley Cell, a southward shift in the position of the jet stream
means that heat transport from the tropics by the Hadley cell
terminates further southward. This leaves the region north of
the jet stream under the influence of colder polar air from the
Arctic instead, which disrupts surface temperature fields in the
WRF. Furthermore, the largest cold bias in each of the CMIP5
forcedWRF results is centered in the range 40◦N to 50◦N, which
overlaps with the region where a shift in the jet stream position
would be most influential.

FIGURE 7 | Similar to Figure 6 but for the incoming shortwave radiation differences.
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The second cause for the bias in CMIP5 driven WRF
results is the surface pressure field. Figure 3 displays the bias
of winter season average mean sea level pressure over the
WRF outer domain. It is to be noted that the bias in the
pressure fields for each GCM differ considerably as a function
of increasing latitude: CESM1 varies from high to low, GFDL-
CM3 is low over land and high over the Arctic Ocean, and
both GFDL-ESM2M and MIROC5 vary from low to high. Since
air flows outwards from high-pressure region, a high pressure
bias over high latitude forces cold polar air southward thereby
causing surface temperatures to drop. As a result, downscaled
simulations forced by MIROC5 and GFDL-ESM2M have the
largest surface cold bias while GFDL-CM3 forced results have
a smaller cold bias and CESM forced results have almost no
cold bias.

As discussed in Scott and Huff (1996), the Great Lakes
moderate air temperature above them by absorbing heat
from air during spring-summer season, and releasing it
back during the fall-winter season. The release of heat
continues until lake surfaces are completely frozen and
thermal exchange between lake surface and the atmosphere
is blocked. These lake characteristics are confirmed by
previous work that employed RCMs coupled to lake models

(Gula and Peltier, 2012; Notaro et al., 2013; Mallard et al., 2014).
A closer look at winter average near surface temperature (T2)
biases over the WRF inner domain (Figure 4) reveals that the
cold biases over the lake surfaces and the surrounding regions is
smaller by ∼2◦ C than biases over other regions in both CESM
and CMIP5 members of the ensemble. This demonstrates that
the lake model employed in this study is effective at resolving
the temperature mitigating effects of the presence of the lakes
even when the region is dominated by a large cold bias. In
contrast, in GCM results regions over the lakes are colder than
their surroundings, which is contrary to what is expected. This
supports the findings of Briley et al. (2021) who found that
GCMs do not simulate lake effects accurately because they
do not contain a detailed lake model that explicitly resolves
land-atmosphere-lake coupling and the exchange of fluxes
between them. Figure 5 shows the precipitation bias over the
inner WRF domain for all ensemble members in winter, and
again the WRF results are able to better capture the spatial
distribution compared to their GCM counterparts. Although a
smaller bias still exists in regions around the lakes where the lake
effect matters, it is likely caused by the cold temperature bias
that freezes the lakes early and suppresses evaporation, thereby
reducing overall moisture source for those regions.

FIGURE 8 | Mean winter season precipitation biases with respect to the NRCan dataset over the outer WRF domain for the GCMs (top row), WRF ensemble

members with G physics (middle row), and WRF ensemble members with T physics (bottom row). From left to right are experiments (GCM or GCM driven WRF)

associated with CESM1, GFDL-ESM2M, GFDL-CM3, and MIROC5, respectively.
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FIGURE 9 | Same as Figure 8 but for summer precipitation biases.

The near surface temperature (T2) averaged over the summer
season for all ensemble members and their respective GCMs
are compared with the NRCan dataset over the outermost WRF
domain in Figure 6. There is a noticeable difference between
the G physics and T physics ensemble members; the latter are
warmer than the former by ∼2 ◦ C. In Figure 7 the bias in the
incoming shortwave radiation for all ensemble members during
the summer season is displayed, and it is immediately clear that
the primary discriminant in modeled results for this variable
is the choice of parameterization set. This difference in surface
incoming shortwave radiation is very likely caused by different
cloud cover fractions in the atmosphere, which is determined by
cumulus and microphysics schemes. These schemes affect cloud
cover and cloud reflectance, thereby modifying the planetary
albedo. The difference in incoming shortwave radiation also
explains why simulations using G physics have a colder surface
than those using T physics, which is consistent with earlier
results reported in d’Orgeville et al. (2014), and Peltier et al.
(2018) that different physics schemes lead to different bias in
WRF results. For more information on the impact of physics
schemes in atmospheric modelling, see Thompson et al. (2016)
who examined the impact of cloud physics and radiation
parametrization on WRF simulations, and also Fouquart et al.
(1990) for general information on the influence of clouds on
radiation in climate modelling.

In summer, the CESM1 driven WRF result is ∼2◦ C warmer
than CMIP5 driven results, which is caused by differences
in GCM forcing data. The jet streams are weaker and
meridional pressure gradients are flatter in summer, thus the
GCM caused cold bias is smaller in magnitude than in the
winter season. Meanwhile in Gula and Peltier (2012) a 2–
3◦ C temperature difference in the region around the lakes
is also reported due to the inclusion of the lake model,
which is of similar magnitude as biases from other causes
discussed herein. Therefore, lake effect is a first order influence
on the regional climate and we again confirm the findings
in Bates et al. (1993), Lofgren (1997), Notaro et al. (2013)
and Mallard et al. (2014) that including a proper lake model
is absolutely necessary to properly resolve climate around
the lakes.

Choice of physical parameterizations also has a strong
influence on the modeled precipitation. The precipitation bias
for the same collection of model results is presented in Figure 8

for the winter season and in Figure 9 for the summer season.
For both season the primary difference in spatial pattern is
between the group of WRF members using G physics and the
group using T physics, stronger in summer season as there is
little precipitation over winter, and little to no difference across
members driven by different GCMs. Related works (d’Orgeville
et al., 2014; Huo and Peltier, 2019) also revealed that different sets
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FIGURE 10 | Mean winter season 2 m air temperature anomaly for the 2050–2060 period with respect to the historical period over the outer WRF domain for the

GCMs (top row), WRF ensemble members with G physics (middle row), and WRF ensemble members with T physics (bottom row). From left to right are experiments

(GCM or GCM driven WRF) associated with CESM1, GFDL-ESM2M, GFDL-CM3, and MIROC5, respectively.

of physical parameterizations would create large differences in
the precipitation result. Note that none of theWRF results have a
spatial pattern that resembles the pattern of their respective GCM
forcing data, so precipitation data from GCMs is rewritten by the
RCMmodel over the regional domain. Results from (Zobel et al.,
2018a) also show that precipitation from RCMs are completely
different from GCMs that are used for forcing, indicating that
model settings used in the RCM exert a strong influence over
modeled precipitation.

