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Hydrodynamic dispersion process in relation with the geometrical properties of the

porous media are studied in two sets of 6 porous media samples of porosity θ ranging

from 0.1 to 0.25. These two sets of samples display distinctly different evolutions of the

microstructures with porosity but share the same permeability trend with porosity. The

methodology combines three approaches. First, numerical experiments are performed to

measure pre-asymptotic to asymptotic dispersion from diffusion-controlled to advection-

controlled regime using Time-Domain Random Walk solute transport simulations.

Second, a porosity-equivalent network of bonds is extracted in order to measure

the geometrical properties of the samples. Third, the results of the direct numerical

simulations are interpreted as a Continuous Time Random Walk (CTRW) process

controlled by the flow speed distribution and correlation. These complementary modeling

approaches allow evaluating the relation between the parameters of the conceptual

transport process embedded in the CTRWmodel, the flow field properties and the pore-

scale geometrical properties. The results of the direct numerical simulations for all the

12 samples show the same scaling properties of the mean flow distribution, the first

passage time distribution and the asymptotic dispersion vs. the Péclet number than

those predicted by the CTRW model. It allows predicting the asymptotic dispersion

coefficient D∗ from Pe = 1 to the largest values of Pe expected for laminar flow in natural

environments (Pe ≈ 4,000). D∗ ∝ Pe2−α for Pe ≥ Pecrit, where α can be inferred from the

Eulerian flow distribution and Pecrit depends on porosity. The Eulerian flow distribution is

controlled by the distribution of fractions of fluid flowing at each of the pore network nodes

and thus is determined mainly by the distribution of the throat radius and the coordination

number. The later scales with the number of throats per unit volume independently on the

porosity. The asymptotic dispersion coefficient D∗ decreases when porosity increases for

all Péclet values larger than 1 due to the increase with porosity of both α and the flow

speed decorrelation length.
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1. INTRODUCTION

Modeling transport of solute in porous media is a prerequisite for
many environmental and engineering applications, ranging from
aquifers contaminant risk assessment to industrial reactors, filters
and batteries design. The solutes can be pollutants, reactants and
products involved in solute-solute or solute-mineral reactions,
but also (bio-)nanoparticles or nutriments involved in the
growth of bio-mass. The mechanism under consideration is
the spatial dispersion which leads to the spreading and the
mixing of dissolved chemicals, thus controlling the potential
reactions in the flowing fluid and between the fluid and the
porous media (Bear, 1972; Brenner and Edwards, 1993; Dentz
et al., 2011). The dispersion process has been, and still is, a
largely studied topic in the field of geosciences because rocks
at depth are, as a general rule, porous media saturated with
fluid(s) that move due to natural or artificial pressure gradients,
and display a large spectrum of heterogeneities. In all these
domains, reliable predictive models that can be parameterized
by direct measurements are necessary, for example, to monitor
and assess risks linked to the use of underground water
resources, or in the course of industrial operations, such as
hydrocarbon exploitation and CO2 or underground nuclear
waste storage.

Hydrodynamic dispersion is the macroscopic result of the
mass transfers by diffusion and advection that occurs at the
pore scale (Whitaker, 1967; Sahimi, 2011; De Anna et al., 2013).
Together, diffusion and advection of solute produce a large
spectrum of dispersion features because (natural) porous media
display complex structures inducing a large diversity of velocity
fields, and thus distinctly different speed distributions and spatial
correlations. Probably the most obvious behavior that illustrates
the complexity of dispersion mechanisms in porous media is
the variably-lasting pre-asymptotic dispersion regime that cannot
be modeled by a single Fickian dispersion coefficient. Pre-
asymptotic, or non-Fickian, dispersion is commonly observed
in laboratory experiments (Moroni and Cushman, 2001; Levy
and Berkowitz, 2003; Seymour et al., 2004; Morales et al., 2017;
Carrel et al., 2018; Souzy et al., 2020), and numerical simulations
(Bijeljic et al., 2011, 2013; De Anna et al., 2013; Icardi et al., 2014;
Kang et al., 2014; Li et al., 2018; Puyguiraud et al., 2019c). It is
characterized by heavy-tailed arrival time distributions ft(t) and
super-diffusive growth of the longitudinal displacement variance
σ 2(t). For a given porous medium, the duration of the non-
Fickian regime is controlled by solute particles that move the
slowest, which emphasizes the determinant role of both the
regions where the velocity is low and the tortuosity of the
flow paths. Asymptotically, dispersion converges toward Fickian
behavior, characterized by the constant longitudinal dispersion
coefficient D∗ (Bear, 1972; Brenner and Edwards, 1993).

Evaluating the longitudinal asymptotic dispersion
coefficient D∗ is a fundamental issue, because most
operational modeling tools have been constructed around
the Fickian advection-dispersion equation that reads for
transport in the direction of the mean flow, here the
z-direction (Bear, 1972):

∂θc(z, t)

∂t
−
∂

∂z

[

θD∗ ∂c(z, t)

∂z
+ uz(z)c(z, t)

]

= 0, (1)

where c is the solute concentration, θ is the connected porosity,
uz = θ〈vz〉 denotes Darcy’s velocity, with 〈vz〉 being the mean
pore velocity.

