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Sociohydrology is a recent effort to integrate coupled human-water systems to

understand the dynamics and co-evolution of the system in a holistic sense. However,

due to the complexity and uncertainty involved in coupled human-water systems, the

feedbacks and interactions are inherently difficult to model. Part of this complexity is

due to the multi-scale nature across space and time at which different hydrologic and

social processes occur and the varying scale at which data is available. This systematic

review seeks to comprehensively collect those documents that conduct analysis within

the sociohydrology framework to quantify the spatial-temporal scale(s) and the types

of variables and datasets that were used. Overall, a majority of sociohydrology studies

reviewed were primarily published in hydrological journals and contain more established

hydrological, rather than social, models. The spatial extents varied by political and natural

boundaries with the most common being cities and watersheds. Temporal extents also

varied from event-based to millennial timescales where decadal and yearly were the most

common. In addition to this, current limitations of sociohydrology research, notably the

absence of an interdisciplinary unity, future directions, and implications for scholars doing

sociohydrology are discussed.
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INTRODUCTION

Earth is inherently dynamic (Stephens et al., 2021) with natural processes being impacted by societal
and policy changes, exacerbating environmental change to unseen levels (Vogel et al., 2015; Blair
and Buytaert, 2016; Di Baldassarre et al., 2019). There have been rapid global changes in land use
and land management along with increasing water demands (Kumar et al., 2020). These changes
have modified the hydrologic cycle at every scale resulting in the transformation of the landscape’s
hydrology around the world, significantly impacting societal development and ecosystem quality
(Blair and Buytaert, 2015; Kumar et al., 2020; Li and Sivapalan, 2020). Sustainable water resource
management is a critical component of food and energy production that is required to meet human
demands (Roobavannan et al., 2018). Thus, the adequate availability of water is an important
determinant for the socio-economic development of a country (Krahe et al., 2016). As water
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and society are both connected through mutually shaped
relationships, any societal decision for water management,
inevitably affects ecology, the organization of social groups, and
water-society relationships (Riaux et al., 2020).

The need to better understand these feedbacks has brought on
the creation of a new interdisciplinary field of sociohydrology
(Sivapalan et al., 2011). Recent studies in the field of
sociohydrology include a range of objectives and goals, but
are united in a multidimensional, interdisciplinary effort
with the aim of establishing generalizable models that hold
across time at a global scale (Pande and Sivapalan, 2017;
Sanderson, 2018; Di Baldassarre et al., 2019). Modeling
sociohydrological systems is inherently difficult because these
systems operate at multiple scales, both spatial and temporal,
and because of the uncertainty associated with predicting
and assessing human activities along with climate change (Li
and Sivapalan, 2020; Stephens et al., 2021). Moreover, as the
world becomes increasingly globalized, leading to increasingly
interconnected sociohydrological systems, there is a need to
extend sociohydrology to the space-time domain in order to
continue to be able to model and understand real world
sociohydrological issues, which implies significant challenges
(Pande and Sivapalan, 2017). As Gober et al. (2014) noted, it
is not possible to predict water cycle dynamics over decadal
or longer periods without considering the interactions and
feedbacks among natural and human components of the water
system. However, the lack of appropriate data is central to many
modeling challenges, including quantifying impacts of landscape
change and human-water interactions at various scales (Krahe
et al., 2016; Kumar et al., 2020; Gholizadeh Sarabi et al., 2021;
Stephens et al., 2021).

As an interdisciplinary field, sociohydrology pulls from a
variety of data sources. As Sivapalan et al. (2011) points out,
the spatial-temporal scales must be carefully considered. The
integration of different types of data from different fields
is complex with quantitative and qualitative data (Blair and
Buytaert, 2015). While methods for the collection of hydrological
data are well-established, it is lacking in terms of having finite
historical records for hydrological processes with a majority of
the records collected in the past 100 years (Blair and Buytaert,
2015; Troy et al., 2015). The social data required is lacking
due to valuable social variables being rarely monitored at the
necessary spatial and temporal resolution to match the finer
hydrologic data that is available to develop reliable inferences
to the underlying dynamics (Blair and Buytaert, 2015; Troy
et al., 2015; Krahe et al., 2016; Stephens et al., 2021). For
example, U.S. Census data takes place every 10 years where
streamflow data can be obtained daily from United States
Geological Service (USGS). Also, data accessibility is a challenge
where detailed information with social data is not available due
to privacy reasons and the collection of new data can be costly
in terms of time and money (Blair and Buytaert, 2015; Krahe
et al., 2016; Srinivasan et al., 2018). However, historical data
can be extended over longer timescales using a broad suite of
proxy data such as paleo-climatological methods and hydrologic
modeling (Troy et al., 2015). Data regarding social dynamics
may need to be pieced together from multiple sources, such as

narrative information, numerical records, pictorial information,
or archaeological information.