3.2. Simulation Results Over Future
Projection Periods
Before presenting climate results for the two climate projection
periods discussed in section 2, several technical details need
to be stated here. First, all comparisons of CMIP5 ensemble
member for future projection period results have been performed
with respect to the historical results of each individual ensemble
member. Second, in order to preserve the model variability
signal, no bias correction has been applied before comparing
model results. Third, the two future projection periods (the mid-
century (2050–2060) and the end-century (2085–2100) periods)
have different time length, but results of the two periods will still

be presented in the form of averages over all years over each
time period.

According to conclusions in section 3.1, jet stream position
has the potential to inflict large temperature bias in the RCM
results. Therefore, changes in jet stream position during future
projection periods should be examined to determine their
contribution to projected climate changes. The right panel of
Figure 2 presents the zonally averaged zonal wind speed at
250 hPa vertical level for the CMIP5 ensemble members during
mid-twenty-first century projection period, and similar to the
left panel of Figure 2 the WRF data forced by CMIP5 GCMs
still have their jet stream centered around 30◦N latitude, while
CESM1 forced results position it at around 40◦N latitude. This
persistence in the bias of jet stream position indicates that the
base state of climate for each CMIP5 member of the ensemble
is likely unchanged during future projection periods, and the
difference in model results (both WRF and GCMs) are more
related to the change in GHG concentration toward the end of
twenty-first Century.

Changes in the near surface temperature (T2) field between
the mid-twenty-first century projection period and historical
period are presented in Figure 10 for the winter season and
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FIGURE 11 | Same as Figure 10 but for the summer season temperature anomalies.

Figure 11 for summer season. The most important information
that follows from these figures is that all of the WRF results,
whether obtained using G or T physics, have a surface
temperature change signal that closely mimics the strength of the
signal in their respective GCM forcing data, regardless of season.
Results for the end-twenty-first century period also have WRF
regional T2 warming bias closely follow the T2 warming bias in
their respective GCM forcing data and are mostly independent
of the physics parametrization schemes employed. This closeness
in the climate change temperature signal is very interesting given
the large difference in the climate base state in both winter and
summer season presented in section 3.1, indicating that given a
forcing scenario including GHG forcing from emission pathway,
general circulation patterns from GCM forcing data, WRF is able
to recreate the same amount of surface warming in the GCM
forcing data. The amount of climate sensitivity in the GCM is
also preserved, as Paynter et al. (2018) has described the high
climate sensitivity of the GFDL-CM3model, and theWRF results
forced by GFDL-CM3 data have the same high climate sensitivity
in both winter and summer season. This closeness observed
between WRF and GCM results shows that the climate change
temperature signal is reasonably well captured by the GCMs
with respect to their individual climate base state. Therefore,

this study affirms that warming forecasts in the GCM model are
reliable, and support works on future warming analysis using
GCM results such as Kharin et al. (2013) and Maloney et al.
(2014). On the other hand, the independence of this closeness
from the physics parametrization used means that variability in
the choice of cumulus and microphysics schemes within the 2
sets employed in this study will not dominate the temperature
forecast results.

Another important potential implication of this closeness
concerns the creation of climate projection forecasts for
temperature using bias correction techniques: for the WRF
settings used in this study, climate change signal for temperature
is well captured at the GCM level, and the bias in the climate
forecast result would be primarily in the base climate state.
Therefore, bias correcting the GCM base climate state would
be sufficient in providing reasonable climate predictions for
future periods, at least for similar WRF settings. Other studies
have employed bias correction as part of their scheme to
forecast future climate (Byun and Hamlet, 2018; Zobel et al.,
2018b) and it would be interesting to study future climate
projection signals for the CMIP5 ensemble after bias correction.
However, this is beyond the scope of this study and left for
future works.
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FIGURE 12 | Mean summer season relative change in precipitation for the 2050–2060 period with respect to the historical period over the outer WRF domain for the

GCMs (top row), WRF ensemble members with G physics (middle row), and WRF ensemble members with T physics (bottom row). From left to right are experiments

(GCM or GCM driven WRF) associated with CESM1, GFDL-ESM2M, GFDL-CM3 and MIROC5 respectively.

Justifying the reliability of GCM predictions in surface
temperature warming does not undermine the scientific values of
dynamical downscaling experiments, as dynamical downscaling
remains capable of improving other variable fields. Precipitation,
for example, is strongly dependent on resolution and local
processes, and having increased resolution in the climate model
will almost certainly improve the quality of precipitation results
(Notaro et al., 2013; d’Orgeville et al., 2014; Zobel et al., 2018a).
The mid-twenty-first century projection of precipitation changes
for the CMIP5 ensemble is showed in Figure 12, where along
with similarity between GCM and RCM results, a noticeable
difference between results using G or T physics is observed.
This means cumulus and microphysics scheme still have their
role in refining local precipitation projections. The dependence
on physics parametrizations is probably stronger if the outlier
physics set ‘g’ described in Peltier et al. (2018) with Morricon
microphysics scheme (Morrison et al., 2009), Grell-3 cumulus
scheme (Grell and Dévényi, 2002) and Noah MP land surface
scheme (Niu et al., 2011) is employed in this study. Details
of the physics set dependence on precipitation distributions
and precipitation extremes in WRF results over the regional
domain of this study are discussed in details in d’Orgeville et al.

(2014) and Peltier et al. (2018), so it will not be repeated in
this study.

Overall, the results of CMIP5 ensemble over future projection
periods may be summarized as follows: despite the large
difference between WRF and GCM data in the historical
period, the climate change signal in surface temperature for the
WRF results is closely following the signal in their respective
GCM forcing data when comparing to their counterparts in
the historical period. Switching between G and T physics
parameterizations does not change this closeness in temperature
but does affect local change in precipitation projections. These
future projection period climate data, along with historical data
presented in 3.1, will serve as a reliable database for the extreme
heat analysis below.

