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Fundamental differences in the nature of climate and hydrologic models make coupling

of future climate projections to models of watershed hydrology challenging. This study

uses the NCAR Weather Research and Forecast model (WRF) to dynamically downscale

climate simulations over the Saginaw Bay Watershed, MI and prepare the results for

input into semi-distributed hydrologic models. One realization of the bias-corrected

NCAR CESM1 model’s RCP 8.5 climate scenario is dynamically downscaled at a spatial

resolution of 3 km by 3 km for the end of the twenty-first century and validated based on

a downscaled run for the end of the twentieth century in comparison to ASOS and NWS

COOP stations. Bias-correction is conducted using Quantile Mapping to correct daily

maximum and minimum temperature, precipitation, and relative humidity for use in future

hydrologic model experiments. In the Saginaw Bay Watershed the end of the twenty-first

century is projected to see maximum and minimum average daily temperatures warming

by 5.7 and 6.3◦C respectively. Precipitation characteristics over the watershed show

an increase in mean annual precipitation (average of +14.3mm over the watershed),

mainly due to increases in precipitation intensity (average of +0.3mm per precipitation

day) despite a decrease in frequency of −10.7 days per year. The projected changes

have substantial implications for watershed processes including flood prediction, erosion,

mobilization of non-point source and legacy contaminants, and evapotranspirative

demand, among others. We present these results in the context of usefulness of the

downscaled and bias corrected data for semi-distributed hydrologic modeling.

Keywords: dynamical downscaling from a global climate model, bias correction, precipitation, temperature,

Saginaw Bay, hydrologic inputs

INTRODUCTION

Climate change has the potential to substantially alter the abundance, availability, distribution,
fluxes, and quality of water in the Great Lakes region (Hayhoe et al., 2010; D’Orgeville et al., 2014;
Byun and Hamlet, 2018; Wang et al., 2018; Byun et al., 2019; Mahdiyan et al., 2021). Increases
in extreme weather events, changes in the timing, type, and spatial distribution of precipitation,
and alterations to evapotranspirative fluxes all have implications for streamflow and water quality.
Effects of climate change on hydrologic extremes such as drought and flooding have the potential
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to compound existing stressors in Great Lakes watersheds already
impacted by decades of land use change, legacy and non-point
source pollution, and loss of wetland habitat. Predictions from
global scale climate modeling establish that rising temperatures
will result in changes to the atmospheric characteristics in the
Great Lakes region that will have direct effects on watershed
health, such as increases in extreme precipitation and droughts
(which impacts erosion, nutrient cycling, and flux of pollutants),
increased temperatures (impacts to phenology, ecology, and
agriculture), and changes to soil moisture (impacting nutrient
cycling, hydrologic fluxes, phenology, and water quality; Angel
et al., 2018). However, there remains significant uncertainty in
how the projected climate changes modeled at the global scale
translate to hydrologic impacts at the regional and watershed
scales. One reason that uncertainty persists is the fundamentally
different nature of global climate models (GCMs) and hydrologic
models. While GCMs are applied at global scales for long
periods of time, many of the processes that scientists and
policy makers seek to model for watersheds, such as daily
streamflows for ecological minimums and flood event timing and
magnitude, are much smaller in extent and discrete in time. The
contrast between spatial and temporal resolutions and modeling
approaches poses challenges for model coupling. However, the
gap between these two modeling paradigms is worth bridging,
particularly for understanding the complex nature of changes
in Great Lakes watersheds in response to future climate change.
One notable effort toward reconciling the challenge of coupling
atmospheric and terrestrial hydrologic models is WRF-Hydro,
which provides high resolution (both spatially and temporally)
streamflow predictions on short (sub-hourly) to seasonal time
scales (Lin et al., 2018; Somos-Valenzuela and Palmer, 2018; Yin
et al., 2020). A significant drawback to theWRF-Hydro modeling
framework is that it is extremely computationally intensive to
get streamflow in a fully or semi-distributed representation of
a catchment which becomes prohibitive over the climate-scale
simulations required to realize future hydrologic distributions.

Because GCMs use physical principles of the atmosphere to
drive long-term simulations of climate variability and change
(rather than observations, such as in Numerical Weather
Prediction), they are computationally intensive, and must
therefore be of a coarse spatial resolution, generally greater than
1◦ latitude by 1◦ longitude. Their purpose is to capture the
physical processes that occur over the entire globe at timescales
greater than weather forecasts and to indicate broad regional
changes to climate parameters. Inputs and output are in the
form of gridded fields at specific points in time. By contrast,
hydrologic models are frequently applied to explore watershed
and stream response to changes at the basin scale, which
depending on the size of the catchment can range from as
small as the contributing area to a local stream to as large
as continental scales. Hydrologic models can be conceptual
(based on physical concepts), empirical, or physically based
and can range both in complexity of modeled processes and
spatial distribution. To explore how streamflow responds to
variations in watershed characteristics and perturbations such
as land use and climate change, physically based distributed
or semi-distributed hydrologic models (SDHMs) are necessary

(Jajarmizdeh et al., 2012; Khakbaz et al., 2012). A benefit SDHMs
can provide is prediction of streamflow in ungauged catchments,
a capability that is critical where monitoring networks are sparse.
SDHMs require input of spatially explicit datasets including
watershed properties such as soil, topography, and land use,
and climatological inputs such as precipitation, temperature,
solar radiation, wind speed, and relative humidity. The type
and detail of inputs varies between models; fully distributed
models may use gridded data for all inputs, whereas semi-
distributed models can incorporate both gridded and point data
(which is then interpolated to provide the necessary input).
For most SDHM applications, climatological inputs come from
existing observation stations (e.g., NWS COOP network in
the U.S.) or gridded products (e.g., CFSR; National Center
for Atmospheric Research Staff, 2017). However, these inputs
are not available for future conditions; this is where GCM or
Regional ClimateModel (RCM) output links to SDHMs (e.g., Das
and Umamahesh, 2018; Singh and Saravanan, 2020; Martínez-
Salvador et al., 2021); in these cases, resolving the difference
in spatial resolution remains a challenge. To model hydrologic
response to future climate conditions, climatological inputs based
on those future conditions are needed. It is imperative that
the climatological inputs are as representative of likely future
atmospheric conditions (given a particular emissions scenario)
as possible, as calibration of SDHMs relies on altering empirical
fit parameters linked to physical characteristics and properties
of the watershed rather than correction of climatological inputs
(Arnold et al., 2012; Zhai et al., 2018; Gou et al., 2020). To
take the low-resolution gridded outputs produced by GCMs and
prepare them in such a way as to capture accurate sub-grid
scale variability for hydrologic modeling is no simple task. It
involves some form of downscaling to a resolution that is useful
for quantifying watershed-scale variability, but also validation
and bias correction from in-situ “ground truth” stations at such
a resolution, which requires the transition from gridded spatial
data to spatially explicit (point) data.