Many experimental studies and mathematical developments
on dispersion using mainly simple porous media have been
performed since the pioneering works of Danckwerts (1953).
The reader will find an exhaustive review of the different results
and models of both longitudinal and transverse dispersion in
Delgado (2006). A main well-observed feature of longitudinal
dispersion D∗ is its non-linear increase with the mean flow
velocity. It is recognized since the pioneering works of Saffman
(1959) and then Bear (1972). It is generally expressed in terms
of D∗/dm vs. the Péclet number Pe = 〈ve〉ℓ/dm, where ℓ is
a characteristic length, dm is the molecular diffusion coefficient

and 〈ve〉 is the mean Eulerian flow speed (ve =
√

v2x + v2y + v2z ,

with vi denoting the flow velocity component i, see section 2.2).
Simulations in networks of constant velocity tubes (Sahimi
and Imdakm, 1988) of radius r following distributions such as

P(r) ∝ re−r2 (Chatzis and Dullien, 1985) indicated a relation of
the form

D∗/dm ∝ Peβ , (2)

with β = 1.2 ∓ 0.1 (Sahimi, 2011), while for instance β = 2
in a single tube (Taylor, 1953). For infinite Pe, experimental
particle tracking results (e.g, Souzy et al., 2020) give the relation
D∗/dm ≈ Pe, where the characteristic length ℓ is of the order of
the pore length. However, it is worth noticing that in Souzy et al.
(2020)’s experiments the lowest velocities cannot be measured
because they use finite-size particles that cannot access to the
vicinity of the solid. Interestingly, the behavior (Equation 2) with
β ≃ 1.2 was cited in numerous studies concerning bead-packs
and homogeneous sand-packs for intermediate Péclet numbers
(Pfannkuch, 1963; Han et al., 1985; Sahimi et al., 1986; Seymour
and Callaghan, 1997; Bijeljic et al., 2004). For instance, particle
tracking simulations in pore-networks reported in Bijeljic and
Blunt (2006) gave β = 1.2, for Pe < 400 and β = 1, for Pe >
400. Conversely, similar numerical simulations (using random
walk particle tracking) performed by Puyguiraud et al. (2021)
using digitized images of consolidated sandstone, gave a value of
β = 1.65 for 10 ≤ Pe ≤ 105. The few experimental data on
rocks (obviously more heterogeneous than bead-packs) displayed
a broader range of behaviors; for example Kinzel and Hill (1989)
reported 1.30 ≤ β ≤ 1.33. However, it is worth noticing that
evaluating dispersion in rocks, for a large range of Pe values,
either at laboratory or field scale from tracer tests is challenging.
For instance, controlling the boundary conditions and verifying
that the tracer is conservative are some of the known issues that
may introduce errors in the estimation. Yet, the main issue is
probably linked to the fact that, by definition, the experimental
results are interpreted using the Fickian model, whereas it is
difficult to prove that dispersion is asymptotic without being able
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to measure the tracer breakthrough curves over several orders of
magnitude in order to capture the low speed fraction of the solute
transport (Gouze et al., 2008). We will show in section 3.4 that
measuring asymptotic dispersion for large values of Pe in natural
porous media is in fact virtually impossible using cm- or even
meter-scale experiments.

While measuring dispersion experimentally is burdensome,
modeling approaches are now mature to perform numerical
experiments. Direct numerical simulations (DNS) are unique
tools for investigating both the pre-asymptotic and the
asymptotic behavior in a common frame. They can be used to
accurately measure D∗, but also to study the mechanisms that
produce dispersion in relation with the measurable (average)
properties of the material, and to test upscaling theories. Recent
works (Bijeljic and Blunt, 2006, 2007; De Anna et al., 2013;
Puyguiraud et al., 2020, 2021) showed that hydrodynamic
transport in porous media can be adequately conceptualized
and modeled by a continuous time random walk (CTRW) that
models streamwise transport through particle transitions over
fixed spatial distance with a transition time given by the local
flow speed and diffusion. The spatial distance at which particles
speed changes corresponds to the decorrelation distance ℓc of the
mean flow speed. The CTRW integrates in a statistical framework
parameters that are similar to the classical representation of
porous media as a network of throats and pores. As such one can
be tempted to investigate how ℓc, which is a major ingredient of
the CTRW model, is related to the topological and geometrical
properties of the real 3-dimensional pore network. Moreover, the
CTRWmodel predicts that asymptotic dispersion is controlled by
the dispersion evolution during the pre-asymptotic regime which
itself is controlled by the flow speed distribution. How the later is
related to the properties of the pore network is a further issue that
requires investigation.

The main objective of the present study, is to investigate
the relation between the longitudinal dispersion D∗ (and its
evolution with the mean flow rate) and the porous media
microstructural properties in the frame of the theory proposed
by Puyguiraud et al. (2021) which gives a generalized explanation
of longitudinal dispersion (from pre-asymptotic to asymptotic
regimes) and a formal relation between dispersion and the
properties of the flow field (velocity distribution, velocity spatial
decorrelation and flow path tortuosity).

The core of this study is a set of about 150 numerical
experiments designed to measure pre-asymptotic to asymptotic
dispersion from diffusion-controlled to advection-controlled
regime in 12 sandstone-like samples of porosity ranging from
10 to 25%. For that, one first computes the steady-state Stokes
flow field from which, the flow speed distribution and the
decorrelation distance as well as advective tortuosity are derived.
Then, the direct numerical simulation (DNS) of solute transport
at pore scale, involving diffusion and advection, are performed
using Time-Domain Random Walk (TDRW). The dispersion
mechanisms are characterized from the time-resolved particles
displacement variance and the first passage time distribution
(FPT) given as outputs of the TDRW simulations. In parallel,
the geometrical properties of the porous samples are evaluated
from the computation of the bonds network model (BNM)

for each of the samples, that is obtained from the medial axis
transform, or squeletonization, of the connected porosity. This
gives us the unique opportunity to characterize the topology of
the connected porosity including the number of throats (bonds)
and pores (network nodes) and the coordination (number of
throats per pore), as well as the throat radius and length. Then,
the results of the direct numerical simulations are analyzed
in the light of the CTRW theory proposed by Puyguiraud
et al. (2021) which provides quantitative links between the
tail behaviors of the FPT distribution ft(t), the distribution
of flow speeds ve, the particles displacement variance σ 2(t)
and the asymptotic dispersion coefficient D∗ scaling with
the Pe value.

The methodology, including the conceptual and numerical
tools used in this study are detailed in section 2. The geometrical
and topological characteristics of the samples and the flow field
properties are presented in section 3. The results of the direct
numerical simulation of solute transport and the calculation of
the dispersion coefficient for a large range of values of Pe are
discussed in section 3.4. The conclusions of this study are exposed
in section 4.