3.3. Extreme Heat Event Analysis Over the
Great Lakes Region Based on the CMIP5
Ensemble Data
On the basis of results from section 3.1, summer season surface
temperature between groupmembers differs inmagnitude of bias
but not in spatial pattern. Therefore, most of our analysis on
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FIGURE 13 | Extreme heat event analysis for simulation with CESM forcing and T physics. The three rows display annually averaged number of extreme heat days per

year computed using surface temperature, average summer surface relative humidity, and average number of extreme heat days per year computed using the HI. The

three columns represent the historical, mid-twenty-first century and end-twenty-first century time periods. Color bar at the bottom represents the scale used for

extreme heat days for each column respectively. Note that the scale of colorbars for heat event days differs between the time periods.

extreme heat will use a representative ensemble member and we
will call upon the full ensemble for only selected analysis. We
repeat here for the reader that the definition of a heat wave in
this study is “a period with more than three consecutive days of
maximum temperatures at or above 32◦C/90◦F” (section 2.5).
Daily data from WRF are used to compute days that have heat
wave with temperature and HI metrics and with the same static
threshold for all time periods. The wide range of climate covered
by our ensemble enables us to explore the change of extreme
events around a variety of climate states, and a range of biases.
Therefore, no bias correction is applied to the model results
before performing this analysis. A direct consequence of this is
the preservation of cold biases in the historical results (Figure 6),
and therefore we do not expect our extreme heat analysis to
match observational records over the historical period.

For our representative ensemble member, we select the
simulation with CESM1 forcing and T physics. The first row in

Figure 13 compares the number of extreme heat days (computed
with surface temperature data and averaged over years within
each time period) over the WRF inner domain, between the
historical, mid-twenty-first century and end-twenty-first century
periods from left to right. During the historical period, extreme
heat events are largely confined to the southernmost part of
the domain, but they progressively expand to influence most of
the land area as the climate change signal strengthens by the
end of the century. The number of extreme heat days per year
averaged over the GLB (excluding lake surface) increases from
0.5 days during the historical period to 5.7 days during the mid-
twenty-first century period to 13.6 days during the end-twenty-
first century period. The entire Great Lakes region is largely
free from extreme heat events in the historical period, but the
number of extreme heat days increases to ∼30 days per year
south of the lakes and ∼5 days per year north of the lakes by the
end of the century. The middle row of the figure shows surface
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FIGURE 14 | Zonally averaged number of extreme heat days over the central part of the domain (95− 75W◦,41− 56N◦) for all end-century ensemble members.

Water surfaces are excluded when taking average.

relative humidity averaged over the summer season, and which
remains moderately high over the domain with little change
between the different time periods.When the contribution of this
humidity to extreme heat is included through the HI, the region
that experiences extreme heat events increases considerably, as
displayed in the bottom row of the figure. HI derived number of
extreme heat days per year averaged over the GLB also increases
to 4.5 days during historical period, 20.9 days duringmid-twenty-
first century period, and to 42.3 days in end-twenty-first century
period. During the historical period, regions south of the Great
Lakes experience ∼20 extreme heat days per year while such
events remain extremely rare north of the Great Lakes. Toward
the end of the century, the number of extreme heat days increases
to 60–80 days south of the lakes and∼30 days north of the lakes.

Spatially, it is very clear that the occurrence of extreme heat
over the lake surfaces is lower than the surroundings. This is
not surprising because the heat capacity of water is much higher
than that of the surrounding landscape. Furthermore, when
temperature is used as the metric, the number of extreme heat
days is significantly lower in regions east of Lake Superior and
northeast of Lake Huron compared to other regions at the same
latitude.WhenHI is used the same spatial pattern is obtained, but
with reduced magnitude. This is likely due to lake effect: when
extremely hot air coming from the south passes over the lakes,
both heat conduction and evaporation of lake water extracts
sensible heat from that air mass, resulting in cooler air in the
downwind region which reduces both temperature andHI. At the
same time, the increase in the humidity of the air as it passes over
the lakes leads to an increase in the HI. Thus employing the HI

accounts for competing influences of lakes, through temperature
and moisture, on the likelihood of heat events. The extent of the
region with low extreme heat activity is larger than that described
by Scott and Huff (1996), and the reasons for this difference will
warrant a future study. In our results the differences between
the analysis produced using temperature and using the HI is
clear and similar for all ensemble members (not shown), and this
difference reflects the importance of including moist effects in
calculating extreme heat risks in a moist environment.

Influence of lake effects is also visible when the number of
extreme heat days over land is zonally averaged, excluding lakes
(Figure 14). Regardless of the metric used to determine the
occurrence of extreme heat days, the zonally averaged number
of heat days decreases as a function of latitude, and which is
clearly due to the latitudinal decrease of temperature. However, at
the latitudes of Lake Superior (47–49N◦), there is a conspicuous
drop in the number of days, punctuating the trend of a smooth
decrease with latitude. This drop is clearly due to the temperature
mitigating effect of the lakes that matches the region with
low extreme heat activity described just above. Since part of
the mitigation of extreme heat events is associated with the
conversion of heat to humidity, the drop is smaller in the HI
calculated results that capture moisture effect as part of extreme
heat risk. Results over all time periods have this latitudinal drop,
while end-twenty-first century result with the clearest signal is
presented in Figure 14.

The dependence of extreme heat activity on the mean climate
state is illustrated in Figure 15 where results from all ensemble
members is used. Each data point on this figure represents the
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FIGURE 15 | Log plot of annually and spatially averaged number of extreme

heat days vs. average summer surface temperature, for all members of the

ensemble and all time periods. Dots and crosses represent ensemble

members with different physical parameters, red color represent results

calculated using temperature, with blue color represents results calculated

using the HI. The black line marks reference value of 0.2.

GLB averaged surface temperature and number of extreme heat
days (on a log scale), based upon either temperature or HI, for
one ensemble member at one time period. From this figure it
is noted first that the number of extreme heat days increase
with increasing temperature, which is obvious since the method
employed is static. With a rise in temperature, increasing extreme
heat events is predicted by almost all studies that discuss extreme
event frequency under climate change (see IPCC, 2013b, for a
nice summary), regardless of the method of analysis employed.
Secondly, when using the temperature metric for extreme, for
average temperatures above 18◦ C (16◦ C when HI is used), the
simulated number of extreme heat days scales roughly linear with
respect to average temperature on the log plot, which implies an
exponential growth in the number of heat days with temperature.
This nonlinear increase of extreme heat days in the coming years
deserves attention from policy makers to better understand the
associated health risk.

