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Evapotranspiration (ET) is strongly influenced by gradual climate change and fluctuations

in meteorological conditions, such as earlier snowmelt and occurrence of droughts. While

numerous studies have investigated how climate change influences the inter-annual

variability of ET, very few studies focused on quantifying how subseasonal events control

the intra-variability of ET. In this study, we developed the concept of subseasonal regimes,

whose timing and duration are determined statistically using Hidden Markov Models

(HMM) based on meteorological conditions. We tested the value of subseasonal regimes

for quantitatively characterizing the variability of seasonal and subseasonal events,

including the onset of snow accumulation, snowmelt, growing season, monsoon, and

defoliation. We examined how ET varied as a function of the timing of these events

within a year and across six watersheds in the region. Variability of annual ET across

these six sites is much less significant than the variability in hydroclimate attributes

at the sites. Subseasonal ET, defined as the total ET during a given subseasonal

regime, provides a measure of intra-annual variability of ET. Our study suggests that

snowmelt and monsoon timing influence regime transitions and duration, such as earlier

snowmelt can increase springtime ET rapidly but can trigger long-lasting fore-summer

drought conditions that lead to decrease subseasonal ET. Overall, our approach

provides an enhanced statistically based framework for quantifying how the timing of

subseasonal-event transitions influence ET variability. The improved understanding of

subseasonal ET variability is important for predicting the future impact of climate change

on water resources from the Upper Colorado River Basin regions.

Keywords: evapotranspiration, intra-annual variability, climate change, statistics, Colorado River Basin

INTRODUCTION

Mountainous watersheds provide more than 60% of the world’s water resources through snowmelt,
and are thus recognized as “water towers” of the Earth (Viviroli et al., 2007; Immerzeel et al.,
2019). However, there are significant uncertainties regarding how climate-driven changes, such
as in temperature and precipitation, will influence the water cycle in these mountains systems
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(Immerzeel et al., 2019), and the impact on activities and
entities that rely on the region’s water. Studies have shown that
mountainous watersheds’ responses to climate change have been
greatly altered in the past few decades. Changes in temperature,
radiation, and precipitation patterns can greatly alter growing-
season length, the timing of snowmelt, defoliation, and plant
phenology, as well as crucially influence the hydrological
cycle, including evapotranspiration (ET). Recent global climate
models and studies have predicted significant increase in spring
temperatures in the Rocky Mountains by the end of this century,
which may result in significant earlier snowmelt and snowmelt-
driven runoff (Rauscher et al., 2008; Stocker et al., 2013;
Blankinship, 2014). Changes in the timing of snowmelt further
alter the intra-annual variability of other numerous processes.
Shorter growing seasons with decreased plant productivity
can occur, owing to decreased water availability from earlier
snowmelt and warmer summer temperatures (Ernakovich et al.,
2014). Earlier snowmelt also increases the probability of
occurrences of fore-summer (May–June) drought (Sloat et al.,
2015), which significantly decreases peak and cumulative net
ecosystem productivity (NEP) and ET. These studies focus on
different aspects of changes in hydroclimate, and strongly suggest
the necessity to describe intra-annual variability of watershed
processes qualitatively and quantitatively.

Evapotranspiration is sensitive to climate change. Quantifying
ET variability is essential to improving our understanding of
hydrologic cycling and increases our capacity for water- and
energy-resources management. Working in the Upper Colorado
River Basin, Condon and Maxwell (2019) simulated how ET and
streamflow respond to large-scale groundwater depletion under
synthetic climate change scenarios. Their study demonstrated
a significant ET decline in water-limited periods and shallow
groundwater regions. Foster et al. (2016) used an integrated
modeling approach to isolate the impacts of climate change on
Rocky Mountain hydrology. Their study suggested that phase
shifts in precipitation inputs from snow to rain, and changes
in energy-driven evaporative losses, were the most influential
controls on watershed hydrology, especially streamflow discharge
and ET. Fatichi and Ivanov (2014) investigated how fluctuations
of annual precipitation influenced ecohydrological dynamics
(including ET and plant productivity) through imposing four
scenarios characterized by different annual variabilities in
precipitation. Their findings suggested a relative insensitivity
of the subseasonal ET and vegetation productivity to annual
climatic fluctuations, except for in water-limited environments.
Thus, in addition to quantifying the inter-annual variability
of ET, we urgently need to incorporate subseasonal dynamics
and develop approaches that could quantitatively analyze the
subseasonal variability of ET.

Recent methods developed to quantify the subseasonal
variability of ET dynamics have utilized the Budyko framework
and its extensions, which distinguish energy-limiting vs. water-
limiting conditions for ET dynamics (Budyko, 1961; Zhang et al.,
2008). Zeng and Cai (2015) suggested that (1) precipitation
variability primarily influenced ET variance under hot-dry
climates; (2) variance in potential evaporation (PET) was the
limiting factor for ET variance under cold-wet climates; and

(3) both precipitation and PET were leading factors explaining
ET variance under moderate climates. Zeng and Cai (2016)
further emphasized the importance of terrestrial storage for
dampening ET variance in arid climates but strengthening
ET variance in humid climates. Similarly, Zhang et al. (2016)
examined the contributions of precipitation, reference ET, and
total water storage change to ET and streamflow variability under
different climate conditions, through a Budyko-based variance
decomposition framework. While these studies have provided
insights into ET variability with different climate zones, methods
based upon the Budyko hypothesis are restricted to the two
limiting conditions of soil moisture and energy inputs. Budyko-
based analysis cannot systematically consider other processes,
including timing and magnitude of snowmelt, drought, and
monsoons. For example, in mountainous watersheds such as
those in the Rocky Mountains, decline in ET due to earlier
snowmelt and the resulting fore-summer drought can possibly
be compensated by an earlier monsoon, leading to small or
no changes in annual ET. Alternatively, drought conditions
can be intensified by late arriving monsoons, resulting in
more severe vegetation loss and a decrease in ET and plant
productivity. Transitions and phase shifts among these processes,
such as timing of snowmelt, occurrences of drought, and
monsoon seasons, trigger significant intra-annual ET variability.
These disproportionate contributions caused by these transitions
and phase shifts cannot be quantified without identifying the
corresponding subannual processes.