In order to address the challenge of coupling GCMs to
hydrologic models, researchers have turned to two main
approaches: statistical (empirical) and dynamic downscaling
(Hewitson and Crane, 1996). Statistical downscaling involves
development of empirical relationships between outputs from
a course resolution GCM (a predictor) and a historic data set
(a predictand). The type of statistical model used to define
this relationship can vary, but is limited in that it does not
represent the atmospheric processes that link the two scales
together (large scale to local scale; Maraun andWidmann, 2018).
Dynamical downscaling on the other hand is process-driven and
is conducted via nested climate/weather models of progressively
smaller domain and finer resolution [these can then be called
Regional Climate Models (RCMs)]. While statistical downscaling
is computationally much more efficient, dynamical downscaling
has the ability to adapt to complex changes in future climate—
assuming the relevant processes are represented in the model.

Dynamically downscaled climate model outputs have been
used as inputs into several distributed and semi-distributed
hydrologic models to address changes in physical characteristics
and properties that impact streamflow (e.g., rainfall-runoff
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ratio, snowmelt timing, and evapotranspirative demand) as
well as extreme events (e.g., drought, flood risk, and extreme
precipitation; Salathe et al., 2014; Mendoza et al., 2015; Vu et al.,
2015 and others). Recent studies that have used downscaled
climate model output in such a manner have taken a number
of approaches. Most commonly the variables retained from the
model output are limited to monthly mean temperature and
precipitation [with the exception of Erler et al. (2019), which
uitilized mean monthly precipitation, snow depth and PET in
the HydroGeoSphere model]. Raghavan et al. (2014), Vu et al.
(2015), and Tiwari et al. (2018) passed climate output fields
to the SWAT hydrologic model un-corrected, and calibrated
SWAT to make up for any discrepancies between modeled and
observed stream gauge data. Shrestha et al. (2017) took another
approach and found that applying simple corrections to only
modeled temperature and precipitation improved hydrologic
model performance (they also used SWAT).

The main limitations to the previous body of work revolve
around incorporating the processes that are evolving in the
atmosphere in future states of the climate with the impacts
of those processes on hydrologic systems. Without a GCM
that is based on coupled atmospheric, land, and ocean
components, future climate estimates are likely to miss global-
and hemispheric-scale drivers of climate, such as the El Niño
Southern Oscillation, Arctic Oscillation, sea ice fluctuations,
and others. However, the GCMs that are capable of simulating
these global-scale processes are substantially mismatched in
spatial resolution with the types of systems usually modeled
in SDHMs. Such a mismatch will result in instances where
GCMs and coarse-resolution RCMs are not capturing the sub-
watershed spatial variability even if the atmospheric processes are
accurately represented at the larger grid scale. This can leave out
atmospheric drivers of hydrologic processes of interest, such as
erosion, non-point source pollution, land use stressors, and point
source pollutant mobilization.

This study presents a unique approach to addressing some
of the challenges posed by the existing methodologies for
preparation of future climate projections for coupling with
hydrologic SDHMs. One realization of a GCM’s projections
of future climate are dynamically downscaled with a high-
fidelity weather model, to retain the physical processes occurring
within the atmosphere at subsequently smaller spatial and
temporal resolutions. This is done at a very high resolution,
with the inner-most domain having grid cells of 3 km by 3 km.
After downscaling, bias correction is applied to atmospheric
variables at locations within the watershed to leverage the in-
situ observations available to provide improved atmospheric
forcing for the hydrologic model, thereby reserving hydrologic
model calibration for the streamflow parameters. Lastly, the steps
for data preparation are applied to several variables (maximum
temperature, minimum temperature, daily precipitation, and
relative humidity) due to their potential to alter components on
hydrologic systems such as flooding, ET demand, soil moisture
storage, runoff, infiltration, nutrient cycling, and water levels.

In this paper, we focus on an example from the Saginaw Bay
watershed in the lower peninsula of Michigan. We use the NCAR
Weather Research and Forecast model (WRF) to dynamically

downscale CMIP5 output to a nested domain of 3 km grids
centered over the Great Lakes region, running this weathermodel
as an RCM. We ran two 15-year periods; one at the end of the
twentieth century and one at the end of the twenty-first century
using RCP 8.5 to quantify climate change impacts on the region
and explore the variability of such changes over a high spatial
resolution within the watershed, which would not be captured
in statistically downscaled climate output. Then, we applied
quantile mapping to the precipitation, daily maximum and
minimum temperatures, and relative humidity to bias correct the
variables prior to using them as input for hydrologic modeling.

DATA AND METHODS

Study Area
The Saginaw Bay Watershed (SBW) is located in the eastern part
ofMichigan’s lower Peninsula (Figure 1). It is the largest drainage
basin in the state of Michigan, encompassing approximately
14,000 km2, 22 counties, and a wide range of land uses
from highly urbanized to agricultural and forested. Its outlet,
Saginaw Bay, provides habitat for multiple federal and state
recognized threatened and endangered species including resident
and migratory birds, reptiles, insects, aquatic invertebrates, and
plant species (U.S. Fish Wildlife Service., 2018; Michigan Natural
Feathers Inventory) and is also a U.S. EPA designated Area of
Concern with ongoing Beneficial Use Impairments (BUIs) related
to nonpoint source pollution and legacy contamination in the
sediments (Selzer et al., 2014). Eutrophication, nuisance algal
blooms, beach closures, and ecosystem degradation are current
challenges that also may be exacerbated by climate change
impacts within the watershed. Many of the tributaries in the SBW
are prone to rapid hydrologic response (Michigan Department of
Natural Resources Surface Water Quality Division, 1988; Selzer
et al., 2014) resulting from land use changes and low permeability
soils; the “flashy” response may be compounded by climatic
shifts, and, also have the potential to contribute to sediment and
non-point source pollutant loading, negatively impacting water
quality conditions and ecosystem services in Saginaw Bay.