Another point worth noting from Figure 15 is that the
exponential dependence of the number of extreme heat days on
temperature starts a few degrees earlier using the HImethod than
temperature. This difference represents the effect of humidity in
enhancing the severity of a heat wave event, which is important
for a moisture rich region such as the GLB. This signal implies
that for regions that have an abundant supply of moisture,
increase in extreme heat events will commence earlier than
predicted using only temperature as a metric. Future studies
focusing on related fields should invest some attention on this
moisture effect, to ensure the full risk of extreme heat event
is captured.

4. SUMMARY AND DISCUSSION

An ensemble of WRF-based dynamically downscaled
experiments for climate change projections over the Great
Lakes Basin (GLB) has been completed using forcing data

from four GCMs. Previous studies using the same dynamical
downscaling process (d’Orgeville et al., 2014; Peltier et al.,
2018) were focused on validating the experiment setup and
model reliability and therefore their physics ensemble was
driven only by simulations performed with the CESM1
global model. Here, we use multiple data from several GCMs
available in the CMIP5 archive, along with data from our
own simulations with CESM1 as forcing for the regional
model in order to cover a wide range of possible climate
states and to validate the quality of CMIP5 forced WRF
results. We also perform analysis of extreme heat events
with this ensemble to explore the evolution of such events
around the GLB under increasing GHG toward the end of the
twenty-first century.

The bias in our ensemble is governed by GCM forcing,
WRF physics scheme selection, and inclusion of the lake model.
Temperature bias is dominated by large scale effects in the winter
season while in summer all sources of biases have first order
impact. Precipitation bias in our ensemble is mostly influenced
by the cumulus and microphysics schemes used in WRF, and
the FLake lake model resolves lake effects effectively around the
Great Lakes. However, sources of bias in WRF are not limited
to just these factors, as Zobel et al. (2018b) have shown that
spectral nudging is capable of generating large differences in
WRF results, and Zagar et al. (2013) have shown that there can
be uncertainty in WRF results associated with domain size and
nesting. Despite large difference between GCM and RCM results
in the historical period, the magnitude of climate warming signal
is found to be the same between the downscaled simulations
and their associated GCMs. This similarity is independent
from the physics parametrization employed, indicating that this
signal is primarily determined by the large scale circulation
features resolved in GCMs, and well captured over the RCM
domain by the dynamical downscaling process. Meanwhile,
projected changes in local precipitation are still influenced
by the physics parametrizations employed, which agrees with
findings in previous studies (d’Orgeville et al., 2014; Peltier et al.,
2018).

The wide spread of possible climate states in this expanded
ensemble provides an excellent basis on which to perform
extreme heat event analysis. This analysis reveals a steady
increase of extreme heat days with respect to increasing
GHG forcing toward the end of the twenty-first century.
This increase of extreme heat days with temperature during
the projection periods is not surprising, as it would emerge
naturally from the definition of extreme heat events used
in this study. Meanwhile, our analysis shows that the rate
of growth of extreme heat days as a function of surface
temperature is independent of physics parametrization and
GCM forcing, suggesting that our conclusions for the increase
in heat waves toward the end of the century is robust. The
extreme heat analysis takes further advantage of the fact that
WRF is coupled to a proper lake model (FLake) which helps
us simulate the impact of lake effect on the frequency of
heat waves in the surrounding regions. A key outcome is
the reduction in the number of extreme heat days in the
downwind region of the lakes as the lakes absorb heat from
the atmosphere.
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Along with high temperature, high moisture content in the
atmosphere also increases the severity of extreme heat events.
The Great Lakes region includes a significant source of moisture,
the effect of which on the occurrence of extreme heat events is
captured with the HI method for detecting the occurrence of
such events. With this method it is shown that the presence of
moisture will trigger the onset of extreme heat events in the GLB
region at a lower temperature threshold, and that the effect of lake
induced sensible cooling in regions downwind of the lakes is also
reduced as a result of the conversion of sensible heat to humidity.
Since humans are vulnerable to both high temperature and high
humidity environments, decision makers should be fully aware
of the consequence of high moisture in the Great Lakes region,
especially when evaporation from lake surfaces converts high
temperature to high relative humidity, leaving a change in the net
heat effect that is smaller than that which would be expected from
the reduction of air temperature.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

FX, AE, and WP contributed to the conception and design of
this study. FX, AE, and DC contributed to the software, data
analysis and visualization of this study. All authors contributed
to discussing the result and preparing the submitted version of
the article.

FUNDING

Support for FX has been provided by NSERC Discovery Grant
A9627 to WP.

ACKNOWLEDGMENTS

The simulations presented in this manuscript were performed
on the SciNet High Performance Computing facility at the
University of Toronto, which is a component of the Compute
Canada HPC platform. The authors would like to thank Frédéric
Laliberté for providing support with using the cdb_query
software that processes CMIP5 data.

REFERENCES

Anderson, G. B., Bell, M. L., and Peng, R. D. (2013). Methods to calculate the heat

index as an exposure metric in environmental health research. Environ. Health

Perspect. 121, 1111–1119. doi: 10.1289/ehp.1206273

Bates, G. T., Giorgi, F., and Hostetler, S. W. (1993). Toward the simulation of

the effects of the great lakes on regional climate. Mon. Weather Rev. 121,

1373–1387. doi: 10.1175/1520-0493(1993)121<1373:TTSOTE>2.0.CO;2

Briley, L. J., Rood, R. B., and Notaro, M. (2021). Large lakes in climate models: a

great lakes case study on the usability of cmip5. J. Great Lakes Res. 47, 405–418.

doi: 10.1016/j.jglr.2021.01.010

Byun, K., and Hamlet, A. F. (2018). Projected changes in future climate over the

midwest and great lakes region using downscaled cmip5 ensembles. Int. J.

Climatol. 38, e531–e553. doi: 10.1002/joc.5388

Chen, F., and Dudhia, J. (2001). Coupling an advanced land surface-hydrology

model with the penn state-ncar mm5 modeling system. part i: Model

implementation and sensitivity.Mon.Weather Rev. 129, 569–585. doi: 10.1175/

1520-0493(2001)129<0569:CAALSH>2.0.CO;2

Cheng, G. H., Huang, G. H., Dong, C., Zhu, J. X., Zhou, X., and Yao, Y. (2017). An

evaluation of cmip5 gcm simulations over the athabasca river basin, canada.