2. METHODOLOGY

2.1. Porous Media Samples
The porous media are binary images made of 4803 regular
voxels (cubes) that are either void or solid. The first set of 6
samples, noted FSxx, were xx is replaced by the porosity value
expressed in percent (ex: FS13 for the sample with θ = 0.13) was
downloaded from the Digital Rocks Portal (Berg, 2016a). They
were generated with the commercial software e-Core following
a methodology described in Oren (2002), in order to mimic
Fontainebleau sandstone at different porosity (Berg, 2016b). The
op. cit. author indicated that they use identically parameterized
silica grain sedimentation and compaction processes typical for
Fontainebleau sandstones, the different porosity values (0.10,
0.13, 0.15, 0.21, and 0.25) being obtained by varying the amount
of silica cement. As such, this process mimics the progressive
diagenetic cementation by silica precipitation (from FS25 to
FS10) of an initially poorly cemented sandstone. Conversely, we
made the second set of samples by step-by-step homogeneous
erosion of the solid phase starting from FS10. By removing
1 to 6 layers of solid at the solid-void interface we obtain
6 samples, denoted FSDxx of porosity 0.12, 0.15, 0.17, 0.20,
0.23, and 0.25. This process mimics homogeneous dissolution
of the silica material. The top panel in Figure 1 displays
the three-dimensional structure of the lowest porosity sample
FS10, and the highest porosity samples FS25 and FSD25. It
can be qualitatively appraised that the cement precipitation
model used to construct FS25 increases the number of pores
compared FS10, while the pore size is kept roughly similar.
In contrast, the dissolution process producing FS25 from FS10
acts as increasing strongly the pore size, while the number
of pores remains roughly unchanged. This set of sample is
viewed as ideal for investigating dispersion of end-members of
natural sandstones.
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FIGURE 1 | Three-dimensional structure of FS10 (left), FS25 (middle),

FSD25 (right) samples. The top row displays the void space. The lines in the

bottom panel show particle paths, the color scheme indicating the particle

speed from white (u/〈u〉 ≤ 7× 10−4) to dark blue (u/〈u〉 = 10).

2.2. Flow
Flow simulations are performed on the three-dimensional binary
images. The mesh used for solving the flow is obtained by
dividing each of the image voxels by 2 in each of the directions so
that 1 voxel of the raw image is represented by 8 cubic cells of size
1x = 1y = 1z = 2.85× 10−6 m. This procedure is applied for
improving the resolution of the flow field in the smallest throats
(Gjetvaj et al., 2015). The resulting discretization for the regular
grid consists of 9603 cubic cells. We are considering steady-state
flow of an non-compressible Newtonian fluid at low Reynolds
number so that the pore-scale flow velocity v(x) is given by the
Stokes equation

µ∇2v(x)− ∇p(x) = 0, (3)

where p(x) is the fluid pressure. Stokes flow is solved using
the finite volume SIMPLE (SemiImplicit Method for Pressure
Linked Equations algorithm) scheme implemented in the
SIMPLEFOAM solver of the OpenFOAM platform (Weller et al.,
1998). Twenty layers are added at the inlet and outlet in order
to minimize boundary effects (Guibert et al., 2016). The main
flow direction is considered in the z-direction all over this
study. We prescribe (1) a macroscopic pressure gradient ∇∗p
between the inlet (z = 0) and the outlet (z = Lz) boundary
conditions such that the Reynolds number Re is smaller than
10−6, i.e., laminar flow and (2) no-slip conditions at the void-
solid interfaces and at the remaining boundaries of the sample.
After convergence, that is, once the normalized residual of the
pressure and velocity components is below 10−5 between two
consecutive steps, we extract the components of the velocity at
the voxel interfaces (vx, vy, vz). The results of the flow simulations
allow us to extract the three properties that control dispersion
according to Puyguiraud et al. (2019b): (1) the Eulerian speed
distribution pe(v) (2) the decorrelation distance ℓc and (3) the
advective tortuosity χa. These fundamental flow properties are
respectively displayed in Figures 5–7, and discussed in section 3.

2.3. Solute Transport
Pore-scale hydrodynamic transport is classically modeled by the
advection-diffusion equation

∂c(x, t)

∂t
− ∇ ·

[

dm∇ + v(x)
]

c(x, t) = 0, (4)

where c(x, t) is the solute concentration at position x and time
t, dm is the molecular diffusion coefficient which is set equal to
dm = 10−9 m2/s, and v(x) is the flow velocity at position x which
is obtained by solving the Stokes problem (see section 2.2). Here
we use the time domain random walk (TDRW) method that is
based on a finite volume discretization of Equation (4) (Delay
et al., 2005). A detailed description of the TDRW method, its
derivation and implementation using voxelized binary images
can be found in Dentz (2012) and Russian et al. (2016); the
main features of the method are given below. A study of the
performance and accuracy of the TDRWmethod for a large range
of values of the Péclet number can be found inGouze et al. (2021).
The domain discretization used for transport is that used for
computing the flow, i.e., 9603 cubic voxels .

The TDRW method is a grid-based method that models the
displacement of particles in space and time according to the
master equation that results from a finite volume discretization
of the advection-diffusion equation. The ensemble average of
the particle displacement gives the solution of the transport
equation. A particle transition corresponds to a single transition
of a constant length ξ = 1x from the center of a voxel j to the
center of one of the 6 face-neighboring voxels i. The direction and
the transition duration are random variables ruled by the local
values of the fluid velocity at the voxel interface embedded into
the local coefficients bij (Russian et al., 2016).

bij =
dm

ξ 2
+

|vij|

2ξ

(

vij

|vij|
+ 1

)

, (5)

where vij is the velocity component of vj in the direction of voxel
i, vij = vj · ξ ij. Voxel i is downstream from voxel j if vij > 0,
as a convention. The velocity at the solid-void interface is zero
and dm = 0 if voxel i is a solid voxel. The recursive relations
that describe the random walk from position xj to position xi of a
given particle transition n are

xi(n+ 1) = xj(n)+ ξ , t(n+ 1) = t(n)+ τj. (6)

The probability pij for a transition of length ξ from voxel j to
voxel i is

pij =
bij

∑

[jk] bkj
, (7)

where
∑

[jk] denotes the summation over the nearest neighbors

of voxel j. The transition time τj is independent on the transition
direction and is exponentially distributed ψτj (t) = τ j exp(−t/τ j)
with τ j the mean transition time from voxel j;

τ j =
1

∑

[jk] bkj
. (8)
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The algorithm consists in computing once the probability pij
(Equation 7) and the mean transition time τ j (Equation 8) for
each of the voxels belonging to the pore space and then solving
the random walk (Equation 6) in which the direction for each
particle transition is drawn from the pij vector and the transition
time is drawn from the exponential distribution of mean τ j.