A key challenge for hydrologists aiming to simulate
environmental shifts is extrapolating physical relationships
across different spatial and temporal scales to understand
the feedbacks across those scales (Roobavannan et al., 2018;
Stephens et al., 2021). In terms of space, the interactions that
occur between natural (i.e., watersheds) and constructed scales
(i.e., state boundaries) are superimposed with interactions
occurring between local, regional, and global spatial scales
(Kelly et al., 2013; Blair and Buytaert, 2015). For example, some
sociohydrological issues occur at local scales but are experienced
more widely (i.e., point-source pollution), where others are
created globally but problems are experienced more locally (i.e.,
climate effects in the forms of floods and droughts). As far as
temporal scales, there are interactions between slow and fast
processes. For example, different policy options are appropriate
on different timescales, with efforts such as rationing appropriate
in the short-term, as opposed to infrastructure decisions and
water rights changes being more appropriate in the long term.
Thus, relevant spatial and temporal scales are needed for
communicating, predicting, and understanding the dynamics of
human-water related systems.

In addition to these challenges, there has been criticism over
the novelty and necessity of sociohydrology. Blair and Buytaert
(2015) claim that sociohydrology focuses on understanding the
dynamics and co-evolution of coupled human-water systems
in a holistic sense, which makes it different from other water
management fields. Where Sivakumar (2012) and Madani and
Shafiee-Jood (2020), find it important to recognize the decades
of research that developed similar approaches and tools that
are foundational to sociohydrology. Falkenmark (1977) was one
of the first to introduce the need to include all interactions
between man and water in the management planning process,
later coining the phrase hydrosociology (Falkenmark, 1979).
Since then, researchers introduced other interdisciplinary water
resource fields like ecohydrology and integrated water resource
management (IWRM), both with slightly different goals.
Ecohydrology aimed to improve freshwater ecosystems’ ability
to adapt to human-induced stresses by integrating interactions
between plant and animal life, climate, and hydrological
processes into the decision-making process (Zalewski, 2000).
Over 500 participants from 100 countries helped define the
core principles of IWRM at the International Conference on
Water and the Environment in 1992. Many countries and
organizations define IWRMdifferently, butmost aim to equitably
maximize the economic and social welfare through coordinated
use and development of water resource infrastructure (Xie,
2006). Additionally, Madani and Shafiee-Jood (2020) published
an extensive review of research that employed similar, if not
identical, methods to those described by the call to commentary
on sociohydrology by Sivapalan et al. (2011). More recently,
Ross and Chang (2020) reviewed sociohydrology and hydrosocial
studies. They found that while both subfields focus on the
coevolution of human-water systems, they show significant
differences and, as response, they both offer new strengths to
compensate for what the other may lack.

Frontiers in Water | www.frontiersin.org 2 September 2021 | Volume 3 | Article 730169

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Fischer et al. Scale Issues in Sociohydrology

Each of these fields have received similar criticism for being
divided in their approach, goals, and terminology (Kundzewicz,
2002; Hannah et al., 2004; Jeffrey andGearey, 2006). Regardless of
these criticisms, research published under each of these fields has
provided valuable insights into the complex interactions between
anthropogenic and natural systems before the introduction
of sociohydrology. Regardless, this review is not intended to
comment on the validity of sociohydrology as a new science, nor
to provide an exhaustive history of spatial and temporal scale
issues in water resource research, but to provide an overview of
those spatial and temporal scales that are used under the umbrella
of sociohydrology since its introduction in 2011. Therefore, this
review has three main research questions, (1) what spatial and
temporal scales do researchers use to study human-water systems
in sociohydrology, (2) what physical and social components do
researchers use to study human-water systems in sociohydrology,
and (3) how have the spatial and temporal scales, as well
as the components used changed since the introduction of
sociohydrology in 2011?

MATERIALS AND METHODS

The systematic review was designed to examine the spatial and
temporal scales that researchers used to study human-water
systems along with identifying gaps or challenges within
sociohydrology. This was done by identifying the methodology
and the data that was used for studies that were conducted within
the sociohydrological framework. The Preferred Reporting Items
for Systematic Reviews and Meta-Analysis (PRISMA) standards
defined by Moher et al. (2009) was used to define the eligibility
criteria, literature search, coding, and reporting conventions. The
studies used in this systematic review are referred to as primary
studies. The term coders used in the following sections refers
to the first six authors. The coders share an interdisciplinary
background with expertise in sociology, geography, economics
and water resource engineering.