River Res. Appl. 33, 823–843. doi: 10.1002/rra.3136

Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C. S.,

Carton, J. A., et al. (2006). The community climate system model version 3

(ccsm3). J. Clim. 19, 2122–2143. doi: 10.1175/JCLI3761.1

Danabasoglu, G., Bates, S. C., Briegleb, B. P., Jayne, S. R., Jochum, M., Large,

W. G., et al. (2012). The ccsm4 ocean component. J. Clim. 25, 1361–1389.

doi: 10.1175/JCLI-D-11-00091.1

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al.

(2011). The era-interim reanalysis: configuration and performance of the data

assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597. doi: 10.1002/qj.828

Deser, C., Phillips, A., Bourdette, V., and Teng, H. (2012). Uncertainty in climate

change projections: the role of internal variability. Climate Dyn. 38, 527–546.

doi: 10.1007/s00382-010-0977-x

Deser, C., Phillips, A. S., Alexander, M. A., and Smoliak, B. V. (2014). Projecting

north american climate over the next 50 years: uncertainty due to internal

variability. J. Clim. 27, 2271–2296. doi: 10.1175/JCLI-D-13-00451.1

Donner, L. J., Wyman, B. L., Hemler, R. S., Horowitz, L. W., Ming, Y., Zhao,

M., et al. (2011). The dynamical core, physical parameterizations, and basic

simulation characteristics of the atmospheric component am3 of the gfdl global

coupled model cm3. J. Clim. 24, 3484–3519. doi: 10.1175/2011JCLI3955.1

d’Orgeville, M., Peltier, W. R., Erler, A. R., and Gula, J. (2014). Climate change

impacts on great lakes basin precipitation extremes. J. Geophys. Res. Atmos. 119,

10799–10812 doi: 10.1002/2014JD021855

Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R. W., Shevliakova,

E., et al. (2012). Gfdl’s esm2 global coupled climate-carbon earth systemmodels.

part i: physical formulation and baseline simulation characteristics. J. Clim. 25,

6646–6665. doi: 10.1175/JCLI-D-11-00560.1

Dunne, J. P., John, J. G., Shevliakova, E., Stouffer, R. J., Krasting, J. P., Malyshev,

S. L., et al. (2013). GFDL’s ESM2 global coupled climate?carbon earth

system models. part ii: carbon system formulation and baseline simulation

characteristics. J. Clim. 26, 2247–2267. doi: 10.1175/JCLI-D-12-00150.1

Erler, A. R. (2015). High Resolution Hydro-climatological Projections for Western

Canada (Ph.D. thesis). University of Toronto.

Erler, A. R., and Peltier, W. R. (2016). Projected changes in precipitation extremes

for western canada based on high-resolution regional climate simulations. J.

Clim. 29, 8841–8863. doi: 10.1175/JCLI-D-15-0530.1

Erler, A. R., and Peltier, W. R. (2017). Projected hydroclimatic changes in

two major river basins at the canadian west coast based on high-resolution

regional climate simulations. J. Clim. 30, 8081–8105. doi: 10.1175/JCLI-D-16-

0870.1

Erler, A. R., Peltier, W. R., and D’Orgeville, M. (2015). Dynamically downscaled

high-resolution hydroclimate projections for western canada. J. Clim. 28,

423–450. doi: 10.1175/JCLI-D-14-00174.1

Fouquart, Y., Buriez, J. C., Herman, M., and Kandel, R. S. (1990). The influence of

clouds on radiation: A climate-modeling perspective. Reviews of Geophysics, 28,

145–166. doi: 10.1029/RG028i002p00145

Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne,

S. R., et al. (2011). The community climate system model version 4. J. Clim. 24,

4973–4991. doi: 10.1175/2011JCLI4083.1

Grell, G. A., and Dévényi, D. (2002). A generalized approach to parameterizing

convection combining ensemble and data assimilation techniques. Geophys.

Res. Lett. 29, 38-1–38-4. doi: 10.1029/2002GL015311

Griffies, S. M., Winton, M., Donner, L. J., Horowitz, L. W., Downes, S.

M., Farneti, R., et al. (2011). The gfdl cm3 coupled climate model:

Characteristics of the ocean and sea ice simulations. J. Clim. 24, 3520–3544.

doi: 10.1175/2011JCLI3964.1

Frontiers in Water | www.frontiersin.org 18 December 2021 | Volume 3 | Article 782265

https://doi.org/10.1289/ehp.1206273
https://doi.org/10.1175/1520-0493(1993)121<1373:TTSOTE>2.0.CO;2
https://doi.org/10.1016/j.jglr.2021.01.010
https://doi.org/10.1002/joc.5388
https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
https://doi.org/10.1002/rra.3136
https://doi.org/10.1175/JCLI3761.1
https://doi.org/10.1175/JCLI-D-11-00091.1
https://doi.org/10.1002/qj.828
https://doi.org/10.1007/s00382-010-0977-x
https://doi.org/10.1175/JCLI-D-13-00451.1
https://doi.org/10.1175/2011JCLI3955.1
https://doi.org/10.1002/2014JD021855
https://doi.org/10.1175/JCLI-D-11-00560.1
https://doi.org/10.1175/JCLI-D-12-00150.1
https://doi.org/10.1175/JCLI-D-15-0530.1
https://doi.org/10.1175/JCLI-D-16-0870.1
https://doi.org/10.1175/JCLI-D-14-00174.1
https://doi.org/10.1029/RG028i002p00145
https://doi.org/10.1175/2011JCLI4083.1
https://doi.org/10.1029/2002GL015311
https://doi.org/10.1175/2011JCLI3964.1
https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Xie et al. GLB Heat Waves

Gula, J., and Peltier, W. R. (2012). Dynamical downscaling over the great lakes

basin of north america using the wrf regional climate model: the impact of the

great lakes system on regional greenhouse warming. J. Clim. 25, 7723–7742.

doi: 10.1175/JCLI-D-11-00388.1

Holland, M. M., Bailey, D. A., Briegleb, B. P., Light, B., and Hunke, E.

(2012). Improved sea ice shortwave radiation physics in ccsm4: The impact

of melt ponds and aerosols on arctic sea ice. J. Clim. 25, 1413–1430.

doi: 10.1175/JCLI-D-11-00078.1

Hong, S.-Y., and Lim, J.-O. J. (2006). The WRF single-moment 6-class

microphysics scheme (WSM6). J. Korean Meteor. Soc, 42, 129–151.