2.3.1. Simulation Setup

For each sample, we performed simulations for different values
of the Péclet number. The Péclet number is defined as Pe =

〈ve〉λ/dm where λ is the mean throat length that is displayed for
the 12 samples in Figure 2 and ranges from 6.5× 10−5m to 8.8×
10−5m. The different flow fields used for the TDRW simulations
at different Péclet numbers are obtained by multiplying the raw
flow field resulting from the Stokes simulation by a constant.

A pulse of constant concentration at the sample inlet (z = 0)
is applied at t = 0 by locating particles in a flux weighted
injection mode. Note that the pulse is formally an exponential
distribution function of characteristic time τj|z=0 whose mean
value is negligible compared to the mean time required for the
particles to move through the sample (Russian et al., 2016).
Flux weighted injection means that the number of particles
injected at a location is proportional to the local velocity. This
corresponds to a constant concentration Dirichlet boundary
condition. Particles that reach the sample outlet with a speed vout
are reinjected randomly at the inlet plane at a position x satisfying
the condition |vx − vout| ≪ 〈v〉.

The distribution (PDF) of first passage times at a given
distance Z from the injection location, that denotes the solute
breakthrough curve (BTC) usually measured in laboratory
or field tracer tests, is noted ft(t) (Figure 8). The apparent
longitudinal dispersion coefficient D(t) is evaluated from the
displacement variance σ 2

z (t) of the particles (Fischer, 1966):

D(t) =
1

2

dσ 2
z (t)

dt
, (9)

with σ 2
z (t) = 〈(z(t) − 〈z〉)2〉 − 〈z(t) − 〈z〉〉2. The asymptotic

longitudinal dispersion coefficient D∗ = σ 2
z (t)/2t is obtained for

t > t∗, where t∗ is the time required for all the particles to sample
the entire heterogeneity, i.e., when σ 2

z (t) ∼ t (see for example
Figure 10).

2.4. The Equivalent Bond Network Model
We compute the bond network model (BNM) for each of
the FS and FSD samples in order to extract the geometrical
and topological characteristics of the connected porosity. The
methodology to obtain the network representation of the
connected porosity of the sample includes two main steps. The
first one is the extraction of the void space skeleton which is
the one-dimensional continuous object centrally located (and
spatially referenced) inside the pore space. The skeleton can be
computed using different approaches; here we used a thinning
algorithm inspirited from the works of Lee et al. (1994) that
provides the local medial-axis. The coordinate of the skeleton
is known with a spatial resolution equivalent to that of the
original 3D-image and associated with the local hydraulic radius

rl normal to the local medial axis that is evaluated using a
pondered 45 degree multi-ray method. Thus, the skeleton keeps
the relevant geometrical and topological features of the pore
space (Siddiqi and Pizer, 2008). The second step consists in
transforming the skeleton into a network of bonds and nodes
that connect three or more bonds. This yields an irregular lattice.
The length λ of a given bond is the sum of the length of the
skeleton components used to built this bond, so that the local
tortuosity of the skeleton is embedded into λ. For each bond, the
radius rh is obtained from the harmonic means (noted 〈〉H) of the
local conductance, so that rh = (〈rl〉H)

1/4. The algorithm is non-
parametric; there is no assumption on any of the characteristics
of the obtained lattice.

2.5. Upscaled CTRW Model
Puyguiraud et al. (2021) proposed a continuous time random
walk (CTRW) model that describes transport through particle
transitions over the length ℓc with a transition time that is given
by the local flow speed and diffusion. The central assumption
of this model is that transition times at subsequent CTRW
steps are independent identically distributed random variables.
Furthermore, it is assumed that particles move at the mean pore
velocity, that is, it is assumed that during a transition particles are
able to diffusively sample the velocities across pore conducts. The
scale ℓc is set equal to the decorrelation distance of particle speeds
so that subsequent particle speeds can be considered statistically
independent. The distribution of the Eulerian mean flow speeds
pm(v) is obtained from the Eulerian speed PDF as

pm(v) = −2v
dpe(2v)

dv
. (10)

As particles move at equidistant spatial steps, they sample
flow speeds in a flux-weighted manner. This is due to
the fact that particles are distributed at pore intersections
according to the relative downstream fluxes. Thus, the
distribution pv(v) of subsequent particle speeds are related
to the distribution of Eulerian mean flow speeds through
flux-weighting as (Puyguiraud et al., 2021).

pv(v) =
vpm(v)

〈vm〉
. (11)

At each turning point of the CTRW, particles are assigned
a random speed from pv(v). The particle transition time
distribution ψ(t) reflects both advection and diffusion. It is cut-
off at times larger than τD = ℓ2c/dm, the diffusion time over the
decorrelation distance. For times small compared to the cut-off
time, ψ(t) can be approximated by

ψ(t) =
ℓ2c

t3〈vm〉
pm(ℓc/t). (12)

At times larger than τD it is cut-off exponentially fast.
The flow speed distribution is at the center of the transport

process. In porous media, such as rocks, the mean flow speed
can often be approximated by a Gamma-type distribution (Dentz
et al., 2018; Puyguiraud et al., 2019b; Souzy et al., 2020) and
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FIGURE 2 | From left to right: number of pores; number of throats; mean throat length λ; mean throat radius rh vs. porosity θ for the FS and FSD samples.

