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Wastewater treatment demands management of influent conditions to stabilize

biological processes. Generally wastewater collection systems lack advance warning

of approaching water parcels with anomalous characteristics, which could then be

diverted for testing or pre-treatment. A major challenge in achieving this goal is

identifying anomalies against the complex chemical background of wastewaters. This

work evaluates unsupervised clustering methods to characterize “normal” wastewater

characteristics, using >17 months of 10-min resolution absorbance spectrometry data

collected at an operating wastewater treatment facility. Comparison of results using

K-means, GMM, Hierarchical, and DBSCAN clustering shows minimal intra-cluster

variability achieved using K-means. The four K-means clusters include three representing

99% of samples, with the remaining cluster (<0.3% of samples) representing

atypical measurements, demonstrating utility in identifying both underlying modalities of

wastewater characteristics and outliers. K-means clustering provides a better separation

than grouping based on factors such as month, precipitation, or flow (with 25% overlap

at 1-σ level, compared to 93, 93, and 83%, respectively) and enables identification of

patterns that are not visible in factor-driven grouping, e.g., shows that summer and

November months have a characteristic type of behavior. When evaluated with respect to

wastewater influent changes occurring during the SARS-CoV-2 pandemic, the K-means

approach shows a distinct change in strength of diurnal patterns when compared to

non-pandemic periods during the same season. This method may therefore be useful

both as a tool for fast anomaly detection in wastewaters, contributing to improved

infrastructure resilience, as well for providing overall analysis of temporal patterns in

wastewater characteristics.
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1. INTRODUCTION

Municipal wastewater treatment and water resource recovery
facilities leverage biological processes to remove carbon and
nutrients, a critical aspect for meeting discharge permit limits
that protect downstream ecosystems. While this is more cost
effective and produces less hazardous waste then chemical
treatment alone, it requires maintenance of the health of the
microbial community to ensure proper results. Because re-
establishing the process microbiome after a collapse is slow (up
to ~weeks), there is interest in monitoring wastewater influent
for anomalies that may indicate the presence of a toxic chemical
or even a drastic change in influent character, to which the
plant operator can respond, for example, by diverting flows
to a holding basin while detailed chemical tests are conducted
and/or adjustments (such as blending) are done before sending
the wastewater to the treatment train. Yet “wastewater” is in
reality a complex mixture of hundreds to thousands of different
molecules, the concentrations of which can fluctuate based on
community behaviors, industrial plant operations, precipitation
(which can lead to dilution of wastewaters through stormwater
infiltration), etc. (Thomas et al., 1999; Baurès et al., 2007;
Tsoumanis et al., 2010; Schilperoort et al., 2012; Loos et al., 2013).
Therefore, detecting an ability to properly detect anomalies is
predicated on first being able to properly define the “normal”
background against which to compare.

Initial approaches have worked toward this goal by detecting

sudden changes in sensor measurements, with some robustness
offered by using multi-wavelength spectrometer data [e.g.,
differential spectrum detection (Langergraber et al., 2003, 2006;
Daniel et al., 2008), change detection using Autoregressive
Integrated Moving Average (ARIMA) modeling (Daniel et al.,
2008)]. However, sudden changes can occur due to non-
problematic occurrences (e.g., operating hours of industrial or
large office facilities). Therefore, a step toward defining “normal”
has been to develop deterministic forecasting models based
on external factors known to affect the chemical composition
of wastewater, e.g.,time of day (Thomas, 2017), land use type
(Lourenço et al., 2006; Baurès et al., 2007; Tsoumanis et al., 2010),
and precipitation (Vaillant et al., 1999). Major limitations of
such models are the complexity (i.e., relationship between factors
and wastewater—for example, modeled behavior of citizens
and businesses on a typical Monday must be differentiated
from a holiday Monday, with numerous exceptional cases
to be managed) and the need for data sources to ingest to
drive the model.

Advances in pattern detection and recognition have resulted
in new techniques for direct anomaly detection being applied to
wastewater environments, e.g., anomaly detection through use
of a deep autoencoder model on sewer flow data (Russo et al.,
2020) and fault detection through application of a deep neural
network to data from 12 chemical and operational sensors at
an operating wastewater treatment plant (Mamandipoor et al.,
2020). Related attempts on small datasets (months or less) have
started to approach characterizing the complex background, e.g.,
clustering on 24-h of wastewater spectral data (Chow et al.,
2018) and most recently, forecasting using various statistical

and machine learning techniques on a few months of treatment
train sensor data (flow, temperature, pH, and NO−

3 /NH
+
4 ) rather

than external factors (as described above), with a neural network
outperforming the other techniques in quantitatively predicting
future sensor readings (Cicceri et al., 2021).