In this study, we develop and test the value of a concept called
subseasonal regimes to delineate subseasonal transitions among
various hydroclimate processes and to better assess associated
ET dynamics. Each subseasonal regime was determined based
on the unique combination of statistical characteristics (e.g.,
amplitude and variance) of meteorological attributes, including
air temperature, radiation and precipitation inputs. Subseasonal
regimes characterize the distinct rate, duration, and process
of ET dynamics. In each subseasonal regime, we expect to
observe different ET behavior compared to other subseasonal
regimes. The duration of seasonal regime thus becomes a key
parameter for assessing the subseasonal variability of ET, as
well as a pivotal component that controls the annual variability
of ET.

The remainder of this paper is organized as follows. Section
Sites and Data briefly describes the sites and associated data
used in this analysis. Section Methods describes the subseasonal
regime construct and the statistical methods used to determine
the inter-annual variability and intra-annual variability of
ET. The results of this study and discussions are given in
section Results and Discussion, and a summary is provided in
section Summary.

SITES AND DATA

Study Sites
In this study, we focused on six sites in the Upper Colorado
River Basin, including three FLUXNET network sites (https://
fluxnet.fluxdata.org/) and three SNOTEL sites (https://www.wcc.
nrcs.usda.gov/snow/). The selection of these six sites enabled
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us to synthesize spatiotemporal heterogeneity and differences
in watershed dynamics. The three FLUXNET sites include the
Glacier Lakes Ecosystem Experiments Sites (US-GLE, Frank
et al., 2014), the Niwot Ridge site (US-NR1, Monson et al., 2002),
and the Valles Caldera Confer site (US-VCM, Litvak, 2016). US-
GLE is located in the Snowy Range of Wyoming at an elevation
of 3,197m. US-GLE is characterized as a wilderness-like site
with alpine and subalpine aquatic and terrestrial ecosystems
having evergreen needleleaf forests as a dominant vegetation.
US-NR1 is located in a subalpine forest ecosystem at 3,050m
elevation. It is characterized as having a subarctic climate and
evergreen needleleaf forests as the dominant vegetation. US-
VCM is located in the Jemez River basin in north-central New
Mexico at 3,030m elevation. The dominant vegetation for US-
VCM is also evergreen needleleaf. US-VCM experienced a stand-
replacing wildfire in May 2013, which led to big data gaps
in fluxes.

Three SNOTEL sites considered in this study include Butte
(ER-BT, id: 380), Porphyry Creek (ER-PK, id: 701), and Schofield
Pass (ER-SP, id: 737). These three sites are within the proximity
of the East River Watershed, CO, which is located within
the Gunnison Basin. The East River Watershed, a testbed for
the US Department of Energy Watershed Function Scientific
Focus Area Project (Hubbard et al., 2018), is characterized by
montane to alpine ecosystems with mixed vegetation over a
2,500–4,000m elevation span. The six sites considered in this
study encompasses diverse vegetation heterogeneity and are
characterized as the representative FLUXNET and SNOTEL
sites for the Upper Colorado River Basin. Figure 1 displays the
geographical locations of the three FLUXNET sites and three
SNOTEL sites considered in this study.

Data
Meteorological Forcing Data
In order to understand the influence of hydroclimate on ET
dynamics over multiple years, we focused on data collected
between 2005 and 2016, which captures the general temporal
variability of ET dynamics at these sites. At the three FLUXNET
sites (FLUXNET2015 Dataset), eddy covariance towers provided
half-hourly direct measurements of meteorological forcing data,
including air temperature, precipitation, and solar radiation,
which were aggregated into daily scales. At the three SNOTEL
sites in the East River Watershed, high quality meteorological
forcing data were obtained from https://wcc.sc.egov.usda.
gov/, including temperature and precipitation. We followed
approaches proposed by Oyler et al. (2015) to filter potential
systematic artifacts in air temperature data. Since solar radiation
data are not available at these three SNOTEL sites, we integrated
incident solar radiation from the DAYMET database (Thornton
et al., 2017). DAYMET data was also used to replace any missing
data. At US-VCM, meteorological forcing data from 2005 and
2007 and after the fire period were obtained from DAYMET.
Table 1 provides a statistical summary of meteorological forcing
attributes and climate Koeppen classification (Arnfield, 2017)
at these six sites. The six sites considered in this study are
representative of the Upper Colorado River Basin temperature
and precipitation variability.

FIGURE 1 | Geographical locations of the six sites selected in this study.

ER-BT, ER-PK, and ER-SP represent Butte, Porphyry Creek, and Scofield

Pass SNOTEL stations. US-GLE, US-NR1, and US-VCM are the three

FLUXNET sites considered in this study.

ET Data
At the FLUXNET sites, ET data were calculated from the
latent heat fluxes measured from eddy covariance towers.
Community land models (CLM) were developed for calculating
ET at both FLUXNET sites and SNOTEL sites in the East
River Watershed (Tran et al., 2019). A comparison between ET
estimated from CLM and direct measurements from the three
FLUXNET sites is provided in the Supplementary Materials

(Supplementary Figure 1, R2 >0.8, k > 0.94, p < 2.2e −

10, MAE < 0.25 mm for all three sites), and supports the
use of CLM ET estimates and their integration with direct
flux measurements. Community land model simulated results
were also used to append ET data at FLUXNET sites when
data availability became limited. At US-VCM, we used the ET
estimation from CLM to replace the post-fire dynamics after May
2013. Time series of ET after 2013 do not consider the effects
caused by fire at US-VCM. CLM ET estimates were used for ER-
BT, ER-SP, and ER-PK. Despite the high estimation accuracy of
CLM models observed at FLUXNET sites, augmented ET data
for FLUXNET sites and ET estimation from SNOTEL sites are
subject to any conceptual model and parameter uncertainties
inherited in CLM, however the use of CLM estimates does not
restrict the applicability of our approaches.