displays a power-law scaling pe(v) ∼ vα−1 for v < 〈vm〉. For
sphere packs and simple structures such as sand-pack the linear
flow profile close to the grains (due to the no-slip boundary
condition) implies that pe(v) is flat at low velocities, so that
α ≃ 1 (Dentz et al., 2018). In more heterogeneous porous
media, other values of α are expected. For example, Puyguiraud
et al. (2021) found α ≈ 0.35 for a Berea sandstone sample.
For such Gamma-type distributions, pe(v) ∼ vα−1 at small
flow speeds, ψ(t) behaves for high Péclet numbers as ψ(t) ∼

t−2−α before the exponential cut-off at times larger than τD.
The tortuosity of particle trajectories in this framework is given
by the ratio of the mean asymptotic particle speed ℓc/〈τ 〉 ≡

〈ve〉 (where 〈τ 〉 denotes the particle mean travel time) and the
mean streamwise flow velocity 〈vz〉. Furthermore, for this type
of flow speed distributions, the CTRW approach predicts some
further interesting scaling laws that can be verified from direct
numerical simulations. The behavior of particle breakthrough
curves f (t,Z) at a control plane located at the streamwise location
Z is analogous to the behavior of ψ(t). They show a power-
law dependence as f (t,Z) ∼ t−2−α if Z/vz ≪ τD (i.e., the peak
time is much smaller than the cut-off time), and exponential
decay for times larger than the cut-off time τD. The predicted
dependence of the asymptotic longitudinal dispersion coefficients
on the Péclet number is for Pe≫ 1

D∗

dm
∼ Pe2−α (13)

for 0 < α < 1 and

D∗

dm
∼ Pe ln Pe (14)

for α = 1, see also Saffman (1959) and Koch and Brady (1985).
To sum-up, this upscaled model, constructed on the

representation of the hydrodynamic transport as a CTRW
process in a 1-dimensional network of bonds, is fully constrained,
for any values of Pe > 1 by the knowledge of the distribution of
Eulerian flow speeds pe(v) and the decorrelation distance ℓc of
particle speeds.

From here one can recognize on one hand the
complementarity of the BNM and the DNS to explore
the relation between the dispersion and the pore network
characteristics, and on the other hand the conceptual framework
that links the CTRW model and the BNM representation of
the porous medium. This emphasizes the possibility of (1)
relating the distribution of the Eulerian flow speed to the large
scale transport behavior and (2) characterizing dispersion for
different porous media based on the knowledge of the flow speed
distribution. Indeed, the BNM gives us the information on the
real topology of the pore network as well as the distribution
and the average of bond properties (radius and length), while
the DNS provides the information on the flow field (speed
distribution and decorrelation distance as well as the advective
tortuosity).

3. PORE NETWORK PROPERTIES, FLOW
FIELDS, AND DISPERSION

The top row in Figure 1 illustrates the 3-dimensional structure
of sample FS10 (θ = 0.1) and of both FS25 and FSD25 sharing
the same porosity θ = 0.25. The bottom row in Figure 1

displays flow lines (and the local velocity) within the connected
porosity for these three samples and gives a qualitative appraisal
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FIGURE 3 | Left: Ratio (in %) of the number of dead-ends to the number of

throats. Right: Mean number of throats per pore κ vs. porosity θ for the FS

and FSD samples.

of the dissimilarities between the lowest porosity and the highest
porosity samples on one hand, and on the other hand those
occurring between the highest porosity sample of each of the
two sets in relation with the pore network structures. In the
following wewill quantify these differences and their implications
on dispersion.

3.1. Connected Porosity Geometrical
Properties Retrieved From the BNM
As explained in section 2.1, we computed the Bond Network
Model (BNM) for each of the 12 samples, in order to evaluated
the topology and the geometry of the connected porosity and
specifically how these characteristics change with the sample
porosity for the FS and the FSD sets of samples. The main
properties vs. porosity are summarized in Figures 2, 3. The
topology of the connected porosity is characterized by the
number of throats (network bonds) and pores (network nodes)
per volume of rock (here the reference is the sample volume) as
well as the coordination number κ that denotes themean number
of throats connected to a given pore. The bonds are characterized
by the mean of the radius rh and length λ and by the radius rh
distribution displayed in Figure 4.

For the FS set, decreasing porosity from the highest to
the lowest porosity values is obtained by allocating increasing
amounts of cement into localized clusters that acts as increasingly
closing connections and thus decreasing the number of pores
and throats and the coordination number. The fixed distribution
of the cement clusters determines the length of the bonds

FIGURE 4 | Normalized distribution of rh for the FS and FSD samples.

FIGURE 5 | Permeability (left) and advective tortuosity χa (right) vs. porosity

θ for the FS and FSD samples.

independently of the porosity (λ ≈ 65µm), but volume
conservation imposes that the hydraulic radius rh increases with
porosity. The distribution of rh/〈rh〉 is wide, decreases almost
monotonically from small to high rh and does not depends
on porosity.

For the FSD set, increasing porosity from the lowest to the
highest is obtained by homogeneous erosion of the solid phase,
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FIGURE 6 | Distribution of the Eulerian mean speeds pm(v) normalized to its mean, for the FS (left) and the FSD (right) samples.

i.e., both the grains and the cement. The number of pores and
throats as well as κ first decreases for θ ≤ 0.15 caused by
merging of adjacent throats following a process which is roughly
the opposite of that described for the FS set of samples. Then, the
number of pores and throats stays almost constant for θ > 0.15.
As a result, the increase of porosity is mainly due to the increase
of the throat length λ and radius rh. The distribution of rh/〈rh〉
is almost Gaussian around the mean value, and independent
of the porosity for θ > 0.15. The transition from the original
sample FS10 to the FSD12 and then FSD15 is well visible the
rh distribution. Note that, as soon as the throats are widely
distributed like for the FS set of samples, κ is an indicator of the
potential local flow rate disorder at the network nodes because
the probability of having upstream and downstream bonds of
distinctly different flow rates is high.