Huo, Y., and Peltier, W. R. (2019). Dynamically downscaled climate simulations

of the indian monsoon in the instrumental era: physics parameterization

impacts and precipitation extremes. J. Appl. Meteorol. Climatol. 58, 831–852.

doi: 10.1175/JAMC-D-18-0226.1

Huo, Y., Peltier, W. R., and Chandan, D. (2021). Mid-holocene monsoons in south

and southeast asia: dynamically downscaled simulations and the influence of

the green sahara. Clim. Past 17, 1645–1664. doi: 10.5194/cp-17-1645-2021

Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A.,

and Collins, W. D. (2008). Radiative forcing by long-lived greenhouse gases:

calculations with the aer radiative transfer models. J. Geophys. Res. Atmos.

113:D13103. doi: 10.1029/2008JD009944

IPCC (2013a). The Fifth Assessment Report (AR5) of the United Nations

Intergovernmental Panel on Climate Change (IPCC), Climate Change 2013: The

Physical Science Basis, IPCC WGI AR5, Chapter 14. Cambridge; New York,

NY: Cambridge University Press; Climate Phenomena and their Relevance for

Future Regional Climate Change.

IPCC (2013b). The Fifth Assessment Report (AR5) of the United Nations

Intergovernmental Panel on Climate Change (IPCC), Climate Change 2013: The

Physical Science Basis, IPCCWGI AR5, Chapter 9. Cambridge University Press;

Evaluation of Climate Models.

Jeong, D. I., Sushama, L., Diro, G. T., Khaliq, M. N., Beltrami, H., and

Caya, D. (2016). Projected changes to high temperature events for canada

based on a regional climate model ensemble. Clim. Dyn. 46, 3163–3180.

doi: 10.1007/s00382-015-2759-y

Kain, J. S. (2004). The kain?fritsch convective parameterization: An update. J. Appl.

Meteorol. 43, 170–181. doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.

CO;2

Kharin, V. V., Zwiers, F. W., Zhang, X., and Wehner, M. (2013). Changes in

temperature and precipitation extremes in the cmip5 ensemble. Clim. Change

119, 345–357. doi: 10.1007/s10584-013-0705-8

Kug, J.-S., Jeong, J.-H., Jang, Y.-S., Kim, B.-M., Folland, C. K., Min, S.-K., et al.

(2015). Two distinct influences of arctic warming on cold winters over north

america and east asia. Nat. Geosci. 8, 759–762. doi: 10.1038/ngeo2517

Kumar, S., Kinter, J., Dirmeyer, P. A., Pan, Z., and Adams, J. (2013). Multidecadal

climate variability and the “warming hole” in north america: results from cmip5

twentieth- and twenty-first-century climate simulations. J. Clim. 26, 3511–3527.

doi: 10.1175/JCLI-D-12-00535.1

Lawrence, D. M., Oleson, K. W., Flanner, M. G., Fletcher, C. G., Lawrence,

P. J., Levis, S., et al. (2012). The ccsm4 land simulation, 1850–2005:

assessment of surface climate and new capabilities. J. Clim. 25, 2240–2260.

doi: 10.1175/JCLI-D-11-00103.1

Li, C., Zhang, X., Zwiers, F., Fang, Y., and Michalak, A. M. (2017). Recent very

hot summers in northern hemispheric land areas measured by wet bulb globe

temperature will be the norm within 20 years. Earths Future 5, 1203–1216.

doi: 10.1002/2017EF000639

Li, K., Zhang, J., and Wu, L. (2018). Assessment of soil moisture-temperature

feedbacks with the ccsm-wrf model system over east asia. J. Geophys. Res.

Atmos. 123, 6822–6839. doi: 10.1029/2017JD028202

Lofgren, B. M. (1997). Simulated effects of idealized laurentian great lakes

onregional and large-scale climate. J. Clim. 10, 2847–2858. doi: 10.1175/1520-

0442(1997)010<2847:SEOILG>2.0.CO;2

Mallard, M. S., Nolte, C. G., Bullock, O. R., Spero, T. L., and Gula, J. (2014). Using a

coupled lakemodel with wrf for dynamical downscaling. J. Geophys. Res. Atmos.

119, 7193–7208. doi: 10.1002/2014JD021785

Maloney, E. D., Camargo, S. J., Chang, E., Colle, B., Fu, R., Geil, K.

L., et al. (2014). North american climate in cmip5 experiments: Part

iii: assessment of twenty-first-century projections. J. Clim. 27, 2230–2270.

doi: 10.1175/JCLI-D-13-00273.1

McKenney, D. W., Hutchinson, M. F., Papadopol, P., Lawrence, K.,

Pedlar, J., Campbell, K., et al. (2011). Customized spatial climate

models for north america. Bull. Am. Meteorol. Soc. 92, 1611–1622.

doi: 10.1175/2011BAMS3132.1

Meehl, G. A., and Tebaldi, C. (2004). More intense, more frequent, and

longer lasting heat waves in the 21st century. Science 305, 994–997.

doi: 10.1126/science.1098704

Mironov, D. V. (2008). Parameterization of lakes in numerical weather prediction.

description of a lake model. Technical report, Deutscher Wetterdienst,

Offenbach amMain, Germany.

Morrison, H., Thompson, G., and Tatarskii, V. (2009). Impact of cloud

microphysics on the development of trailing stratiform precipitation in a

simulated squall line: comparison of one- and two-moment schemes. Mon.

Weather Rev. 137, 991–1007. doi: 10.1175/2008MWR2556.1

Nakanishi, M., and Niino, H. (2009). Development of an improved turbulence

closure model for the atmospheric boundary layer. J. Meteor. Soc. Jpn 87,

895–912. doi: 10.2151/jmsj.87.895

Neale, R. B., Richter, J., Park, S., Lauritzen, P. H., Vavrus, S. J., Rasch, P.

J., et al. (2013). The mean climate of the community atmosphere model

(cam4) in forced sst and fully coupled experiments. J. Clim. 26, 5150–5168.

doi: 10.1175/JCLI-D-12-00236.1

Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., et al.