These recent approaches suggest promise in moving toward
defining “normal” as a way to understand the natural variability
in wastewater—thereby suggesting ways to assess anomalies by
difference, which may provide more robustness in the long run
given the challenges of tuning data-trained algorithms to detect
rare occurrences. However, it is not yet clear how well existing
approaches will generalize, particularly given the strong seasonal
effects driving wastewater characteristics and short time frames
of datasets used in most studies. Therefore, this paper explores
the use of unsupervised clustering methods to define “normal”
in a chemically complex system, taking wastewater as the test
case given the strong motivation for anomaly detection in these
collection and treatment systems, and leveraging a long-term
dataset to assess the consistency (or variability) of wastewater
over these operationally-relevant time scales. The results are
compared to more typical factor-based approaches, such as those
described above, for context and then evaluated under the very
different operational conditions experienced during 2020 during
the SARS-CoV-2 pandemic. The manuscript closes by providing
an assessment of how this methodology may contribute to the
overarching goal of providing resiliency to wastewater treatment
facilities through a reliable method for characterizing conditions
in wastewaters.

2. METHODS

While a variety of sensing mechanisms can be used to assess
water quality, absorbance spectrometry was selected for this
study due to the wide range of chemicals that can be detected,
the relevance of detectable analytes to wastewater, e.g., carbon
oxygen demand (Gruber, 2006), nitrate and nitrite (Tsoumanis
et al., 2010), and total suspended solids (Lepot et al., 2016), and
the results of previous studies showing variability in wastewater
character to be detectable using this method (Rieger et al.,
2006; Lourenço et al., 2012; Carreres-Prieto et al., 2020). The
approach described here has three key aspects: (1) multi-year
field data collection, (2) use of typical and novel approaches to
identifying underlying characteristics of the wastewater mixture,
(3) evaluation of these approaches under a unique case study
scenario, i.e., reconfiguration of societal behavior during the 2020
SARS-CoV-2 pandemic.

2.1. Data Collection, Pre-processing, and
Normalization
An s::can spectro::lyser using a 5 mm path length was deployed
at the Upper Blackstone Clean Water facility (UBCW) in the
influent to the secondary treatment train (before the biological
process but after removal of large solids), recording absorption
at 208 wavelengths (220–737.5 nm, in steps of 2.5 nm) at
10-min intervals. UBCW has a capacity of 31 million gallons
per day (MGD) and serves approximately 250,000 customers
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in the Worcester, MA area. Re-zeroing of the device (to
Millipore Ultrapure water) and data download were performed
approximately every 10 days. The dataset used for this work
covers the period from January 7, 2020 to June 7, 2021 (total of
70,060 measurements, i.e., the complete dataset is a matrix of size
208 by 70,060).

Spectral data were pre-processed to compensate for lens
fouling (i.e., buildup of material on the pathlength surfaces
between cleanings) and to mitigate zeroing effects. Lens fouling
is assumed to build up linearly; the offset between average
signals within the 24 h after one cleaning and the 24 h
immediately preceding the subsequent cleaning is linearly
interpolated across the sampling period and subtracted from
the sample data. As even small air bubbles can affect the
zeroing of the device, essentially introducing an offset to
subsequently measured spectra, spectral data are typically shifted
by identifying one wavelength that has minimal and/or constant
response to enable intercomparison between sampling periods.
For this work the absorbance at the longest wavelength (least
response in wastewater) was set to zero for all measurements.
Finally, because the spectral shape, rather than intensity,
was hypothesized to be important in identifying underlying
“normal” modes, each spectrum was scaled such that the
maximum absorption measurement was set to 1 after the
adjustments made for lens fouling and zeroing described
above [a normalization step previously shown to reduce
impact of flowrate/dilution (Vaillant et al., 2002)]. The post-
processed matrix (corrected for fouling and normalized using
offset/scaling) of size 208 by 70,060 constituted the input to all
algorithms described below.

To provide a comparison to existing methods leveraging
known drivers of wastewater variability, auxiliary data were
recorded for the following: facility inflow (provided by
UBCW), precipitation [retrieved from the National Ocean
Atmospheric Administration’s Integrated Surface Data
database (Smith et al., 2011), station ID 725100-94746-2021
at Worcester Regional Airport], and date/time (hour of day)
of measurement.