Altogether, these results show that the two sets of samples are
very different in terms of (1) the topology of the network; for the
FSD set, the topology is almost similar for all the porosity range,
while it is increasingly complex (with increasing tortuosity, see
discussion below) as porosity decreases for the FS set of samples,
and (2) the characteristic size of the throats which is almost
independent of the porosity for the FD set whereas it increases
with porosity for the FSD set.

3.2. Permeability and Flow Field Properties
Permeability values k for the 12 samples computed using Darcy’s
law (k = vzµ/∇

∗p) are plotted in the left panel of Figure 5.
Permeability increases from 1.4×10−13m2 for sample SF10 to
6.04×10−12m2 (6.08×10−12m2) for sample SF25 (SFD25) and
are all aligned with the relation k ∼ θ4 independently on
geometrical characteristics of the pore space. The permeability

computed on the BNM (solving a Kirchhoff problem) is also
reported Figure 5 in order to evaluate the accuracy of the BNM.

The right panel of Figure 5 displays the advective tortuosity
χa, i.e., the mean tortuosity of the flow lines. The advective
tortuosity is obtained from the ratio of the mean Eulerian speed
ve to the mean velocity in the direction of the flow vz (Koponen
et al., 1996; Ghanbarian et al., 2014; Puyguiraud et al., 2019c):
χa = 〈ve〉/〈vz〉. For both the sets of samples, χa decreases
when porosity increases, but it is more pronounced for the FS
set of samples. These trends seem to be mainly controlled by
the increase of the throat radius as porosity increases, while the
topological characteristic of the network plays a minor role which
is probably resulting from a complex coupling of the geometrical
and topologically parameters discussed above. This makes the
advective tortuosity, which is one of the three parameters of the
CTRW model proposed by Puyguiraud et al. (2021), an intrinsic
characteristic of the hydrodynamic system that is essentially
porosity-dependant.

The distributions of the Eulerian mean speed for the 12
samples are plotted in Figure 6. The dissimilarity of the pm(v)
curves between the FS and the FSD sets is clearly visible. The FSD
samples are displaying almost the same mean speed distributions
with power-law trend pm(v) ∼ vα−1 for v < 〈vm〉 with α =

0.245± 0.05. For the FS set, the evolution of pm(v) with porosity
includes two features. First, pm(v) gradually diverges from a
Gamma distribution as porosity increases, with the occurrence
of increasingly marked transition between the values of speed
larger than the mean (v > 〈vm〉) and the power-law slope
for the slower speed values. Second, the power-law slope for
v ≪ 〈vm〉 increases when porosity decreases, ranging from β =

α − 1 = 1.63 for θ = 0.25 to β = 1.75 for θ = 0.10.
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FIGURE 7 | Flux weighted Langrangian speed auto-correlation function ϒvv (l) for the FS (left) and the FSD (middle-left) samples. The middle-right panel displays

the decorrelation length ℓc and the right panel displays the ratio η = ℓc/λ vs. porosity.

FIGURE 8 | First passage time PDF ft at Z = 5.47×10−2m from the inlet. Left: results for infinite Pe vs. dimensionless time Z/v. Right: results for Pe = 100 vs. time.

These values are in agreement with the value of 1.65 found
by Puyguiraud et al. (2021) for the Beara sandstone. As far as
we know, they have been very few studies of the correlation
between the flow speed distribution and the properties of the
pore space microstructures (Siena et al., 2014; Matyka et al., 2016;
Alim et al., 2017). For instance, Alim et al. (2017) investigated

this issue using numerical simulations in 2-dimensional simple
artificial porous media made of circular or elliptical discs placed
on a square or triangular lattices with increasing disorder. By
extracting and analyzing the corresponding network of tubes,
following a procedure quite similar to that implemented for
extracting the BNM (section 2.4), they concluded that the flow
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FIGURE 9 | Comparison of the value of α for the FS samples evaluated from

(1) the slope of the first passage time plotted in the left panel, (2) the slope of

the mean speed PDF plotted in Figure 6 and (3) the slope of the D∗/dm vs. Pe

plotted in Figure 11.

FIGURE 10 | Normalized z-direction displacement variance vs. time for

Pe = 100.

distribution is mainly determined by the distribution of fractions
of fluid flowing at each of the network node and not by the overall
tube size distribution. Our results lead us to a similar conclusion
for the complex 3-dimensional porous media studied here. The
evolution of the mean flow speed with porosity for the FS set in

comparison with the weak evolution of the mean flow speed with
porosity for the FSD set appears to be correlated to the noticeable
increase with porosity of the number of throats as well as the
mean number of throats per pore κ (Figure 3) measured for the
FS set, whereas both the number of throats and κ are almost
constant for the FSD set of samples.

3.3. Speed Decorrelation Distance Length
The decorrelation distance ℓc is evaluated from the Lagrangian
flux weighted speed autocorrelation function ϒvv(l) = 〈(vv(s) −
〈vv〉)(vv(s + l) − 〈vv〉)〉/σ

2
vv
, where l denotes the lag. The

decorrelation distance ℓc is given by the value of the lag
corresponding to ϒvv(l) = 1/e. The two panels at left of Figure 7
display the Lagrangian flux weighted speed autocorrelation
function ϒvv(l) for the two set of samples. The corresponding
values of the decorrelation distance ℓc vs. porosity are given in the
third panel of Figure 7, and the ratio of the decorrelation distance
to the mean throat length η = ℓc/λ vs. porosity is given in the
right panel.