The climate of this region is largely influenced by its position
in the mid-latitude Westerlies, with sizable influence from the
surrounding Great Lakes. The large bodies of water that surround
the Michigan Lower Peninsula on 3 sides act to moderate
the temperatures in this region, but also act as a moisture
source for precipitation. Despite the maritime effect from the
Great Lakes, in the last century Michigan has still experienced
increasing annual temperatures of around 0.8◦C and future
warming is projected to be as much as 5.4◦C (for RCP 8.5)
by 2099 (Wuebbles et al., 2019). Precipitation is achieved in
the SBW through transient synoptic weather patterns (such as
fronts, or mid-latitude cyclones) or the moistening of cold air
masses as they pass over the Great Lakes (Andresen, 2012).
Over the twentieth century annual precipitation in the SBW
region has increased by as much as 15% (Wuebbles et al.,
2019), mostly due to the increases in extreme precipitation event
sizes (Easterling et al., 2017). Future projections continue this
trend of more annual precipitation, primarily due to extreme
events (Wuebbles et al., 2019). When examining the CMIP5
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FIGURE 1 | Study area. (A) WRF downscaled domains, outer domain (dashed line) and inner domain (solid line). (B) Location of in-situ weather stations in relation to

the Saginaw Bay Watershed: I. East Tawas/Oscoda, MI; II. Midland, MI; III. Mount Pleasant, MI; IV. Alma/Gratiot, MI; and V. Owosso, MI.

suite of GCMs’ projections for the Great Lakes region, Notaro
et al. (2015) found that the maximum precipitation increases
by the end of the twenty-first century (RCP 8.5) occurred in
March–April–May and were +0.61mm day−1 compared to late
twentieth century values. Increases in temperature were also
documented, with a maximum warming of +7.0◦C occurring in
December–January–February.

Downscaling
The NCAR Weather Research and Forecast (WRF) model
(version 3.7) with the Advanced Research WRF (ARW) core
dynamical solver (Skamarock et al., 2008) is used to model
the atmospheric parameters over the SBW. The WRF model
is configured with the following physics schemes: the unified
Noah Land Surface Model for surface physics (Tewari et al.,
2004); the NCEP GFS boundary layer physics (Hong and
Pan, 1996); the Kain-Fritsch convection scheme (applied to
both domains; Kain, 2004); the Dudhia shortwave radiation
scheme (Dudhia, 1989); the Rapid Radiation Transfer Model for
longwave radiation (Mlawer et al., 1997); and the WRF Single-
Moment 5-Class scheme for microphysics (Hong et al., 2004).
Nudging is not applied in an effort to preserve precipitation
variability within the inner domain (Alexandru et al., 2009),
although it has been shown by multiple studies to improve
WRF downscaling simulations of 1–3 year periods (Spero et al.,
2018). The Climate simulations from the NCAR CESM Global
Bias-Corrected CMIP5 Output to Support WRF/MPAS project
(Monaghan et al., 2014) are used as initial boundary conditions
for the WRF model. These data are bias-corrected using the
ECMWF ERA-Interim from 1981 to 2005 (Bruyère et al., 2014,
2015) and are available for the IPCC AR5 RCP 4.5, 6.0, and 8.5
scenarios from 2006 to 2100. A simulation from 1950 to 2005
is also used to calibrate the GCM model and is available as a
twentieth century run.1 The bias-corrected CESM data set is
useful, because systematic biases in the Great Lakes region can

1https://rda.ucar.edu/datasets/ds316.1.

vary by season (too wet in winter and spring and too dry in
fall) and be large (as much as −13% fall precipitation bias from
CESM1; Briley et al., 2020). In all WRFmodel runs the 1◦ CESM1
6-hourly output files are used as the boundary conditions for an
outer domain of 15 km horizontal grids and then are dynamically
downscaled to a two-way nested inner domain of 3 km horizontal
grids (shown in Figure 1). The WRF model was developed as a
high-resolution weather forecasting tool (shorter time scales but
higher spatial resolution) and has since started to be used as an
RCM, sometimes simulating time periods as long as those used
in this study. The advantage of using WRF in this application is
its ability to simulate at a spatial resolution that is sufficient to
represent atmospheric processes, such as precipitation, that are
usually considered “sub-grid scale” for long-term global climate
models (Wang and Kotamarthi, 2015). The trade-off to using this
model is the cost of computation and data storage to produce
such fine spatial-scale but long runs.

Due to the computationally demanding nature of numerical
weather models, only one realization of the WRF model is run
for two different 15-year periods. The first is a twentieth Century
simulation from 1991 to 2005 for use in model validation, which
we will refer to as the ‘historical’ run. The second 15-year
WRF run is using the RCP 8.5 future scenario, simulated from
2085 to 2099, which assumes an increase in radiative forcing
of +8.5 W/m2 over pre-industrial values (Van Vuuren et al.,
2011; Stocker et al., 2013; Bruyère et al., 2014). We will refer
to this run as the “future” run. Notaro et al. (2015) assessed
the uncertainty in CMIP5 models over the Great Lakes region
for this time period. They found that the deviation among the
models in the end-of-twenty-first century RCP 8.5 scenario runs
resulted in an average temperature and precipitation uncertainty
of 1.29◦C and 0.20mm day−1. For both WRF model runs
the daily variables retained for future input into SDHMs are:
maximum temperature (◦C); minimum temperature (◦C); total
liquid precipitation (mm); average relative humidity (%); and
average daily wind speed (m/s) computed for each grid cell
in the SBW domain. Wind speeds are reduced to 2-m height
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and adjusted to account for varying ground cover types using
the Prandtl-von Karman Universal Velocity-Distribution for
Turbulent Flows (Dingman, 2008). The friction velocity for
the vegetation types are based on previous field experiments
(Izumi and Caughey, 1976; Churchill and Csanady, 1983;
Santoso and Stull, 2001; Jiao-jun et al., 2004). For the basin-
wide figures and statistics, WRF output grids are clipped to
only those within the Saginaw Bay Watershed, with a 1,000m
buffer for the centroids falling within the boundary of the
watershed (n= 2582).