Palmer Drought Severity Index Data
The Palmer drought severity index (PDSI) estimates relative
dryness of watersheds using temperature and precipitation data.
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TABLE 1 | Summary characteristics of the six sites selected in this study.

Site ID Site Name Latitude Longitude Elevation (m) Air temperature

(C)

Rain precipitation

(mm)

Snow precipitation

(mm)

Climate

Koeppen

US-NR1 Niwot Ridge 40.0309 −105.5464 3,050 2.43 377 632 Dfc

US-GLE Glees 41.36653 −106.2399 3,197 0.80 234 855 Dfc

US-VCM Valles Caldera

Mixed Confiner

35.88845 −106.53211 3,030 4.70 397 284 Dfb

ER-BT Butte 38.894 −106.945 3,096 2.38 342 564 Dfc

ER-SP Schofield Pass 39.02 −107.05 3,261 1.97 392 784 Dfc

ER-PK Porphyry Creek 38.49 −106.34 3,280 2.46 267 368 Dfc

Palmer drought severity index values have been reasonably
successful in capturing long-term drought conditions. We
obtained PDSI time series (monthly scale) at the six watersheds
from Abatzoglou et al. (2018), which enabled us to quantify
drought influence over subseasonal ET dynamics. We selected
June-PDSI values to quantify fore-summer drought conditions;
then classified droughts into the following categories, based on
U.S. Drought Monitor classifications:































Exceptional drought : PDSI ≤ −5
Extreme drought :−5 < PDSI ≤ −4
Severe drought : −4 < PDSI ≤ −3

Moderate drought : −3 < PDSI ≤ −2
Abnormally dry : −2 < PDSI ≤ −1

Normal or wet : PDSI > −1

METHODS

In this section, we start with introducing the concept of
subseasonal regimes. The crux of subseasonal regime approach—
Hidden Markov Model—is explained in section Hidden Markov
Models. Hypothesis testing [e.g., analysis of variance (ANOVA)
and Tukey’s tests] is used to estimate the heterogeneity of
meteorological forcing attributes and ET in both space and time
and is presented in section ANOVA and Tukey’s Test.

Subseasonal Regimes
Subseasonal regimes represent the period of time that has
distinguishable combinations of statistical characteristics—
meteorological forcing attributes and ET-values—compared to
other subseasonal regimes, which physically represent the
duration and occurrence of subseasonal events, such as snow
accumulation, snowmelt, growing season, monsoon season,
and defoliation periods. The concept of subseasonal regime is
developed to capture subseasonal variability in meteorological
forcing variables and ET dynamics. Subseasonal regimes are
determined statistically using the Hidden Markov Models
(HMM) and the number of subseasonal regimes are optimized
based on statistical metrics (e.g., Akaike information criterion
and Bayesian information criterion). Figure 2 summarizes the
steps to identify subseasonal regimes and use subseasonal
regimes to analyze inter- and intra-annual variability of ET. The
subseasonal regime approach depends on input data quality.
Thus, the first step is to clean FLUXNET datasets and SNOTEL

datasets and prepare necessary input parameters. Data QA/QC
steps are necessary to ensure the input data quality and
reduce errors in regime identifications and further analysis.
Hidden Markov Model is the applied to statistically identify the
subseasonal regimes for each site and each year. The number of
subseasonal regimes is optimized statistically. In this study, five
regimes were selected as it has the smallest Akaike information
criterion and Bayesian information criterion.

Statistical regime probability and transition are then used
to physically explain the impact of subseasonal events on ET
dynamics. With subseasonal regimes being determined from
the HMM, we define subseasonal cumulative ET (Ri ET)
that represents the contribution of ET from each individual
subseasonal regime to annual cumulative ET, as indicated in
Equation (1), where ETRi is the regime-mean ET (mm/d) and
durationRi represents the duration of subseasonal regime Ri in
m unique subseasonal regimes.

Ri ET = ETRi ∗ durationRi (1)

Annual ET ∼=

i=m
∑

i=0

Ri cumulative ET

=

i=m
∑

i=0

ETRi ∗ durationRi (2)

Hypothesis testing methods, such as ANOVA and Tukey’s test,
are applied to further delineate the impacts of droughts on
inter- and intra-annual variability of ET dynamics. The overall
subseasonal regime approach holistically incorporates the onsets
of multiple watershed dynamics and assess the impacts of fore-
summer drought on the subseasonal variability of ET.

Hidden Markov Models
Hidden Markov Models is a statistical model in which the
system being modeled is assumed to be a Markov process with
unobserved (i.e., hidden) states. Among many other studies,
HMM has been used to characterize mechanistic reaction
networks of uranium transport in a contaminated aquifer (Chen
et al., 2013), reconstruct streamflow (Bracken et al., 2014, 2016),
and predict spatiotemporal variability in precipitation (Foufoula-
Georgiou and Lettenmaier, 1987; Zucchini and Guttorp, 1991).
Here we follow notations employed in Chen et al. (2013) and
Zucchini and MacDonald (2009) to present a brief summary
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FIGURE 2 | Schematic steps for the subseasonal regime approach.

of HMM. For observed time series of hydroclimate attributes
(Xt , t = 1, 2, . . . , T, i.e., air temperature, precipitation, and
radiation), we define a subseasonal regime variable Rt , t =

1, 2, . . . , T, where Rt takes values from 1, 2, . . . , m, which
representsm unique subseasonal regimes. The emission (output)
probabilities are used to relate “subseasonal regimes” with the
observed measurements (i.e., meteorological forcing attributes),
and are modeled by state-dependent probability distributions:

pi (x) = P (Xt = x|Rt = i) (3)

A first-order Markov process has been assumed to represent the
time series behavior of measurements and subseasonal regimes,
which are presented as follows.