For both the sample sets, the decorrelation distance ℓc
increases with porosity from about 150 µm at θ = 0.1 to about
240 µm for FS and 290 µm for FSD. The slight increase of ℓc for
the FSD set for θ > 0.15 compared to the FS set is caused by
the increase of the throat radius and the decrease of tortuosity
with porosity that are more important for FSD than for FS. The
ratio η also displays an increase with porosity following a similar
trend for both the FS and the FSD set of samples, the values for
FSD being smaller of ∼ 0.5 unit than for FS. Thus, in average,
the number of bond lengths traveled before losing the memory
of the initial speed ranges from about 2 to 4. These values are
in good agreement with the value of 4 obtained by Puyguiraud
et al. (2021) by fitting DNS and CTRW for Berea sandstone of
porosity 0.18.

3.4. Dispersion
In this section, we are presenting the results of the transport DNS,
discussing them in the frame of the scaling properties derived
from the CTRWmodel proposed by Puyguiraud et al. (2021) and
of the properties retrieved from the BNM (section 3.1).

The first passage time distributions ft(t) (or breakthrough
curves) at a distance of 20 times the sample size are given in
Figure 8 for Pe = 100 and also for purely advective transport
(dm = 0;Pe = ∞). For the latter, all the curves display the
power-law tailing that characterize pre-asymptotic (non-Fickian)
regime over 3 to 4 orders of magnitude. The scaling ft(t) ∼

t−2−α predicted by Puyguiraud et al. (2021) with the values of α
corresponding to those measured on the mean speed distribution
is confirmed for all the samples. The comparison of the value
of α (0.24 ≤ α ≤ 0.37) for the FS set of samples is given
in Figure 9. For Pe = 100, even if it can be considered a quite
large value for natural porous media, diffusion acts as increasing
the rate at which ft(t) decreases with time and the α-dependent
power-law trend is not present. Note that the beginning of the
exponential decrease is visible for FSD25 at t ≈ 5τD, where
τD = ℓ2c/dm ≈ 80s.

We now focus on determining the asymptotic dispersion
coefficient D∗ from the asymptotic regime of the displacement
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FIGURE 11 | Asymptotic dispersion coefficient vs. Pe for the FS and FSD samples.

variance. Figure 10 displays, as an example, the displacement
variance normalized to the throat length (σ 2/λ2) for the 12
samples in the case Pe = 100, but the following comments
apply for all values of Pe larger than 1. All curves converge to
the asymptotic regime (σ 2/λ2 ∼ t) for time t ≥ ta, where
ta is independent of the value of Pe but depends on porosity;
ta ≈ 103s for θ = 0.1 and ta ≈ 104s for θ = 0.25, i.e., about 40
and 120 times τD, respectively. This point is important regarding
the possibilities of measuring the asymptotic dispersion from
laboratory experiments, deriving D∗ from the breakthrough
curves, for instance. For Pe = 100, that corresponds to a mean
flow speed of 1.5 × 10−3 m/s for FS10, a sample of about 1.5
m long displaying the same properties of the mm-scale sample
would be necessary to measure D∗; a distance of 60 m would
be necessary for Pe = 4,000. This indicates that experimental
measurement of D∗ can be performed only for low values of Pe,
typically of the order Pe ≤ 10. However, for such low values of
Pe it is not possible to measure α and thus determine the trend
D∗(Pe).

Conversely, the DNS allows us to perform numerical
experiments over large range of Pe values; Figure 11 displays the
value of D∗ vs. Pe for the 12 samples from diffusion-dominant
regime (Pe = 10−3) to advection-dominant (Pe = 2 × 104).
These curves can be commented in terms of their slope and of
their scaling with porosity, for Pe ≫ 1. Note that for Pe → 0
the ratio D∗/dm is equal to the inverse of the diffusive tortuosity
(D∗/dm = χ−1

d
). For both the FS and FSD sets of samples, the

relation D∗/dm ∝ Pe2−α predicted by the CTRW model for
Pe≫ 1 is observed. The values of α compared to those measured
using the speed distribution and the tailing of ft(t) are given in
Figure 9. The minimum value Pec at which D∗/dm ∝ Pe2−α

is effectively observed, is correlated with the shape of the mean

speed distribution (Figure 6). For FS10, the trend pm(v) ∼ vα−1

with α = 0.24 extends up to 5 × 10−3v/〈vm〉, while for FS25
the trend α = 0.37 extends up to 3 × 10−4v/〈vm〉 only. This
gives values of Pec ranging from 1,000 for FS10 to 50 for FS25.
The same trend is observed for the FSD set of samples. These
results demonstrate the clear control of the particle mean speed
distribution on the evolution of D∗ with the Péclet number.
However, both the two sets of samples display a scaling ofD∗ with
porosity, independently of the slope determined for Pe ≥ Pec.
The expected decrease of D∗ for all values of Pe > 1 when
porosity increases, corresponding to a decrease of the slope of
pm(v) for v ≪ 〈vm〉 is clearly visible for the FS set of samples.
But, the results for the FSD set, that share the same mean
speed distribution (Figure 6), show also a clear decrease of D∗

as porosity increases, which indicates that the dispersion scaling
with porosity is not solely controlled by pm(v) for v ≪ 〈vm〉.
Indeed, the increase of D∗ with porosity is also related to the
increase of the speed decorrelation distance ℓc with porosity. In
the frame of the CTRW model lc denotes the length at which a
new velocity is drawn from the mean speed distribution, and as
such ℓc determines the rate at which the speed changes.