Validation and bias correction of the downscaled atmospheric
variables is essential at the points for which data will be passed
to the SDHM, because the coarse resolution GCMs lack some
sub-grid scale features. One relevant shortcoming of the CMIP5
models (and this CESM1 contribution to CMIP5 in particular)
is the lack of lake surface temperatures included in the output
files for use in regional downscaling (Spero et al., 2016). Without
lake water temperatures from the input GCM, the WRF model
defaults to extrapolating water temperature from the nearest
point designated as water. In this situation, different portions
of the Laurentian Great Lakes are interpolated from grid cells
over the Atlantic Ocean (southern lake areas), or from James and
Hudson Bays (northern lake areas; Mallard et al., 2015; Spero
et al., 2016). Mallard et al. (2015) found discontinuities in lake
surface temperature of as much as 17K in Lakes Michigan and
Huron, and 3K in Lake Superior during one simulated test date.
Spero et al. (2016) examined the same CESM1 model used in
the current study and found lake temperatures that were colder
in the summer and warmer in the winter, compared to a WRF
downscaling that included a lake model. The largest impacts were
in the winter, where thermally induced low pressure and warmer
air temperatures downwind of the lakes impacted the frequency
of freeze days and number of days with precipitation (Spero et al.,
2016). Since the default WRF treatment of “water” grids is used
in the current study, careful validation and bias correction are of
the utmost importance.

Bias Correction
WRF model validation is conducted by comparing the WRF
downscaled model output against historical climate station data
from the in-situ stations from the National Weather Service
Cooperative Observer Program (NCEI., 2017), and wind data
from the NOAA’s Automated Surface Observation Stations
(ASOS) locations (NCEI, 2019). The locations of the stations
that have both COOP and ASOS data and lie inside the
Saginaw Bay Watershed (SBW) are given in Figure 1. Errors
are computed only at model grid cells that are co-located with
historic in-situ stations, in order to avoid any potential bias
that may be introduced by interpolation during error estimation
or correction. However, it should be noted that since spatial
autocorrelation decreases with distance, the representativeness
of co-located in-situ stations and model grid cells can vary
if station locations are offset by only a few tenths of a
degree latitude or longitude. These historic in-situ locations are
subsequently the only grid cells bias-corrected for ingest into
a SDHM. The Kolmogorov-Smirnov test is conducted on each
set of distribution comparisons to identify whether they could

statistically be from the same distribution (Schuenemeyer and
Drew, 2011).

After errors are identified in the historic run, by comparing
the downscaled WRF output to the observational stations,
bias correction is performed. We apply bias correction on
temperature, precipitation, and humidity variables. Relative
humidity is not often included or bias corrected for in GCM-
hydrologic model coupling, however, Masaki et al. (2015) found
that bias correction of humidity (even simplistic methods)
reduce uncertainty in hydrologic models. Of the recent studies
that have conducted bias correction on WRF data for use in
hydrologicmodels, themajority used a gridded dataset or gridded
historical observations as their ground truth. The interpolation
of the historical station data to produce such a dataset
can introduce additional biases, particularly for precipitation,
which has increased interpolation error with increased station
distances (Bussieres and Hogg, 1989). For this paper, the
WRF grid cells that correspond to historical weather station
locations are the ones at which bias correction is applied as
these would be a standard input for climate variables into
a SDHM.

Because the entire range of the statistical distributions of
the variables that are input into the hydrologic model has
implications for hydrologic processes within the watershed
and therefore streamflow, quantile mapping is used for bias
correction. Compared to the more commonly used change
factor (add or subtract model anomalies from observations), the
quantile mapping method allows for the amount of correction
applied to the model data to vary along the distribution. The
quantile mapping method of bias correction (Boé et al., 2007;
Gudmundsson et al., 2012; Gudmundsson, 2014) estimates
the empirical cumulative distribution function (ecdf) of both
the modeled and observed variables. The model data is
then corrected (or transformed) at the specific quantiles (we
used every 10th percentile), and intermediate values must
be interpolated (in this study, the non-linear monotonic
tricubic spline interpolation is used; Gudmundsson et al., 2012;
Mosier et al., 2014, 2018; Sippel et al., 2016; Alidoost et al.,
2021). This produces a bias correction that is tailored to the
correction needs at different levels in the distribution, rather
than one correction applied unilaterally. This is particularly
useful for distributions that require different corrections for
the tails of the distributions compared to the means of
the distributions, as the tails represent flood and drought
conditions that can have important devastating impacts on
hydrologic systems.

RESULTS

WRF Simulations of the SBW: 1991–2005
and 2085–2099
Annual average watershed values produced from the 1991 to 2005
historical WRF run are shown in Figure 2A through Figure 7A

and future WRF model run in Figure 2B through Figure 7B. In
order to examine the spatial changes projected to occur, annual
average values from the entire modeled watershed are compared
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FIGURE 2 | Uncorrected WRF output of mean maximum daily temperature (◦C) from (A) the 1991–2005 historical climate run; (B) the 2085–2099 future RCP 8.5

scenario; (C) the difference between the (A) and (B) future–past and (D) the empirical distribution from all of the grid cells in the watershed for mean maximum daily

temperature for (A) (solid line) and (B) (dashed line).

for the twentieth century run to the end of the twenty-first
century RCP 8.5 run and the change is displayed in Figure 2C

through Figure 7C. Empirical distributions are generated from
the grid cell values over the watershed to show the distribution of
the data throughout the study area and how it changes between
the two time periods (Figure 2D through Figure 7D).

For the historic WRF run the variables plotted show a
spatially reasonable pattern, with cooler average maximum
and minimum temperatures along the shores of the Saginaw
Bay (3.8 and −5.3◦C, respectively) and increased temperatures
westward (11.7 and 1.5◦C, respectively; Figures 2A, 3A). Not
only are the areas around the bay cooler, but they experience
higher relative humidity (∼86% compared to 71.5% inland;
Figure 4A). Precipitation characteristics around Saginaw Bay are
also distinctly different than the inland part of the SBW. WRF
grid cells near the bay experience precipitation more frequently
(∼210 days/year compared to∼176 days/year; Figure 6A), but at
a lower intensity (3.69 mm/rain day compared to 5.14 mm/rain

day; Figure 7A), resulting in lower total amounts of precipitation
than inland (∼739mm compared to 995.4mm; Figure 5A).

In Figure 2B, future mean maximum temperatures across the
SBW range from 17.3◦C in the western portion of the watershed,
to as low as 10.0◦C along the Saginaw Bay. The mean value across
the entire watershed is 15.8◦C, with a standard deviation of 0.89
◦C. Comparing this spatial distribution to the historic model
run (Figure 2A), annual average maximum temperatures in the
SBW shows a mean change of 5.7◦C by the end of the twenty-
first century for the RCP 8.5 scenario. The spatial difference
map (Figure 2C) shows the warming is largest along the coast
of the Saginaw Bay (highest warming in a single grid cell is
6.1◦C) and lowest in “the Thumb” area of 5.4◦C. The empirical
distributions created from the grid cells in each watershed map
show that the entire distribution of temperatures shifts to higher
temperatures, putting the majority of grid cells at temperatures
above even the warmest maximum temperatures in the historic
time period (Figure 2D).
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FIGURE 3 | Same as Figure 2, but for minimum daily temperature.