P (Rt|R1,R2, . . . , Rt−1) = P (Rt|Rt−1) , t = 2, 3, . . . , T (4)

P (Xt|X1,X2, . . . , Xt−1, R1, R2, . . . , Rt)

= P (Xt|Rt) , t = 2, 3, . . . , T (5)

The transitional probability matrix denotes the probabilities of
transitions between subseasonal regime i to subseasonal regime j,
and are expressed as:

γjk = P
(

Ri+1 = k
∣

∣Ri = j
)

(6)

where R denotes a subseasonal regime determined from HMM.
If k = j, then no transition of the subseasonal regimes occurs in
the time domain. In order to estimate the unknown parameters,
the likelihood function is derived, which is the joint conditional
probability distribution of all the data given unknown parameters
with the initial probability of unknown subseasonal regime.
The unknown parameters (including subseasonal regimes) can
be determined using the Expectation-Maximization algorithm.
More details about deriving the likelihood function and the
E-M algorithm can be found in Dempster et al. (1977) and
Zucchini and Guttorp (1991). Additional resources on HMM
can be found at Zucchini and MacDonald (2009). We used the

package “depmixS4” in R developed by Visser and Speekenbrink
(2010) for implementation.

In this study, we used air temperature, soil temperature, and
radiation as inputs to HMM. In addition, a categorical variable
(sn) that represents hydrological dynamics is also included as
an input. The variable sn is determined based on the time
series of air and soil temperature, as well as precipitation data.
It provides a proxy for peak snow day, bareground day, and
effective monsoon day, which represent the day with maximum
snow depth, the first day of snow disappearance, and the
first day that has monsoon precipitation >10mm, respectively.
sn provides indirect information about infiltration, vegetation
growth, snowmelt timing, and start of monsoon season.

sn=























0; if air temperature < 0◦C
1; if air temperature > 0◦C and soil temperature < 0◦C

2; if temperatures > 0◦C
3; if temperatures and precipitation < 10mm

4; if monsoon precipitation > 10mm

(7)

We assumed a Gaussian distribution for the emission probability
pi (x) = N(µi, σ 2

i ) for air temperature, soil temperature,
and radiation inputs. Figure 3 displays hypothesized seasonal
events, wherein we characterize any year into regimes of snow
accumulation, snowmelt, growing season, monsoon season, and
defoliation season. The onset of subseasonal events depicted
by subseasonal regimes are selected based upon the mode of
1,000-HMM simulations with the optimal information criterion
(Akaike, 1974; Schwarz, 1978).

Analysis of Variance and Tukey’s Test
We applied ANOVA to test the null hypothesis that the mean
values of meteorological forcing attributes and ET from the
six sites do not vary significantly. A test statistic (e.g., F-
statistics) is calculated and used to calculate a p-value, which
is compared to a preset significance level (0.05 in this study).
When the p-value is smaller than the significance level, the null
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FIGURE 3 | Example subseasonal regimes (Ri ) within a year, which could include snow accumulation, snow melt, growing season, monsoon, and defoliation. Xi
represents the data used to determine subseasonal regimes and follow a statistical distribution denoted by F (µi , σ 2

i ). µi and σ 2
i are the mean and variance of Xi under

specific subseasonal regimes, respectively.

hypothesis is rejected. Rejecting the null hypothesis indicates
that the differences in hydroclimate attributes and ET across
different sites are unlikely to be random. Analysis of variance
is not capable of identifying which location or which year is
statistically different from the other locations or years when the
null hypothesis is rejected. Hence, Tukey’s test (Tukey, 1949) is
also used to further determine pairwise differences across the
six sites. This test is based on a studentized range distribution
to determine whether or not to reject the null hypothesis.
Failing to reject the null hypothesis indicates that the mean of
the two pairs are not significantly different from each other.
We also applied linear regression to determine the trends of
meteorological forcing and ET over time under climate change.
The slope coefficient represents the rate of change in attributes
over years. A goodness of fit test is usually performed, together
with linear regression, to determine if such a slope coefficient
is statistically significant, which indicates whether the trend of
meteorological forcing or ET dynamics is statistically significant
under climate change.

RESULTS AND DISCUSSION

In this section, we first present the spatial heterogeneity and
temporal variability observed inmeteorological forcing attributes
and ET data across the sites selected in this study (section
Non-linear Interactions Between Meteorological Forcing and
ET Dynamics). Then we explore the characteristics of each
subseasonal regime (section Characteristics of Subseasonal
Regimes), including the underlying dominant processes in
each subseasonal regime (section Intra-Annual Variability
of ET). In section Timing and Duration of Subseasonal
Regime as the key Controls for Subseasonal Cumulative ET
and Annual ET, we provide an analysis of the subseasonal
variability in ET through subseasonal cumulative ET based on
subseasonal regimes. Section Linking Subseasonal Regimes With

Dynamics Observed in the Physical Environment explains the
linkage between subseasonal regimes and watershed dynamics
observed in the physical environment. In section Assessing
ET Inter-Annual Variability Through Identifying Regime-Based
Contributions, the last section, we document how determination
of subseasonal regimes can improve our understanding of
subseasonal ET variability.

Non-linear Interactions Between
Meteorological Forcing and ET Dynamics
The six sites selected in this study cover a wide range of
annual mean air temperatures, annual rain precipitation, annual
snow precipitation, annual mean solar radiation, annual ET,
and annual P-ET (Figure 4). We observed approximately a
5◦C difference in the annual mean temperatures between US-
VCM and US-GLE; a 500mm difference in snow precipitation
between US-VCM and US-GLE; and a 100mm difference in
rain precipitation between US-NR1 and ER-PK. Meteorological
forcing attributes (e.g., precipitation, temperature, and radiation)
across the sites exhibited much larger variability than did annual
ET. Analysis of variance with annual ET data rejected the null
hypothesis, which suggested that at least the mean of annual ET
in one of the six sites was statistically different from the others.
Tukey’s test further indicated, with a 95% family-wise confidence
level, that there were no statistical differences in annual ET
between the following pairs: ER-SP and ER-BT, US-NR1 and
ER-BT, US-VCM and ER-BT, US-NR1 and ER-SP, US-VCM and
ER-SP, US-GLE and ER-PK, and US-VCM and US-NR1. Table 2
displays the results from the Tukey test on annual ET.