2.2. Baseline Analysis
To provide a baseline for comparison, the spectral data were
grouped based on known drivers (listed above), with the average
and standard deviation of each group calculated. Binning within
groups is as follows: date (binned by month), hour of day (3-h
bins), flow (five bins each containing 20% of data, sorted from
lowest to highest flow), and precipitation (dry weather, < 0.75
in/h, and≥ 0.75 in/h).

2.3. Data-Driven Group Identification
Many unsupervised clustering algorithms exist, each relying on
different assumptions to represent the underlying structure of
unlabeled data. Therefore, a comparative analysis of clustering
models was performed, with the dual goals of producing clusters
that were both distinct (low overlap between clusters) and tight
(low within-cluster variability). Within-cluster variability was
characterized by the sum of the squared Euclidean distances

between each data point and the cluster centroid (Equation 1).

W =

K∑

k=1

∑
xi∈Ck

‖ xi − xk ‖
2 (1)

where (xi,...,xN) is the set of observations, K is the number of
clusters, xk is the centroid of cluster Ck (coordinate-wise average
of data points in Ck), and W is the sum of the within-cluster
variabilities. Normalized xi were used to promote clustering
based on spectral shape rather than absolute magnitude.

Four methods were selected, each summarized briefly here
with citations to the methodologies provided: K-means (Likas
et al., 2003), Gaussian Mixture Model (GMM) (Reynolds,
2009), Hierarchical (Johnson, 1967), and Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) clustering
(Khan et al., 2014). K-means clustering groups data based
on their proximity to centroids that are iteratively adjusted,
with the K parameter identifying the number of centroids
(i.e., number of clusters). GMM is similar to K-means but
initializes, and then iteratively fits, K Gaussian distributions to
the data and uses likelihood values to assign observations to
clusters. Hierarchical clustering uses a similarity measurement
(for this study, Euclidean distance) to group data into a linkage
structure with a cutoff parameter determining the amount of
similarity required to cluster measurements. DBSCAN clusters
are identified based on the density of observations (the proximity
of measurements to each other within the vector space), with
the ǫ parameter establishing the maximum distance between
observations allowed for clustering. The initial centroids for K-
means and GMM were selected using the K++ algorithm. All
clusteringmodels were developed inMatlab R2021a (Mathworks,
Natick, MA) using the Statistics and Machine Learning Toolbox.

Selecting the appropriate number of clusters was
accomplished using the “Elbow method” (Yuan and Yang,
2019) with the number of clusters initially set to 1 and
incremented until the point of diminishing returns (using
W as the performance metric) was observed. The resulting
trained classifier at the elbow point was used in this study
for comparison with performance of the other classifiers, and
relative performance of different classifiers was evaluated using
W as the metric.

2.4. Case Study: 2020 SARS-CoV-2
Pandemic
As a case study, the selected best clustering algorithm was used to
classify all collected data and specifically to evaluate the extent to
which changes in patterns could be observed between days with
no pandemic restrictions and days when pandemic restrictions
were in place. In 2020, the SARS-CoV-2 pandemic caused major
disruptions to societal behavior as local and federal governments
imposed restrictions on business operations and movement of
individuals. In Massachusetts the most severe restrictions were in
place fromMarch 17 to July 6, 2020. Tominimize seasonal effects,
this period was compared toMarch 17–June 7, 2021 during which
time the restrictions were significantly loosened (approaching,
though not yet at, “business as usual”).
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3. RESULTS

3.1. Wastewater Baselining
The mean and standard deviation (± 1σ ) of the spectra grouped
by known factors and their normalized transformations are
shown in Figure 1. Typical relationships are visible in the
data, e.g., higher flows tend to be more dilute (result in lower
absorbance) than lower flows, and a similar effect is seen during
storm events with intensity greater than 0.75 in/h. However,
the clusters are neither tight nor distinct, with considerable
overlap of the groups for all four factors considered. This level
of residual uncertainty is typical and leads to similar uncertainty
in associated forecasts which therein presents challenges for
anomaly detection.

3.2. Unsupervised Clustering
The four utilized algorithms (K-means, GMM, Hierarchical,
DBSCAN) identified different numbers of clusters (4, 4,
4+outliers, 2+outliers) and resulted in different W metrics
(9.0×103, 1.1×104, 9.3×103, 2.2×104). For Hierarchical
clustering, for computational tractability the number of clusters
was iteratively increased by 1,000 to identify the elbow point at
6,000 measurements, however it should be noted that the four
largest clusters comprise 89% of all measurements and most
of the remaining 5,996 clusters consist of a single data point.
Therefore, only the top four Hierarchical clusters were used in
comparative analyses, with the remaining clusters treated as
outliers. The K-means clustering trained classifier was selected as
the optimal clustering method for this study, however results are
reported both for this method and comparing generated clusters
between methods.