The change signal in minimum temperatures is similar to
maximum temperatures (Figure 3). Future values of minimum
temperature over the SBW range from a minimum value of
1.7◦C to a maximum value of 7.8◦C, with a watershed average
5.7◦C. The average minimum temperature in the watershed is
projected to increase by 6.3◦C from the historic run. The map
shows that these increases are the highest around the coast
(7.1◦C), and lowest in the southeast and northwest edged of the
watershed (5.9◦C). The empirical distribution shows that nearly
all grid cells in this watershed experience minimum temperatures
in the future time period above even the extreme minimum
temperatures in the historic model run.

A slight reducing pattern is projected to occur in relative
humidity across the SBW by the end of the century, as can
be seen in Figure 4B. The maximum average relative humidity
in the future WRF run is 83.9%, compared to 86.1% in the
historic run, occurring along the Saginaw Bay. When compared
to the historic run (Figures 4A,C), the drying signal appears the
smallest (−1.9%) on the northern coast of the Saginaw Bay and is
the largest (−3.1%) in the southwestern corner of the watershed,

near Owosso, MI (station V). The empirical distribution shows
a future shift of ∼2.7% drier in the future (watershed mean RH
goes from 77.1 to 74.4%).

The northeastern side of the SBW is projected to receive more
total annual precipitation by the end of the twenty-first century
than it experienced in the historic model run (Figure 5B). When
comparing the future projection map to the historic model run,
the watershed’s average increase of 14.3mm (848.0mm vs. the
historic run’s 833.7mm) does not convey the spatial variability
within the SBW. Particularly, drying occurs in the south and
southwestern parts of the watershed, while moistening is isolated
to the northeastern part of the SBW (Figure 5C). The maximum
change over the twenty-first century at a single grid cell is
an increase of 87.4mm, and the largest drying is −63.0mm.
Figure 5D shows a flattening of the empirical distribution curve
in the future model projections, with fewer grids having a
precipitation value near the average, and more years with annual
precipitation amounts occurring in the right tail of the curve.
The reason for this can be more clearly seen by examining
precipitation frequency and intensity.
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FIGURE 4 | Same as Figure 2, but for mean daily relative humidity.

Annual precipitation frequency (number of days with
measurable precipitation per year) decreases in a future RCP 8.5
scenario at all grid cells in the Saginaw BayWatershed (Figure 6)
with a range of 4.7 to 24.4 fewer days per year. The average over
the entire watershed is a decrease in precipitation frequency of
10.7 days per year. The empirical distributions show a similar
shape to the two distributions, but the future distribution is
shifted left (toward a lower frequency of days with precipitation)
and the right tail of the distribution becomes shorter (fewer
extremely high frequency years; Figure 6D).

Precipitation intensity is calculated as the mean annual
precipitation value at a grid cell divided by the number of
days in which precipitation occurs at that location. The average
precipitation intensity over the SBW in the historic model
run is 4.4 mm/precipitation day while the average intensity
in the future model run is 4.8 mm/precipitation day. The
model runs have a similar spatial pattern (Figures 7A,B),
with the lowest intensities occurring around Saginaw Bay (3.7
mm/precipitation day in the historic model run and 4.2mm per
precipitation day in the future run) and increasing intensities

in the northwestern and southeastern parts of the watershed
(maximum of 5.1 mm/precipitation day in the historic run and
5.7 mm/precipitation day in the future run). When comparing
the average precipitation intensity at each grid cell in the future
model run to the historic model run, Figure 7C shows increases
in intensity over the twenty-first century with the largest
increases of 0.7 mm/precipitation day in the “thumb” region of
the Lower Peninsula, the eastern portion of the watershed. This
corresponds with the region that saw an increase in total annual
precipitation in Figure 6C. The empirical distributions show that
in the future time period the average intensity becomes larger and
there is less variability within the watershed (as the size of the
tails is reduced; Figure 7D). This indicates that by the end of the
twenty-first century precipitation in the SBW will become more
intense (larger amount per precipitation day) and there will be
less variability in the range of intensities experienced.

The relative changes in the SBW variables indicate that
on average this watershed will warm by 5.7◦C in daily
maximum temperatures and more (6.3◦C) in daily minimum
temperatures. Relative humidity shows a slight reducing trend
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FIGURE 5 | Same as Figure 2, but for annual total precipitation amount.

when looking at annual averages. The projected change to
total annual precipitation varies across the watershed, but
the picture of the characteristics of SBW precipitation is
consistent. Precipitation will occur less frequently across the
watershed but will be more intense, as the amount that falls per
precipitation day will increase. All of the SBW is not projected
to have an increase in total annual precipitation because even
though all locations are projected to experience increased
precipitation intensity, decreases in precipitation frequency also
occur across the watershed. In the west and southwestern
parts of the watershed the increase in intensity is not enough
to negate the decrease in frequency, and the annual total
precipitation decreases. Grid cells near the Saginaw Bay coast are
expected to experience more extreme changes than the rest of
the watershed.

Validation and Bias Correction
WRF Model Validation
For the most accurate one-way coupling of the dynamically
downscaled WRF data with a hydrologic model the data must be

validated against “ground truth” observations to estimate errors,
and bias corrected to compensate for those errors. Since the
climate model inputs into SDHMs is spatially explicit both the
validation and bias correction are performed at the locations
in the SBW that also have in-situ meteorological data for the
historic period (1991–2005; Figure 1). For the 5 in-situ weather
stations in the study region the average differences between
historic modeled data and the historic observations are given
in Table 1.

For daily maximum temperature, the observed mean is

warmer than the model output for all stations. The largest
difference is 6.5◦C, which is located at the north-eastern tip of

the SBW. The temperature differences are much smaller near the

central part of the lower peninsula [lowest is 2.6◦C at Mount
Pleasant, MI (station III)]. This indicates that for the SBW region

the model keeps the daily maximum temperatures too cool by

3.9◦C on average (more near the coast). Standard deviations of
the daily maximum temperature show that all station locations

have a larger modeled standard deviation than is observed
(overall average of 2.0◦C larger standard deviation).
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FIGURE 6 | Same as Figure 2, but for mean annual precipitation frequency.