Furthermore, we observe in Figure 11 thatD∗ shows different
power-law behaviors for Pe < Pec that can be related to the
scaling behavior of the distribution of mean flow speeds and
the transition time distribution. In the limit of infinite Pe, the
transition time distribution is given by (Equation 12). For finite
Pe, it is cut-off at the diffusion time τD. The log-slope of ψ(t)
at the cut-off time depends on the average flow speed 〈vm〉. This
is shown in Figure 12, which displays the distribution of purely
advective transition times rescaled by τv = ℓc/〈vm〉 for FS10 and
FS25. The behavior ofD∗ for Pe < Pec corresponds to the power-
law scaling of ψ(t) at dimensionless times equal to Pe. The slope
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FIGURE 12 | Distribution of advective transition times rescaled by τv for FS10

and FS25. The dimensionless cut-off time is Pe = τD/τv. The vertical lines

denote Pe = 10 (dashed lines), Pe = Pec (solid lines) and Pe = 4,000 (dot

line). The sloped lines denote the power-law behaviors t−2−α′ for Pe < Pec

with α′ = 0.38 and 0.79 for FS10 and FS25, respectively, and t−2−α for

Pe ≥ Pec with α = 0.23 and 0.37 for FS10 and FS25, respectively.

of the ψ(t) curves display the power-law behaviors t−2−α′ for
Pe < Pec with α

′ = 0.38 and 0.79 for FS10 and FS25, respectively.
For Pe ≥ Pec the values of α are similar to those reported in
Figure 9 for ft(t), pm(v) and D∗(Pe), i.e., α = 0.23 and 0.37 for
FS10 and FS25, respectively.

4. SUMMARY AND CONCLUSIONS

We performed numerical experiments of passive solute transport
for two sets of porous media mimicking a large range of
porosity and microstructures expected in sandstones. The aim
was to test the validity of the CTRW model, to explore how
the flow field characteristics are linked to the porous media
geometrical properties and to determine the scaling of asymptotic
dispersion coefficient D∗ with the Péclet number. The two
sets of six samples share similar porosity, ranging from 0.1
to 0.25, and the same permeability-porosity trend k(θ) but
displays distinctly different microstructures and thus dispersion
evolution.

The conceptual CTRW model of solute transport in porous
media, as the one proposed by Puyguiraud et al. (2021), infers
that solute spreading along particle paths is controlled by the
transition time of the solute particles which is determined by the
distribution of solute particle mean speeds pm(v), the velocity
decorrelation distance ℓc and diffusion. The effective tortuosity
factor that depends on Pe and on the advective tortuosity χa
(that can be also easily evaluated form the flow field) allows
mapping dispersion in the streamwise direction which is aligned

with themean pressure gradient.With decreasing Pe, the effective
tortuosity of the solute particles increases and the control of
pm(v) on dispersion decreases but remains important up to
high values of Pe because of the wide distribution of the
particles speeds toward low speed values. This means that for
heterogeneous media, such as sandstones, the pre-asymptotic
(non-Fickian) dispersion regime is likely to persist over long time
scales.

We found that the scaling properties, measured by the
coefficient α, predicted by Puyguiraud et al. (2021)’s model
are effectively measurable for all the 12 studied samples.
For instance, results shows that at high Pe, the tail of the
breakthrough curves, that is controlled by the low flow speeds,
scales as ft(t) ∼ t−2−α where α is given by the slope
of the mean speed distribution pm(v) ∼ vα−1, for v <

〈vm〉. As Pe decreases, diffusion eventually dominates over
low flow speeds, thus cuts off the power-law tail of the
breakthrough curves and leads to Fickian behavior from which
the asymptotic dispersion coefficient D∗ can be theoretically
evaluated (Van Genuchten and Wierenga, 1986). However, the
analysis of the displacement variance σ 2(t) indicates that D∗

cannot be measured experimentally at laboratory scale, for high
values of Pe, because the distance required for reaching the
asymptotic regime is orders of magnitude larger than what is
workable at laboratory scale. Thus, measuring experimentally
the value of α, for determining how D∗ scales with Pe seems
difficult.

The asymptotic dispersion coefficient D∗ was computed up
to the largest values of Pe expected for laminar flow in natural
environments. Results show that D∗/dm ∝ Pe2−α from Pec up
to the highest value of Pe (Pe = 4,000). Note that for the values
of α expected for such heterogeneous rock samples, neither the
trend D∗ ∼ Pe ln(Pe) (Saffman, 1959; Koch and Brady, 1985)
assuming that the distribution of flow speeds is flat (α = 1),
nor the trend D∗ ∼ Pe expected for α > 1 at high Pe

are expected. For 1 < Pe < Pec, D
∗/dm ∝ Pe2−α

′
where

α′ > α depends on the mean speed distribution and the speed
decorrelation distance ℓc that are the parameters that determine
the advective particle transition distribution and subsequently
the value of Pec. The mean particle speed remains correlated
for longer distances in porous media with straighter and larger
bonds (throats). As such ℓc is a good indicator of the complexity
of flow field, because it encompasses the effect of tortuosity
that ubiquitously decreases with increasing porosity and the
effect of the mean throat radius that ubiquitously increases with
porosity, while the other structural parameters are distinctly
different for the two sets of samples. Yet, when reported in term
of number of bonds length traveled before speed decorrelates,
it is observed that FS and FSD sets behave quite similarly; the
equivalent number of pores (intersection nodes) crossed before
losing the memory of the initial speed equals η − 1 and ranges
from about 1 for θ = 0.1 to about 3 for θ = 0.25. We
conjecture that the increase of the number nodes crossed before
speed decorrelates is linked to the speed changes caused by the
splitting of the flow at the network node and thus to both the
mean radius of the bonds and the coordination number κ . Similar
conjecture can be done for the distribution of the solute mean
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speed pm(v) which should be controlled by the speed changes
caused by splitting of the flow where throats are connected, as
it was anticipated by Alim et al. (2017) in numerical simulations
in 2-dimensional simple artificial networks. The structural and
hydrodynamic mechanisms that determine the flow distribution
in 3-dimensional porous media, focusing on the impact pore
size distribution, coordination number and local correlations
on the speed distributions will be discussed in a forthcoming
paper. Yet, from the results presented in this paper, one can
conclude that the flow distribution, and thus the mean speed,
are controlled by the distribution of fractions of fluid flowing
at each of the network nodes which in turn is determined by
the distribution of the throat radius (and not the mean) and
the coordination number. At given porosity and mean bond
radius the latter is controlled by the number of throats per unit
volume that increases with porosity for the FS set and decrease
with porosity for the FSD set of samples. We believe that these
results give a first insight into both the mechanisms and the
microstructural parameters that control dispersion in porous
media.
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