The variability in meteorological forcing at tributes across
these sites is influenced by their latitudes, elevation, and
other local-scale factors. For example, we observed highest air
temperature at US-VCM, followed by the three SNOTEL sites
and US-NR1, with US-GLE having the lowest air temperature.
On the other hand, maximum annual solar radiation was
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FIGURE 4 | Spatial variability in attributes air temperature (A), rain precipitation (B), solar radiation (C), and snow precipitation (D) as well as ET (E) and P-ET (F)

across the six sites.

observed for US-GLE, followed by SNOTEL sites and US-
NR1, with US-VCM as the lowest. Rain precipitation and snow
precipitation across these six sites are complex. We observed
greater rain precipitation at US-NR1 and US-VCM, whereas
ER-PK had the relatively smallest annual rain precipitation.
Largest snow precipitation was observed at US-GLE and ER-
SP, whereas lowest snow precipitation generally occurred at US-
VCM. Although these six sites are all located in the Colorado
River Basin region, they span a wide range of latitudes, leading

to significant differences in their energy inputs, as well as their
precipitation inputs. Spatial variability in snow precipitation and
total precipitation minus ET (P – ET) is also linked with energy
inputs and latitudes, whereas we observed the greatest snow
precipitation and P – ET at US-GLE, followed by US-NR1, with
US-VCM having the lowest snow precipitation and P – ET.
However, this relationship became much more complex when
we further considered the three SNOTEL sites that have similar
latitude. We observed similar annual snow precipitation between
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TABLE 2 | Tukey’s test result indicates differences in annual ET for certain pairs at family-wise 95% level.

Site 1 Site 2 Difference in mean annual ET (mm) Lower bound (mm) Upper bound (mm) p-Value Significant

ER-SP ER-BT −0.74 −39.55 38.07 0.99 No

ER-PK ER-BT −78 −116.83 −39.21 0.00 Yes

US-NR1 ER-BT 21.47 −17.34 60.28 0.59 No

US-GLE ER-BT −55.65 −94.46 −16.84 0.00 Yes

US-VCM ER-BT 36.33 −2.48 75.15 0.08 No

ER-PK ER-SP −77.28 −116.09 −38.46 0.00 Yes

US-NR1 ER-SP 22.21 −16.60 61.02 0.55 No

US-GLE ER-SP −54.91 −93.72 −16.10 0.00 Yes

US-VCM ER-SP 37.07 −1.74 75.89 0.07 No

US-NR1 ER-PK 99.49 60.68 138.30 0.00 Yes

US-GLE ER-PK 22.34 −16.44 61.18 0.54 No

US-VCM ER-PK 114.35 75.54 153.17 0.00 Yes

US-GLE US-NR1 −77.12 −115.93 −38.31 0.00 Yes

US-VCM US-NR1 14.86 −23.95 53.68 0.87 No

US-VCM US-GLE 91.98 53.17 130.80 0.00 Yes

Significance level is set at 0.05.

ER-SP andUS-GLE; ER-BT andUS-NR1; however, annual P – ET
of ER-BT was closer to US-VCM. Despite significant differences
in energy and precipitation patterns among these sites, we
observed some similarity in the temporal distribution of annual
ET between US-NR1 and US-VCM; ER-BT and ER-SP; and ER-
PK and US-GLE. These findings emphasize the importance of
exploring subseasonal variability when investigating controls on
ET dynamics.

Characteristics of Subseasonal Regimes
In this section, we present the statistical summary of
meteorological forcing attributes determined for each
subseasonal regime, and demonstrate the physical representation
of each determined subseasonal regime and how dynamic
changes in hydroclimate govern ET dynamics. With the
proposed framework, six subseasonal regimes (R0–R5) that
have distinct statistical characteristics in meteorological forcing
attributes and ET were determined. Figure 5 presents the
subseasonal regime-based distribution of air temperature
(Figure 5A), solar radiation (Figure 5B), rain precipitation
(Figure 5C), snow precipitation (Figure 5D), ET (Figure 5E),
and net precipitation minus ET (Figure 5F) across all six sites
and years considered.

Starting in January, subseasonal R0 usually represents the
snow accumulation period when the watershed is covered
by snow, which has minimum temperature, minimum solar
radiation, and minimum ET. The duration of R0 is largely
controlled by snow precipitation and the effective accumulation
of snow during the winter time. During R0, positive P – ET is
observed. Because plants are lacking adequate light, temperature,
and moisture conditions to grow, most of the snow precipitation
is consumed by other processes rather than supporting plant
growth and evapotranspiration. Toward the end of R0, as
temperature reaches above the freezing point and solar radiation
increases, R0 and R1 transition happens following the start of
snowmelt. During R1, soil moisture supplied from melted snow