The daily minimum temperature shows a similar relationship
between modeled and observed values. The largest difference
is where modeled temperatures are 6.5◦C warmer and again
occurs at the East Tawas station, in the north-eastern part
of the watershed. Stations in the central part of the MI
lower peninsula have smaller differences between the observed
minimum temperatures and modeled temperatures, but overall
the model generates minimum daily temperatures 4.0◦C cooler
on average. Differences in standard deviations of minimum
temperatures are 2.6◦C, indicating that the model produces a
larger standard deviation than the observed data. For relative
humidity, the WRF model is slightly more moist by 2.4%. It
is also more variable, with a standard deviation 3.5% more
than observed.

Annual total precipitation (mm) is slightly higher in the
historic model run, by 25.5mm on average. The discrepancy
is the highest (765.1mm observed vs. 861.6mm modeled) at
Midland, MI (station II) in the central part of the lower
peninsula, near the western edge of the SBW. The source of
this over-production of precipitation in WRF is due to the

frequency of precipitation generated in the model. WRF causes
precipitation to occur on average 64.4 days too often per year
compared to the observed frequency. This is the worst at Mount
Pleasant (station III), where the observed frequency is 88.5
days per year and the modeled frequency is 178.7 days per
year. On the other hand, the WRF simulation under—produces
with regard to precipitation intensity (mm/precipitation day),
on average 2.4mm less than observed [this is larger than the
measurement accuracy for human recorded precipitation which
is 0.5mm (NOAA., 2018)]. This difference was also largest at
Mount Pleasant, MI (station III) where the average intensity
is observed at 9.1 mm/precipitation day and modeled to be
4.5 mm/precipitation day. The combination of too frequent
precipitation events but less intense rain events result in
close values at Mount Pleasant for total annual precipitation
(795.5mm observed vs. 793.1mm modeled) although that is
because the inaccuracies cancel each other out. This helps
to illustrate why adjusting precipitation is still needed, even
though errors of total annual precipitation might not seem
that high. Accurate capture of precipitation frequency and
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FIGURE 7 | Same as Figure 2, but for mean annual precipitation intensity.

TABLE 1 | Average (standard deviation) of station and WRF variables of interest for hydrologic inputs at the five observational stations within the watershed for 1991–2005.

Variable Station (observed) WRF (modeled) Model error

(modeled—

observed)

Bias corrected WRF

(modeled)

Model error after bias

correction

(modeled—observed)

Daily maximum temperature (◦C) 13.8 (11.8) 9.9 (13.8) −3.9 (2.0) 13.8 (11.6) 0.0 (−0.2)

Daily minimum temperature (◦C) 3.0 (10.0) −1.0 (12.7) −4.0 (2.6) 3.1 (10.2) 0.1 (0.2)

Annual total precipitation (mm) 792.2 (246.5) 817.7 (132.6) 25.5 (−113.9) 798.7 (140.5) 6.5 (−106.0)

Annual precipitation frequency (days/year) 118.9 (33.7) 183.3 (31.1) 64.4 (−2.6) 122.8 (12.3) 3.9 (−21.4)

Annual average intensity (mm/day of precipitation) 6.9 (1.1) 4.5 (0.9) −2.4 (−0.2) 6.6 (1.0) −0.3 (−0.1)

Relative humidity (%, data from ASOS stations) 74.2 (11.2) 76.7 (14.7) 2.4 (3.5) 74.4 (11.2) 0.2 (−0.1)

Italicized values indicate the standard deviations.

intensity are particularly important for hydrologic modeling
applications. The Kolmogorov-Smirnov test resulted in a p-value
is near zero in all cases, indicating that the two distributions
are likely not from the same population (p < 0.05) for
all stations and all variables. Therefore, bias adjustments are
required for the WRF data before ingesting the data into any
hydrologic model.

Quantile Mapping Bias Correction
Quantile Mapping bias correction is applied to each of the
5 locations within the SBW that are co-located with in-situ
weather stations. The data from the weather stations are used to
generate the empirical cumulative distribution function used to
transform the WRF historical run data. The transform functions
are retained for use at those same locations in future model
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runs. An example of the results of the bias correction is given
in Figure 8, and comparison statistics for all of the variables are
shown in Table 1. The Kolomorgov-Smirnov test is again used to
determine whether the bias corrected model data is statistically
similar to the observed values.

The differences between the bias corrected WRF output
and the observational values have been reduced dramatically
in Table 1, compared to the un-corrected differences (Model
Error column in Table 1). Before, WRF was underpredicting
temperatures by 3.9◦C (maximum temperatures) and 4.0◦C
(minimum temperatures). After bias correction, the average
difference between modeled maximum temperatures and
observed maximum temperatures is 0.0◦C, and the average
difference for minimum temperatures is 0.1◦C. The error
associated with the relative humidity also became almost
negligible, at a mere 0.2%. A graphical demonstration of the
impact of this correction on maximum temperature at the
Oscoda, MI location (station I) is shown in Figure 8.

Average annual total precipitation amount observed at the 5
stations is 792.2 mm/year and the un-corrected WRF historic
model over-forecasted precipitation by 25.5mm on average.
However, after bias correcting the WRF output, the difference
is reduced to 6.5mm of precipitation per year (Table 1). The
intensity of precipitation also shows substantial improvement.
Without correction, the WRF model produces precipitation 64.4
more days than observed. After applying the Quantile Mapping
bias correction, WRF only generates precipitation 3.8 days per
year more than observed. The average intensity of precipitation
events was under forecast by WRF by −2.4 mm/day. However,
after bias correction this difference is −0.2 mm/day. All three
of these variables show the improvements to WRF’s ability
to represent the nuances of the precipitation regimes after
bias correction.

According to the K-S test for the likelihood of two sample
distributions coming from the same population, all total
precipitation samples (observed, modeled, and bias corrected
modeled) are likely from the same population distribution (p
≤ 0.05). This is mostly due to the low error for total annual
precipitation values, which we have shown is an artifact of
frequency and intensity errors canceling each other out. When
considering precipitation frequency and intensity only, the
observed and bias-correctedmodel distributions have statistically
significant K-S D values, indicating they are likely from the
same distribution (for all 5 stations in the watershed). This
is also the case for the other variables, where only after bias-
correction could observations and modeled output be assumed
to come from the same distribution. The exceptions are with
2 stations failing to meet this assumption at the p ≤ 0.05
significance level for minimum temperature, and one station for
maximum temperature.