Figures 2A,B show the K-means generated clusters, plotted,
respectively, as normalized and unnormalized spectra. Two
key observations follow. First, clusters 1–3 show similar
characteristics, while cluster 4 has a very distinct shape,
significantly greater standard deviation, and a minimal
number of classified measurements. This implies this cluster
represents atypical measurements, e.g., potentially requiring
follow-up investigation by an operator to assess possible
explanations (more discussion below). Second, when comparing
the normalized K-means clusters (Figure 2B) to baseline
groupings (Figures 1E–H), it is clear that the K-means cluster
are more distinct: K-means clusters have only 25% overlap (at
the 1-σ level), compared to 93, 99, 83, and 93% overlap for
month-based, hour-based, flow-based, and precipitation-based
groupings (number reported for normalized data). That is, for
a new measurement, one may achieve a much higher level of
confidence in assessing whether it is “normal” by comparing
to these three clusters rather than requiring a deterministic
model integrating effects of these multiple other factors (further
implications discussed below).

To determine how “meaningful” the K-means identified
clusters are, the similarity (or lack thereof) between clusters
identified by different algorithms were compared. This was
quantified by calculating the proportions of the K-means clusters
within the clusters of each other technique (Figure 3, showing
only top 4 clusters for Hierarchical which represent 94% of all

measurements). K-means and GMM (similar techniques) result
in very similarly defined clusters. Hierarchical clusters show
substantial alignment with K-means clusters 2 and 3, with some
movement of measurements to cluster 1. DBSCAN clustering
appears to have been driven primarily by the atypical K-means
cluster 4 data and are unlikely to be operationalizeable. In
general, these results show consistency in the clustering where
results are interpretable.

3.3. Clustering in Context of Known
Factors and Case Study
To provide insight with respect to standard practice (Figure 1),
K-means clusters are presented as a function of known factors
in Figures 4A–D. Figure 4A shows that variability happens
even at the scale of hours, with occurrence of the clusters
roughly similar regardless of time of day. Figure 4D shows
that the strong seasonal driver of wastewater is also visible in
cluster proportional occurrence, although data from additional
years would help clarify what fraction of this might be due to
the exceptional conditions of 2020-21. These distinct seasonal
patterns could help further refine anomaly detection, e.g., by
weighting relative likelihoods of different clusters based on time
of year.

Figures 4E,F show, respectively, data separated by time where
there were no restrictions and under pandemic restrictions.
While these effects are also certainly visible as a function of
flow or other measures, visualizing the wastewater characteristics
in the framework of the (small number of) K-means clusters
provides a very simple lens through which to visualize the drastic
differences between the 2 years.

4. DISCUSSION

The presented analysis can provide insight on several
dimensions: on clustering techniques in comparison to
current approaches, between different clustering approaches,
and on use of K-means specifically for studying wastewater.
On the first point, a major benefit of the clustering approach is
decoupling the need to forecast multiple determining factors
(e.g., precipitation, flow rates as driven by societal behavior) from
an ability to set expectations for the “normal” compositional
characteristics of wastewater inflow. This suggests a fast and
simple method for development of an “early warning” system
for anomalous inflows, i.e., simply by determining the likelihood
that a given measurement falls within one of the 3 identified
clusters. Operators then have an ability to set thresholds based
on the risk tolerance of their facility, providing a balance
between number of alerts (suggestions for further investigation
of wastewater composition) and likelihood of detection of a
potentially dangerous inflow condition.

Clustering of spectra can also be used to observe trends or
patterns that may be difficult to visualize using other methods.
For instance, some very strong patterns are observed in the
monthly data (Figure 4D), with summer months consisting
almost exclusively of K-means cluster 1 and November almost
exclusively K-means cluster 3. This is in contrast with the “raw”
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FIGURE 1 | Average wastewater spectra categorized by the following factors; (A) time of day (3-h bins), (B) flow (20% width bins), (C) month, and (D) precipitation

(DW is dry weather, numbers are in/h). Normalized spectra categorized by the following factors; (E) time of day, (F) flow, (G) month, and (H) precipitation with binning

as for (A–D).