supports nutrient transport in the subsurface (Sorensen et al.,
2020). However, due to limited energy conditions (e.g., low
air temperature), R1-based ET is still very small (∼1.6 mm/d).
Compared to R0 and R5, we observe a decrease in P – ET due to
higher potential evaporation, resulting from increasing radiation
inputs. Snow disappearance usually occurs at the end of R1;
the bareground date is highly correlated with the day of R1-
R2 transition. Duration of R1 is important, for it controls the
amount of soil moisture from snowmelt that can be potentially
used to support vegetation growth during the subsequent
growing season. During R1, snowmelt water also contributes
to groundwater and stream recharge. R2 and R3 correspond to
the growing season, and experience greater variability in ET.
R2 represents the period of time during which the watershed
experiences maximum radiation, supporting vegetation growth.
At the beginning of R2, the rate of vegetation growth is very high,
owing to ambient soil moisture from snowmelt and radiation,
where we observed an increase in ET. We observed the largest
ET but the smallest P – ET in R2. With combinations of earlier
snowmelt and later monsoon, decreases in R2-mean that ET
occurs, which could lead to drought conditions (as described
in section Assessing ET Inter-Annual Variability Through
Identifying Regime-Based Contributions). The decreases in R2-
mean that ET has been associated with fore-summer droughts
(Sloat et al., 2015; Wainwright et al., 2020). Correspondingly,
earlier R1–R2 transition (earlier snowmelt) is usually associated
with small R2-mean ET. R2–R3 transition is controlled by the
first effective monsoon, which greatly reduces the potential
for drought conditions posed in R2. Compared to R2, R3
has the highest rain precipitation inputs, and these monsoon
precipitation events provide additional water supply for ET that
supports both plant transpiration and soil evaporation. With the
increasing precipitation inputs, we observed that R3 P – ET
fluctuates around 0, compared to −2 in R2. This result indicates
that monsoon precipitation during R3 is necessary for plants to
survive potential droughts.
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FIGURE 5 | Summary of subseasonal regime-based characteristics of daily air temperature (A), solar radiation (B), rain precipitation (C), snow precipitation (D), ET

(E), and precipitation minus ET (F) at all six sites in this study.

The R3 and R4 transitions usually take place in late autumn
and correspond to the defoliation period, when temperature and
radiation is low. During this period, most plants are adapting to
winter dynamics, and ET declines. Though rainfall precipitation
still occurs in R4, this moisture input does not contribute to

ET because of energy limiting conditions and limited plant
productivity. During this period, we observed net positive P –
ET, indicating the additional precipitation inputs do not entirely
contribute to ET, as energy becomes the limiting factor. R4-
R5 transition is triggered when temperature decreases to the
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freezing point. R5 marks the start of winter, when the ecosystem
has minimum ET and extends to R0 in the following year until
snowmelt initiates the transition to R1. Due to the limited plant
functionality and evaporative demands, the overall contributions
of ET from R4, R5, and R0 are very small compared to snowmelt,
growing season, and monsoon subseasonal regime.

Intra-annual Variability of ET
Within-regime cumulative ET, calculated based on subseasonal
regimes, provides a quantitative approach for assessing intra-
annual variability in ET dynamics under different subseasonal

regimes over space and time. Figure 6 displays the within-
regime cumulative ET based on the corresponding subseasonal
regimes across the six sites determined in this study. Comparing
within-regime cumulative ET enables the quantification of the
contributions from each subseasonal regime to annual ET,
while distinguishing the unique roles of these dynamics in
controlling the intra-annual variability of ET. For example, at
a 95% confidence interval for within-R2, cumulative ET at US-
NR1 and US-VCM are 146 ± 18 and 120 ± 27 mm, which
account for 29.8% ± 5% and 22.5% ± 5% of the total annual
ET, respectively. Within R3, cumulative ET at US-NR1 and

FIGURE 6 | Subseasonal regime dependent partitioning of ET. Numbers within each column represents the amount of within-cumulative ET.
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US-VCM are 172 ± 28 and 243 ± 44 mm, which accounts for
30.1%±5.5% and 41.0%±6% of the total annual ET, respectively.
We also observed significant fluctuations in annual ET, within-
regime ET, and regime durations across the six watersheds. For
example, at US-NR1 and US-GLE, we have identified stronger
contributions in annual ET from within-R0 and within-R1 ET,
whereas within-R3 ET is significantly stronger at US-VCM than
US-NR1 and US-GLE. Correspondingly, the longest duration of
R3 was observed at US-VCM, whereas the longest duration of
R1 occurs at US-GLE and US-NR1 (Supplementary Figure 2).
These comparisons further distinguish the effects of regimes
in regulating intra-annual variability of ET across these Rocky
Mountain watersheds.

The dynamics of meteorological forcing attributes extend
or shorten the duration of subseasonal regimes, and thus re-
partition the annual cumulative ET into different subseasonal
regimes. At ER-BT, within-R1 cumulative ET varies from 64
to 126mm, and within-R2 cumulative ET varies from 77 to
187mm where annual ET ranges from 446mm (year 2011) to
579mm (year 2015), during the years considered in this study.
Through comparing the within-regime cumulative ET between
2011 and 2015, we determined that the differences in annual
ET mainly resulted from within-R3 cumulative ET (124 vs.
233mm). This indicates that adequate precipitation events and
radiation inputs during the prolonged monsoon season in 2015
were the major drivers that led to the discrepancy in annual ET
between 2011 and 2015, whereas ET dynamics during snowmelt
periods, growing season, and other regimes are similar in these
two years. These results indicate that differences in annual ET
result from significant changes in sub-annual variability, whereas
regime duration and transitions control the cumulative within-
regime ET.

Timing and Duration of Subseasonal
Regime as the Key Controls for
Subseasonal Cumulative ET and Annual ET
The magnitude of each subseasonal cumulative ET contributes
to annual ET. Duration of subseasonal regimes and regime-
mean ET control subseasonal cumulative ET, and thus influence
the inter-annual variability of annual ET. Figure 7 presents
the correlation between subseasonal regime duration and
subseasonal cumulative ET. At each subseasonal regime, ET
fluctuates around its regime-mean ET, which is relatively
constant across various years and sites (k in Figure 7). Thus,
the duration of subseasonal regimes is an important factor
that leads to spatiotemporal variability in annual ET. Earlier
snowmelt and extended fore-summer drought reshape the
duration of subseasonal regimes, which further influences annual
ET. Considering all years and sites, high correlations between
regime durations and subseasonal cumulative ET were observed
for R0–R5, which suggested an overall similarity in within-
regime ET across the various sites. Regime-mean ET for R0–
R5 is at 1.1, 1.5, 2.4, 2.7, 0.96 and 0.55 mm/d respectively.
The prolonged durations of R2 and R3 increase the annual
ET due to high regime-mean ET in R2 and R3. Adequately
prolonged duration of R0 and R5, caused by higher snow