Bias Corrected Future run
The quantile mapping transforms developed between the station
data and historical model data are applied to the 5 corresponding
point locations for the RCP 8.5 WRF future run. The resulting
values averaged over the 5 locations are given in Table 2 for
comparison with the historic model run values. Empirical density
functions (edfs) are fit to the historic and future precipitation

data in order to estimate the probability distribution functions
of the data and to visualize the differences in the entire variable’s
distribution. The value for the 75th and 90th percentile are
computed for precipitation, and the 10th and 90th percentiles
for the other variables (Figures 9–12). Above/below average and
extreme values can be used to develop relationships between
climatological variables and streamflow; this is especially true
for precipitation with regards to flood event prediction but
also applies temperature and RH for their effects on watershed
processes including evapotranspirative demand.

Average daily maximum temperature increases from 13.8
to 18.3◦C during the twenty-first century (Table 2). The edfs
of maximum temperature calculated for each of the station’s
historic and future bias corrected variables are displayed in
Figure 9. All of the stations experience a shift in the future
maximum temperature distributions toward the right, indicating
higher temperatures. In addition, the 10th and 90th percentile
temperature values increase at all locations with the maximum
increase in the 10th percentile of 5.6◦C (from −1.1 to 4.5◦C)
occurring at Oscoda, MI (station I), the northern most location
in the SBW (Figure 9B). The largest increase in the size of the
90th percentile temperature is at Mount Pleasant, MI (station III)
where the 90th percentile goes from 28.3◦C in the historic edf to
35.1◦C in the future edf (Figure 9D).

Likewise, the average daily minimum temperatures at the 5
stations within the SBW increase from 3.0 to 8.0◦C (Table 2).
The edfs of minimum temperatures (Figure 10) show that a
shift of the entire distribution toward higher temperatures is
consistent across the watershed. It is interesting to note from
these comparative distributions that the 10th percentile values
increase more than the 90th percentile values at almost all
stations, indicating a substantial change in the frequency and
value of extreme cold minimum temperatures. The largest of
these 10th percentile warmings occurs at Oscoda, MI (station
I) in the northern part of the SBW (Figure 10B). The largest
warming of the 90th percentile minimum temperature is 8.9◦C
(from 17.2 to 26.1◦C) and occurs at Midland, MI (station II), in
the western part of the watershed (Figure 10C).

In the SBW, the future model run produces a signal of
decreasing relative humidity from 74.2 to 71.6% (Table 2). Even
though the average relative humidity decreases, the average
standard deviation of relative humidity increases from 11.2 to
18.3%. This is more easily observed in Figure 11, which plots
the historic and future bias corrected edfs of relative humidity
at the 5 locations in the SBW. These figures show the flattening
of the distribution and the corresponding increase in variability,
particularly in the left tail. The 90th percentile values increase at
all 5 stations [by as much as 5.3% at Gratiot, MI (station IV);
Figure 11A], but the 10th percentiles show the largest amount
of change. All of the stations experience a decrease of the
10th percentile values of at least 4.7%, and Gratiot, MI (in the
southwestern part of the watershed) experiences a reduction of
15.6% over the twenty-first century. The increased intensity and
decreased frequency of precipitation events may lead to longer
periods of drier air between events.

Total annual precipitation does not appear to experience
substantial change in the future model run once the WRF
output is bias corrected (Table 2). There is a slight decrease
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FIGURE 8 | Observed (solid), modeled (dotted), and bias corrected (dashed) modeled daily maximum temperatures for observational station 202423 (Oscoda, MI).

TABLE 2 | Average (standard deviation) of bias corrected WRF variables for the historic and future model runs.

Variable Bias corrected

modeled (1991–2005)

Modeled (2085–2099) Bias corrected

modeled (2085–2099)

Difference in bias

corrected modeled

(future-historic)

Daily maximum temperature (◦C) 13.8 (11.6) 15.1 (16.2) 18.3 (14.0) 4.5 (2.4)

Daily minimum temperature (◦C) 3.1 (10.2) 5.0 (13.6) 8.0 (12.3) 4.9 (2.1)

Annual total precipitation (mm) 798.7 (140.5) 819.3 (143.1) 793.4 (132.9) −5.3 (−7.6)

Annual precipitation frequency (days/year) 122.8 (12.3) 173.3 (24.4) 116.2 (12.4) −6.6 (0.1)

Annual average intensity (mm/day of precipitation) 6.6 (1.0) 4.8 (0.9) 7.0 (0.9) 0.4 (−0.1)

Relative humidity (%, data from ASOS stations) 74.4 (11.2) 73.1 (21.4) 71.6 (18.3) −2.8 (7.1)

These are for the 5 observational stations within the watershed.

Italicized values indicate the standard deviations.

(−1.2mm) in average annual precipitation totals at the 5 station
locations, due to a decrease in frequency (−2.7 days/year)
and increase in intensity (0.1 mm/precipitation day). However,
from the spatial maps (Figures 2–7) it can be seen that the
projected changes to precipitation vary in magnitude and
sign across the watershed, and the bias-corrected future time
series are only created at the 5 locations with station data.
Figure 12 shows the edfs for the historic and future bias
corrected model values for daily precipitation events. For these
distributions the 75th and 90th percentiles are indicated on
the plots, since understanding above average and extreme
precipitation events is paramount for modeling event-based
flow. All of the locations experience a slight increase in
the magnitude of 75th and 90th percentile events except for
Owosso, MI (station V), in the southern part of the watershed
(Figure 12E), which corresponds with the area of decreased
precipitation intensity in Figure 7C. The largest magnitude

increases in 90th percentile precipitation events occur at Gratiot,
MI (station IV), Oscoda, MI (station I), and Mount Pleasant,
MI (station III; Figures 12A,B,D). These locations experience
extreme precipitation increases around 1.2mm in magnitude
and corresponds to areas of increased precipitation intensity
in Figure 7C.