FIGURE 2 | K-means cluster spectra mean and standard deviation as (A) normalized measurements (labeled with percentage of measurements within that cluster)

and (B) unnormalized measurements.

month-based analysis (Figure 1C) where only October is clearly
differentiable from the rest of the data. Further while it could
be speculated that the patterns relating to summer months
tie to precipitation patterns, the distribution of clusters as a
function of flow and of precipitation both show only weak
relationships. This suggests that the seasonal patterns are more
complex than dilution alone. For instance, there may be different
influences of business operational seasons, temperatures of
water within wastewater collection systems, etc. that collectively
drive a changing wastewater character. The patterns revealed in
comparing spring seasons in 2020 (pandemic restrictions) and
2021 (relatively normal operations) also highlight a new way to
visualize the complex impacts of the changes in societal behavior
on wastewater composition. A major change during spring 2020

was the closing of a wide range of businesses and movement for
individuals to work from home (a major effect for the urban
population of Worcester, MA); this reflects in a lessening of
the strength in diurnal patterns and a redistribution of different
cluster frequencies despite similar inflow magnitudes.

The classification algorithm comparison (Figure 3)
demonstrates that, while the underlying assumptions of
each approach do affect the fine details of the developed clusters,
all approaches achieve some level of agreement even in this
unsupervised context. This provides some level of comfort that
the groupings are “real,” i.e., that despite the fact that wastewater
characteristics lie across a continuum, there are modalities which
are statistically more common. The within-cluster variability
also provides an ability to assess likelihood of a new sample
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FIGURE 3 | Proportion of K-means clusters assigned to clusters generated by alternative techniques: GMM clustering, Hierarchical clustering, and DBSCAN

clustering. *OL, Outliers.

FIGURE 4 | Distribution of K-means clusters categorized by known factors, (A) time of day (3-h bins), (B) flow (20% width bins), (C) precipitation, (D) months, (E) no

pandemic restrictions (March 17–June 7, 2021), and (F) with pandemic restrictions (March 17–July 6 2020.
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matching each cluster, and therefore inversely, the likelihood
of not belonging to any cluster, and use of these statistics
from multiple dissimilar clustering approaches could therefore
provide additional information to support anomaly detection.
Finally, the results show that the distance-based approaches
are strongly affected by outliers, which may prevent detection
of nuanced patterns in the remaining data. For instance, in
Hierarchical clustering 89% of observations are classified into
the first cluster and in DBSCAN the largest cluster contains 99%
of observations. Calibrating such approaches for wastewater
applications may therefore require highly cleaned datasets or
further research to evaluate applicability for anomaly detection.

Finally, K-means clustering specifically demonstrated utility
in both clustering and anomaly detection in this application,
identifying three relatively distinct modalities of wastewater
(clusters 1–3) and relative outliers (cluster 4) (Figure 2). While
the exact driver of the atypical points in cluster 4 has not been
identified, the spectral shape does not resemble wastewater, and
in fact the shape is more similar to readings taken when the
sensor pathlength was not completely submerged in water – i.e.,
visual inspection confirms that these have been appropriately
flagged as different from the three wastewater clusters. The K-
means results are therefore appropriate to underpin a real-time
alert system to assess the wastewater chemical characteristics
and/or to verify sensor operations—a critically needed capability
for managing wastewater treatment facilities.

In conclusion, this study developed a new approach to
understanding modalities of “normal” in complex chemical
mixtures by leveraging unsupervised clustering algorithms to
identify underlying patterns, specifically building toward an
online real-time approach for flagging chemical anomalies in
wastewater systems. K-means clustering successfully identified
relatively distinct and tight clusters in addition to a small fraction
of atypical samples from approximately 1.5 years of data collected
from an operating wastewater treatment facility. Visualizing the
frequency of these clusters as a function of time and other
variables, including societal behavior change driven by the SARS-
CoV-2 pandemic, demonstrates a relatively simple approach to
identifying patterns and changes in those patterns.

Moving forward, integration of data from other types
of sensors could further refine the cluster definitions, and
particularly could suggest cost-beneficial tradeoffs such as
reducing the number of wavelengths that must be monitored
to achieve classification in favor of less expensive hardware.
Ultimately by achieving cost tradeoffs, it may be possible
to distribute this type of sensor throughout the wastewater
collection networks, therein providing operators with both
longer lead times on anomaly warnings and more granular
understanding of chemical changes throughout the system,
ultimately providing more resiliency in operations of these
critical infrastructure systems.
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