precipitation and colder winter, increases R0 and R5 duration and
delays R1-R2 transition and snowmelt, which provide sufficient
water supply during high solar radiation, leading to an overall
increase in annual ET. However, if the duration of R0 and R5
becomes excessive, it significantly decreases R2 and R3 duration
and reduces annual cumulative ET. Further, ET dynamics also
experience compensatory effects from these two subseasonal
regimes (i.e., extended R2 and shortened R3 vs. shortened R2 and
extended R3), leading to minor differences in annual ET (further
explored in section Assessing ET Inter-Annual Variability
Through Identifying Regime-Based Contributions). Finally, it
can be noted that although the inferred k values (regime-mean
ET) from regression between subseasonal cumulative ET and
regime durations provide a statistical baseline for ET level, we
observed a larger spread around the regression line, especially for
R2 and R3. This spread indicates stronger site dependency linked
to unique energy and moisture availability. Thus, characterizing
the ET dynamics individually at each site is particularly needed
during R2 and R3.

Linking Subseasonal Regimes With
Dynamics Observed in the Physical
Environment
The regime-based approach is advantageous, because it
holistically incorporates multiple watershed dynamics (e.g., the
onset of snowmelt and monsoon, air temperature) to determine
the intra-annual variability dynamics. Figure 8A presents
the inter-annual variability of data-based indices, including
bareground date, day of minimum net ecosystem exchange
(NEE), day of maximum gradient in soil temperature, day of
maximum soil moisture at US-NR1 supported by FLUXNET
data, where R0–R1 and R1–R2 transition date were also used
for comparison. In Figure 8B, we observed a high correlation
between R0–R1, R1–R2 transition date and process-based
indices, including bareground date, day of minimum NEE, day
of maximum gradient in soil temperature, and day of maximum
soil moisture. Though regime transition dates were identified
statistically, they provided proxies for processes that are difficult
to quantify over space and time. For example, date of R0–R1
transition is related to the start of snowmelt processes and
infiltration into the subsurface. The R1–R2 transition date
provides an integrated proxy of bareground date and start of
vegetation growth with maximum soil moisture.

We used the data at US-NR1 as an example to further illustrate
the coherence between various observations in the physical
environment and assessed how they’re related to the timing of
subseasonal regimes based on statistics. Supplementary Figure 3

presents the time series of snow water equivalent (SWE), ET,
soil temperature, and soil water content of 2008 and 2012
at US-NR1. Significant consistency in all these processes was
observed, including date of maximum snow depth, first day of
snow disappearance (bareground date), and day of air and soil
temperature above 0◦C. This result indicates that changes in
snow dynamics are correlated with changes in other dynamics,
such as soil temperature and ET. Correlations in watershed
dynamics have been reported in other studies. For example, (1)
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FIGURE 7 | Correlation between subseasonal regime duration and regime cumulative ET. Colored points represent different sites. Colored lines are regression lines for

each subseasonal regime between regime cumulative ET and subseasonal regime duration. k-values measure regime-mean ET [mm/day].

FIGURE 8 | Coherence between hydrological indices, R0–R1, and R1–R2 transitions at US-NR1: (A) presents the annual series of bareground date (Bg_date), day of

minimum net ecosystem exchange (NEE), day of maximum gradient in soil temperature (SoilT), day of maximum soil moisture (VWC), R0_R1 transition, and R1_R2

transition; (B) depicts the correlation plot among these variables.
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soil moisture dynamics and the timing of snowmelt are highly
correlated (Harpold and Molotch, 2015); (2) dynamic changes
in meteorological forcing also lead to temporal variations in
ecosystem respiration and gross primary production (Knowles
et al., 2016; Berryman et al., 2018); and (3) fore-summer drought
occurrences are also highly linked with the timing of snowmelt
and shifts in energy inputs (Sloat et al., 2015; Wainwright
et al., 2020). Thus, regime-based approaches provide avenues
for quantitatively unifying various influential processes to better
evaluate ET dynamics.

Assessing ET Inter-annual Variability
Through Identifying Regime-Based
Contributions
Regime-based consideration of intra-annual variability of ET
explains the seasonal driver of inter-annual variability of ET
across sites. At ER-BT, earlier snowmelt led to approximately
3 weeks earlier R0–R1 transition in 2012 (75th day) compared
to 2008 (99th day), where snowmelt did not start until April.
R1–R2 transition is 2 weeks apart between 2008 (153th day) and
2012 (137th), due to different rates of snowmelt and the onset of
snowmelt (Supplementary Figure 2). R2–R3 transition occurred
at the 205th and 189th day in 2008 and 2012, respectively.
The earlier R2–R3 transition in 2012 resulted from the earlier
arrival of monsoon precipitation, which also relieved the effect of
fore-summer drought. Correspondingly, significant differences
in subseasonal cumulative ET between 2008 and 2012 were
observed, including a +27mm differences in R0 cumulative ET,
−28mm differences in R1 cumulative ET, +53mm differences
in R2 cumulative ET and a – 31mm difference in R3 cumulative
ET. These results showed that the intra-annual variability of ET
can vary strongly between 2 years, while annual ET can remain
quite similar. Annual ET in 2008 and 2012 was equal to 493
and 474mm, respectively. This result indicates that annual ET
differences are compensated by different subseasonal cumulative
ET that is controlled by different seasonal drivers. Ambient
moisture from later snowmelt contributed more ET during
snowmelt and the growing season in 2008, whereas monsoon
precipitation played a more essential role in sustaining ET and
plant growth in 2012.