DISCUSSION

Inferences and Implications
End-of-century model runs indicate that the SBWwill experience
substantial and spatially variable effects from climate change.
On the whole, the watershed will be slightly drier, with lower
relative humidity and fewer precipitation days than at the end
of the twentieth century. This change in relative humidity is
consistent with what is expected from the Clausius-Clapeyron
relation of increased atmospheric moisture capacity without
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FIGURE 9 | Daily maximum temperature empirical density functions. The solid

black line is the historic bias corrected data and the dashed line represents the

future bias corrected data at each location. The solid vertical lines represent

the 10 and 90% values at location (A) 200146 (Gratiot, IV), (B) 202423

(Oscoda, I), (C) 205434 (Midland, II), (D) 205662 (Mount Pleasant, III) and (E)

206300 (Owosso, V).

large changes in moisture flux over land (Byrne and O’Gorman,
2016). Temperatures will increase substantially, with the largest
changes occurring at the extremes (10th percentile maximum
and 90th percentile minimum), meaning that it is likely that
the SBW will see simultaneously more frost-free days in
the winters and more exceptionally hot days in the summer
months. This trend of decreasing diurnal temperature range
due to a faster rate of warming by minimum temperatures
is consistent with what has happened in the last century
(Easterling et al., 1997; Thorne et al., 2016; Sun et al., 2019
among others) and what is expected to continue in a warming
climate (Zhou et al., 2009). The small decline in total annual

FIGURE 10 | Same as Figure 9 but for daily minimum temperature.

precipitationmasks projected increases in precipitation intensity,
with the increases in precipitation intensity modeled across
nearly the entire watershed. The projected changes will not
be uniform, with the coastal region experiencing some of the
most extreme temperature changes and considerable spatial
variability in precipitation frequency and intensity throughout
the watershed. One of the benefits of dynamical downscaling
with the WRF model is that finer resolution processes, such
as convection, can identify spatial patterns within the study
domain that would not be apparent in a coarse-resolution GCM
(Qiu et al., 2021). The difference in projected characteristics
between the coastal area and inland would have been sub-
grid scale in the 1◦ spatial resolution of the parent climate
simulations we used before downscaling, which could also be
missed in statistical downscaling without observations to provide
“predictand” distributions at those locations. It is important to
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FIGURE 11 | Same as Figure 9 but for daily relative humidity.

note that this is on realization of just one GCM-RCM coupling.
Other GCMs coupled to other RCMs or multiple realizations of
the current GCM-RCM combination would produce different
temperature, precipitation, and relative humidity projections.
Therefore, the direction and general magnitude of the future
projections are more important than the exact magnitude of
the changes.

The large increases in mean minimum and maximum
temperature along the coast of Saginaw Bay could be a
substantial stressor on wetland vegetation; increased air and
water temperatures and the associated declines in water level
(for emergent wetlands) and water clarity (for submergent
wetlands) all can negatively impact wetland plants and potentially
decreasing associated ecosystem services including nutrient
cycling, sediment trapping and deposition, and flood modulation
(Erwin, 2009; Steinman et al., 2012; Junk et al., 2013; Short

FIGURE 12 | Daily precipitation empirical density functions. The solid black

line is the historic bias corrected data and the dashed line represents the future

bias corrected data at each location. The dashed vertical lines represent the

75th and 90th (bold) percentile values for the future data and the solid vertical

lines represent the 75th and 90th (bold) percentiles values for the historical

data at location (A) 200146 (Gratiot, IV), (B) 202423 (Oscoda, I), (C) 205434

(Midland, II), (D) 205662 (Mount Pleasant, III) and (E) 206300 (Owosso, V).

et al., 2016). Considering the substantial resources that have
been committed to restoring coastal wetlands in Saginaw
Bay (Hartig et al., 2020), a decline in function due to
climate change impacts should be cause for concern. Capturing
spatial variability in precipitation frequency and intensity
is fundamental to effectively modeling rainfall-runoff ratios,
flooding in ungauged catchments, erosion processes, and the
potential for mobilization of non-point and point source
pollutants. Recognizing that changes in precipitation intensity
and frequency will not be uniform and may exacerbate existing
watershed stressors like land use change is needed in order
to quantify changes in hydrologic regime and prediction of
extreme events.
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Limitations and Future Work
The distinct difference between the Saginaw Bay coastal grids
and the rest of the SBW’s projected changes in climate merit
future investigation. There are not in-situ stations from the
NOAA COOP or ASOS networks within these cells to use
for validation, so error cannot be ascertained in the same
manner. The closest in-situ station is Oscoda, MI (station I),
located along the northern coast of the Saginaw Bay, which
had model errors (before bias correction) of less than 0.1mm
for precipitation, ∼6% for relative humidity, and ∼6.5◦C for
temperatures. Without further investigation it is unclear if
the bias correction applied at Oscoda, MI is appropriate for
the rest of the Saginaw Bay coast. Part of the uncertainty
here is because the atmospheric model used in this study for
dynamical downscaling does not contain a dynamic lake model,
but rather designates a “water bodies” land cover type (WRF
v3.7; Skamarock et al., 2008), which lacks realistic lake surface
temperatures (Gula and Peltier, 2012; Xiao et al., 2016). The
study uses a bias-corrected GCM with a nested RCM that was
also validated and bias-corrected, which assists in removing
some systematic errors that may be introduced because of
this inaccurate lake grid treatment. However, research in the
last several years has been actively seeking a better coupling
between WRF and dynamic lake models for use in regional
climate studies (Gu et al., 2015; Xiao et al., 2016; Peltier et al.,
2018; Ma et al., 2019; and others). To better understand the
reliability of the projections for the Saginaw Bay coastal area,
and to what extent bias-correction can remediate a lack of
some of the GCM’s sub-grid-scale influences, future work may
include comparison with some of these lake-coupled models.
Additionally, it would be worthwhile to perform the historical
downscaling simulation with nudging applied to the RCM,
to examine the impact of this “relaxation” toward the GCM
on the precipitation variability and extremes over such a fine
spatial resolution as the inner domain and over such a long
time scale. Another avenue of future work with these data will
be to diagnose error and bias-correct all of the modeled grid
points within the watershed, for sensitivity analyses with SDHMs.
Alternative in-situ observations that are not as long-running
as the stations used in this paper or gridded products may
be used to supplement the stations within the watershed for
these future analyses.

Such high spatial resolution climate data over a long time
period processed for coupling with SDHMs is a valuable tool
for examining climate change impacts on hydrologic systems.
However, the full potential of this dataset is not realized in this
study. Even though dynamic downscaling captures the variability
in atmospheric processes throughout the watershed, without
bias correction of that data before ingestion by hydrologic
models errors are needlessly propagated into them and can
obfuscate the empirical parameter calibration that must happen.
Additionally, questions remain as to how many of the 3 km by
3 km grid cells within the SBW need to be provided as input to
a SDHM to capture the necessary atmospheric variability within
the watershed, and what is the best method for bias correcting
those grid cells without in-situ validation data. Answering these
questions will allow future research to more accurately bridge the
spatial and temporal gap between GCMs run for future climate
scenarios and SDHMs that are able to simulate multifaceted
impacts of atmospheric variability on hydrologic processes.
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