(2011). The community noah land surface model with multiparameterization

options (noah-mp): 1. model description and evaluation with local-scale

measurements. J. Geophys. Res. Atmos. 116:D12. doi: 10.1029/2010JD015139

Notaro, M., Bennington, V., and Lofgren, B. (2015a). Dynamical

downscaling?based projections of great lakes water levels. J. Clim. 28,

9721–9745. doi: 10.1175/JCLI-D-14-00847.1

Notaro, M., Bennington, V., and Vavrus, S. (2015b). Dynamically downscaled

projections of lake-effect snow in the great lakes basin. J. Clim. 28, 1661–1684.

doi: 10.1175/JCLI-D-14-00467.1

Notaro, M., Holman, K., Zarrin, A., Fluck, E., Vavrus, S., and Bennington, V.

(2013). Influence of the laurentian great lakes on regional climate. J. Clim. 26,

789–804. doi: 10.1175/JCLI-D-12-00140.1

Notaro, M., Zhong, Y., Xue, P., Peters-Lidard, C., Cruz, C., Kemp, E., et al. (2021).

Cold season performance of the nu-wrf regional climate model in the great

lakes region. J. Hydrometeorol. 22, 2423–2454. doi: 10.1175/JHM-D-21-0025.1

O’Reilly, C. M., Sharma, S., Gray, D. K., Hampton, S. E., Read, J. S., Rowley, R. J.,

et al. (2015). Rapid and highly variable warming of lake surface waters around

the globe. Geophys. Res. Lett. 42, 10773–10781. doi: 10.1002/2015GL066235

Paynter, D., Frölicher, T. L., Horowitz, L. W., and Silvers, L. G. (2018). Equilibrium

climate sensitivity obtained from multimillennial runs of two gfdl climate

models. J. Geophys. Res. Atmos. 123, 1921–1941. doi: 10.1002/2017JD027885

Peings, Y., Cattiaux, J., Vavrus, S., and Magnusdottir, G. (2017). Late twenty-first-

century changes in the midlatitude atmospheric circulation in the cesm large

ensemble. J. Clim. 30, 5943–5960. doi: 10.1175/JCLI-D-16-0340.1

Peltier, W. R., d’Orgeville, M., Erler, A. R., and Xie, F. (2018). Uncertainty in

future summer precipitation in the laurentian great lakes basin: dynamical

downscaling and the influence of continental-scale processes on regional

climate change. J. Clim. 31, 2651–2673. doi: 10.1175/JCLI-D-17-0416.1

Perkins, S. E., and Alexander, L. V. (2013). On the measurement of heat waves. J.

Clim. 26, 4500–4517. doi: 10.1175/JCLI-D-12-00383.1

Peterson, T. C., Zhang, X., Brunet-India, M., and Vázquez-Aguirre, J. L. (2008).

Changes in north american extremes derived from daily weather data. J.

Geophys. Res. Atmos. 113:D7. doi: 10.1029/2007JD009453

Philip, S. Y., Kew, S. F., van Oldenborgh, G. J., Yang, W., Vecchi, G. A., Anslow, F.

S., et al. (2021). Rapid attribution analysis of the extraordinary heatwave on the

pacific coast of the us and canada june 2021. Technical report.

Robinson, P. J. (2001). On the definition of a heat wave. J. Appl. Meteorol. 40,

762–775. doi: 10.1175/1520-0450(2001)040<0762:OTDOAH>2.0.CO;2

Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., et al. (2010). The

ncep climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 91, 1015–1058.

doi: 10.1175/2010BAMS3001.1

Scott, R. W., and Huff, F. A. (1996). Impacts of the great lakes

on regional climate conditions. J. Great Lakes Res. 22, 845–863.

doi: 10.1016/S0380-1330(96)71006-7

Sheffield, J., Barrett, A. P., Colle, B., Fernando, D. N., Fu, R., Geil, K. L., et al.

(2013a). North american climate in cmip5 experiments. part i: evaluation of

Frontiers in Water | www.frontiersin.org 19 December 2021 | Volume 3 | Article 782265

https://doi.org/10.1175/JCLI-D-11-00388.1
https://doi.org/10.1175/JCLI-D-11-00078.1
https://doi.org/10.1175/JAMC-D-18-0226.1
https://doi.org/10.5194/cp-17-1645-2021
https://doi.org/10.1029/2008JD009944
https://doi.org/10.1007/s00382-015-2759-y
https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
https://doi.org/10.1007/s10584-013-0705-8
https://doi.org/10.1038/ngeo2517
https://doi.org/10.1175/JCLI-D-12-00535.1
https://doi.org/10.1175/JCLI-D-11-00103.1
https://doi.org/10.1002/2017EF000639
https://doi.org/10.1029/2017JD028202
https://doi.org/10.1175/1520-0442(1997)010<2847:SEOILG>2.0.CO;2
https://doi.org/10.1002/2014JD021785
https://doi.org/10.1175/JCLI-D-13-00273.1
https://doi.org/10.1175/2011BAMS3132.1
https://doi.org/10.1126/science.1098704
https://doi.org/10.1175/2008MWR2556.1
https://doi.org/10.2151/jmsj.87.895
https://doi.org/10.1175/JCLI-D-12-00236.1
https://doi.org/10.1029/2010JD015139
https://doi.org/10.1175/JCLI-D-14-00847.1
https://doi.org/10.1175/JCLI-D-14-00467.1
https://doi.org/10.1175/JCLI-D-12-00140.1
https://doi.org/10.1175/JHM-D-21-0025.1
https://doi.org/10.1002/2015GL066235
https://doi.org/10.1002/2017JD027885
https://doi.org/10.1175/JCLI-D-16-0340.1
https://doi.org/10.1175/JCLI-D-17-0416.1
https://doi.org/10.1175/JCLI-D-12-00383.1
https://doi.org/10.1029/2007JD009453
https://doi.org/10.1175/1520-0450(2001)040<0762:OTDOAH>2.0.CO;2
https://doi.org/10.1175/2010BAMS3001.1
https://doi.org/10.1016/S0380-1330(96)71006-7
https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Xie et al. GLB Heat Waves

historical simulations of continental and regional climatology*. J. Clim. 26,

9209–9245. doi: 10.1175/JCLI-D-12-00592.1

Sheffield, J., Camargo, S. J., Fu, R., Hu, Q., Jiang, X., Johnson, N., et al. (2013b).

North american climate in cmip5 experiments. part ii: evaluation of historical

simulations of intraseasonal to decadal variability. J. Clim. 26, 9247–9290.

doi: 10.1175/JCLI-D-12-00593.1

Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W., and Bronaugh, D. (2013a).