At the other Colorado sites (i.e., ER-SP, ER-PK, and US-NR1)
and US-VCM, we observed a similarly early R0–R1 and R1–R2
transition in 2012 compared to 2008. However, at US-GLE, R0–
R1 and R1–R2 transitions were not the same as observed at the
Colorado sites. US-GLE had longer R0 and R1 durations, likely
due to its higher latitude and more accumulation of snow during
winter, which also caused later R0–R1 and R1–R2 transitions
compared to lower latitude sites. At US-GLE, the annual ET
was 439mm for 2008 and 417mm for 2012. Though the R0–
R1 transition between 2008 and 2012 was not as different as
at the Colorado sites, different contributions from within-R2
and within-R3 ET resulted in overall differences in annual ET.
Similarly, at US-VCM, differences in annual ET between 2008
and 2012 were largely caused by R2 cumulative ET (145mm in
2008 vs. 95mm in 2012).

Regime-based approaches further delineate fore-
drought impacts on inter- and intra-annual variability

of ET dynamics. Considering all sites and years, we
observed no significant relationships between annual
ET and fore-summer drought occurrence. For example,
annual ET differences between severe drought years and
normal/wet years across all sites range from−89 to 63mm
(Supplementary Table 1; Supplementary Figure 4). However,
significant differences in annual P – ET between normal/wet
years and extreme/exceptional drought years across all
sites were observed and expected (Supplementary Table 2;
Supplementary Figure 4). In addition, Supplementary Figure 4

presents the distribution of regime-mean P – ET across
different drought levels. During R1, excessive snow precipitation
distinguished normal/wet years from other dry years in P – ET;
however, R1 ET is not significantly different in normal/wet and
dry years, as moisture is not yet the limiting factor. Snowmelt
water is the major contributor for R2 ET. We found slightly
greater R2 ET in normal/wet years compared to other dry years
that experience fore-summer droughts, and a significant decline
in R2 ET was observed for exceptional drought years. During the
exceptional dry years, both P and ET were very small, and P – ET
is closer to 0. In R3, P – ET across drought conditions fluctuates
around 0, indicating the relative balance between monsoon
precipitation and ET. These results indicate that excessive
snow precipitation during normal/wet years is not effectively
contributing to ET and is more important for other hydrological
pathways (e.g., streamflow). During drought years, additional
precipitation (especially monsoon) plays a vital role in restoring
ET and compensating for the loss of ET during the preceding
dry periods. Carroll et al. (2020) found that drought conditions
modify monsoon precipitation’s contributions to ET and
streamflow. Their study suggested that monsoon precipitation
is mainly effective in moistening dry soil and sustaining ET at
lower subalpine forests during dry years, while being the primary
contributor to streamflow generation under normal/wet year
conditions. Timing and location of monsoon water input with
respect to energy and water availability remain as the key factors
for ET and streamflow generation during these periods. At the
Sierra Nevada critical zone, Bales et al. (2018) also discovered
that trees can access groundwater during drought conditions,
leading to minor fluctuations in ET compared to normal/wet
years. Though annual ET may remain similar across different
drought conditions, contributions to ET from different regimes
can change significantly, indicating shifts in the dominant
drivers for subseasonal ET dynamics. With the projected earlier
snowmelt (Barnhart et al., 2016) and increasing uncertainties
in North American monsoon (Notaro and Zarrin, 2011) in the
Rocky Mountain regions, we believe regime-based approaches
can better quantify these changes in meteorological conditions,
as well as provide us with informative insights to better quantify
climate change’s influence on ET dynamics.

SUMMARY

In this study, we developed the framework of subseasonal
regimes to better characterize the intra-annual variability of
ET dynamics at mountainous watersheds. With this method,
we were able to delineate subseasonal regimes associated with
snow, snowmelt, growing season, monsoon, and defoliation. Our
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proposed framework of subseasonal regimes has the advantage of
being able to quantitatively distinguish the distinct contribution
from intra-annual dynamics to inter-annual variability, as well
as assess the contribution of seasonal events important for
water and energy resources management. Our approach provides
a unique perspective, delineating how watershed processes
(including droughts) control the intra-annual variability of ET.

Regime-mean ET is relatively constant across all years and
the six watersheds. Subseasonal regime duration and occurrences
of regime transition are the pivotal factors that lead to the
magnitude of annual cumulative ET. Our study also suggests
that the subseasonal variability of ET indicated by subseasonal
regimes is as significant as or even greater than the inter-site and
inter-annual variability of ET along the Colorado River Basin
regions. Quantifying subseasonal variability enables insights
regarding the cause and effect between long-term climate change
trends and ET dynamics.

We also investigated how drought conditions affect both the
inter-annual and intra-annual variability of ET dynamics. Our
results suggest annual ET variability remains small considering
all six watersheds across different drought levels, whereas
annual P – ET differs significantly between normal/wet years
and severe drought years. Snowmelt water is necessary for
ET dynamics during R2 for both normal/wet and dry years,
but earlier snowmelt and occurrence of exceptional fore-
summer drought can lead to significant decline in R2 ET.
The role of monsoon precipitation also changes between
normal/wet years and dry years. In relatively dry years, monsoon
precipitation is effectively sustaining ET (especially R3 ET),
whereas excessive precipitation is less influential for ET during
energy-limiting conditions. These results suggest the necessity
and value of regime-based approaches to better evaluate how
watershed processes and dynamic changes in drought conditions
influence the inter-annual and intra-annual variability of
ET dynamics.

The subseasonal-regimes construct described here is mainly
based on certain meteorological forcing attributes. We note

that incorporation of additional informative parameters, along
with the right choice of statistical distribution for the emission
probability (such as NDVI as a proxy for plant status or soil
moisture as a proxy for subsurface moisture stress), could further
help to delineate subseasonal regimes that cover additional
aspects of watershed processes. Though not assessed in this
current study, we believe that the subseasonal regime approach
is sufficiently general and extendable to quantify the subseasonal
variability of other hydrological and ecological processes at
other sites.
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