Climate extremes indices in the cmip5 multimodel ensemble: Part 1. model

evaluation in the present climate. J. Geophys. Res. Atmos. 118, 1716–1733.

doi: 10.1002/jgrd.50203

Sillmann, J., Kharin, V. V., Zwiers, F. W., Zhang, X., and Bronaugh, D.

(2013b). Climate extremes indices in the cmip5 multimodel ensemble:

Part 2. future climate projections. J. Geophys. Res. Atmos. 118, 2473–2493.

doi: 10.1002/jgrd.50188

Skamarock, W. C., and Klemp, J. B. (2008). A time-split nonhydrostatic

atmospheric model for weather research and forecasting applications. J.

Comput. Phys. 227, 3465–3485. doi: 10.1016/j.jcp.2007.01.037

Song, Y., and Yu, Y. (2015). Impacts of external forcing on the decadal

climate variability in cmip5 simulations. J. Clim. 28, 5389–5405.

doi: 10.1175/JCLI-D-14-00492.1

Taylor, K. E., Stouffer, R. J., and Meehl, G. A. (2012). An overview of

cmip5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498.

doi: 10.1175/BAMS-D-11-00094.1

Thompson, G., Tewari, M., Ikeda, K., Tessendorf, S., Weeks, C., Otkin, J., et al.

(2016). Explicitly-coupled cloud physics and radiation parameterizations and

subsequent evaluation in wrf high-resolution convective forecasts. Atmospheric

Research, 168, 92–104. doi: 10.1016/j.atmosres.2015.09.005

Vautard, R., van Aalst, M., Boucher, O., Drouin, A., Haustein, K., Kreienkamp,

F., et al. (2020). Human contribution to the record-breaking june and

july 2019 heatwaves in western europe. Environ. Res. Lett. 15:094077.

doi: 10.1088/1748-9326/aba3d4

Watanabe, M., Suzuki, T., O’ishi, R., Komuro, Y., Watanabe, S., Emori, S., et al.

(2010). Improved climate simulation by miroc5: mean states, variability, and

climate sensitivity. J. Clim. 23, 6312–6335. doi: 10.1175/2010JCLI3679.1

Woolway, R. I., Kraemer, B. M., Lenters, J. D., Merchant, C. J., O’Reilly, C. M.,

and Sharma, S. (2020). Global lake responses to climate change.Nat. Rev. Earth

Environ. 1, 388–403. doi: 10.1038/s43017-020-0067-5

Xue, P., Pal, J. S., Ye, X., Lenters, J. D., Huang, C., and Chu, P. Y. (2017).

Improving the simulation of large lakes in regional climate modeling: two-way

lake?atmosphere coupling with a 3d hydrodynamic model of the great lakes. J.

Clim. 30, 1605–1627. doi: 10.1175/JCLI-D-16-0225.1

Zagar, N., Honzak, L., Zabkar, R., Skok, G., Rakovec, J., and Ceglar, A. (2013).

Uncertainties in a regional climate model in the midlatitudes due to the

nesting technique and the domain size. J. Geophys. Res. Atmos. 118, 6189–6199.

doi: 10.1002/jgrd.50525

Zobel, Z., Wang, J., Wuebbles, D. J., and Kotamarthi, V. R. (2018a). Analyses

for high-resolution projections through the end of the 21st century for

precipitation extremes over the united states. Earths Future 6, 1471–1490.

doi: 10.1029/2018EF000956

Zobel, Z., Wang, J., Wuebbles, D. J., and Kotamarthi, V. R. (2018b).

Evaluations of high-resolution dynamically downscaled ensembles over the

contiguous united states. Clim. Dyn. 50, 863–884. doi: 10.1007/s00382-017-3

0645-6

Conflict of Interest: AE is employed by Aquanty Inc.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Xie, Erler, Chandan and Peltier. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Water | www.frontiersin.org 20 December 2021 | Volume 3 | Article 782265

https://doi.org/10.1175/JCLI-D-12-00592.1
https://doi.org/10.1175/JCLI-D-12-00593.1
https://doi.org/10.1002/jgrd.50203
https://doi.org/10.1002/jgrd.50188
https://doi.org/10.1016/j.jcp.2007.01.037
https://doi.org/10.1175/JCLI-D-14-00492.1
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1016/j.atmosres.2015.09.005
https://doi.org/10.1088/1748-9326/aba3d4
https://doi.org/10.1175/2010JCLI3679.1
https://doi.org/10.1038/s43017-020-0067-5
https://doi.org/10.1175/JCLI-D-16-0225.1
https://doi.org/10.1002/jgrd.50525
https://doi.org/10.1029/2018EF000956
https://doi.org/10.1007/s00382-017-3645-6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Xie et al. GLB Heat Waves

A1. HEAT INDEX EQUATION

Heat Index (HI) equation we use following https://www.wpc.
ncep.noaa.gov/html/heatindex_equation.shtml is given as:

HI =− 42.379+ 2.04901523 ∗ T + 10.14333127 ∗ RH

− .22475541 ∗ T ∗ RH − .00683783 ∗ T ∗ T

− .05481717 ∗ RH ∗ RH

+ .00122874 ∗ T ∗ T ∗ RH + .00085282 ∗ T ∗ RH ∗ RH

− .00000199 ∗ T ∗ T ∗ RH ∗ RH

where T is temperature in degrees Fahrenheit and RH is relative
humidity in percent. HI is the heat index expressed as an apparent
temperature in degrees Fahrenheit. If the RH is less than 13% and
the temperature is between 80◦F and 112◦F, then the following
adjustment is subtracted from HI:

ADJUSTMENT = [(13− RH)/4] ∗
√

[17− |T − 95|]/17

On the other hand, if the RH is greater than 85% and the
temperature is between 80◦F and 87◦F, then the following
adjustment is added to HI:

ADJUSTMENT = [(RH − 85)/10] ∗ [(87− T)/5]

An alternative equation is used when heat index value is
expected to fall below about 80◦F where the regression
analysis that leads to the main HI equation becomes
inappropriate. The alternative simpler equation is
the following:

HI = 0.5 ∗ {T + 61.0+ [(T − 68.0) ∗ 1.2]+ (RH ∗ 0.094)}

However, this alternative equation is less relevant for this study
since HI threshold for extreme heat events is 32◦ C=89.6◦F that is
strictly above the 80◦F limit.
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