Eligibility Criteria
This review worked to include all searchable studies that have
conducted research within the sociohydrological framework to
provide a thorough and systematic examination of the types of
data used and the methodology for overcoming the inherent
spatial-temporal scale challenges within interdisciplinary
research. Thus, the primary studies eligible for inclusion in this
systematic review needed to meet the following criteria: (a) the
study is conducted within the sociohydrological framework as
defined by Sivapalan et al. (2011) in which the study considers
both humans and water in a coupled system, (b) the study is
performing analysis or implementing a model through a case
study, (c) the study is from a peer-reviewed journal article.

Identification of Primary Studies
The primary studies were obtained from searching commonly
used economic, social science, and science databases to include
EBSCO, ERIC, Google Scholar, ProQuest, SCOPUS, Taylor and
Francis, Web of Science, and Worldcat. A search string was
determined through an iterative process to identify studies that

TABLE 1 | Primary study count by database.

Database Results

EBSCO 193

ERIC 10

Google Scholar 1,594

ProQuest 574

SCOPUS 728

Taylor and Francis 124

Web of Science 890

Worldcat 493

Total 4,606

used any of the search terms in the title, abstract, or keywords.
The final search string was the following: (“socio-hydrology
ORsociohydrology OR sociohydrological OR sociohydraulic OR
human flood interactions OR coupled human-water systems OR
human-water dynamics”). The search was further limited to the
years 2011–2021 since it was assumed that the new study of
sociohydrology was coined by Sivapalan et al. (2011). The search
was not limited by geographic location but was limited to full-text
studies available in English. The official search endedMarch 2021
and returned 4,606 studies (Table 1).

Due to the nature and limitations of the search, in
particular, the need to have the studies in English, reduces
and underrepresents the sample of collected studies. This is an
inherent drawback in most systematic reviews, thus even though
this search was systematic, the primary studies in the search
may still be biased in terms of variations and methodology
for dealing with differing spatial-temporal scales within the
sociohydrological framework. While this does not necessarily
detract from the importance and application of the findings, it
is critical to note that this limits the scope of the work and the
extent to which the results can be generalized.

Screening Studies Based Upon Eligibility
Criteria
From the initial search of databases, a three-phase process
was used to screen primary studies that met all eligibility
criteria (Figure 1). In pairs, coders independently read the
title and abstract for all the studies obtained in the original
search using the search string and specified years. Each pair
checked if the studies were conducting analysis within the
sociohydrological frameworks by determining if both human
and water components were included in the study to some
degree. It was also important to distinguish between studies that
were discussing sociohydrology and those that were proposing a
framework or model compared to the studies that were actually
implementing a framework or model. This distinction was
made because the review only wanted to consider how differing
spatial-temporal scales were used throughout the studies, thus a
study had to actually be conducting sociohydrological analysis.
For example, Di Baldassarre et al. (2015) proposed a novel
framework for analyzing the dynamic interactions and feedbacks
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FIGURE 1 | PRSMA flow diagram detailing the systematic review process with study counts and exclusion criteria.

between flooding and societies but did not implement the
framework through a case study. Additionally, Sivapalan (2015)
discussed the benefits and challenges of endogenizing humans
into hydrologic systems by broadening the hydrologic science
field to include perspectives of both social and natural scientists
but did not conduct data analysis. Thus, studies were only
retained if theymentioned conducting analysis in sociohydrology
or coupled human-water systems. Studies were also marked as
“maybe” if they discussed sociohydrology or if it was unclear from
the title or abstract if they met the criteria. Each pair checked if
there were studies that were retained by one coder but not the

other and discussed reasons for including or excluding studies.
If there was still uncertainty, the group as a whole discussed the
study and came to a consensus decision. A designated coder also
reviewed the studies and removed any duplicates. Themajority of
the 4,606 studies examined did not discuss coupled human-water
systems within the sociohydrology framework.

In phase two, 463 studies were marked “included” and
411 studies were marked “maybe” totaling 874 studies left
for additional screening. Using Rayann (Ouzzani et al., 2016),
pairs of coders independently assessed whether each study
fit the eligibility criteria outlined above by reading the title,
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TABLE 2 | Coding schema used for each primary study.

Study and program characteristics

Variable Description Level of measurement

Id ID number assigned to the study. Continuous

Leadauth Name of lead author. Nominal

Yearpub Year study was published. Continuous

Title Title of paper. Nominal

Temporal Scale extent The temporal extent of the study. Nominal

Spatial scale extent The spatial extent of the study. Nominal

Temporal resolution The temporal resolution of the data used in the study. Nominal

Spatial resolution The spatial resolution of the data used in the study. Nominal

Human component The human dimension or component used in the study. Nominal

Waterbody component The water dimension or component used in the study. Nominal

Geographic location The geographic location where sociohydrology is studied. Nominal

Typology The type of sociohydrology study as described by Pande and Sivapalan (2017) which

includes process, historical, or comparative.

Nominal

Methodological approach The methodology used for conducting the study (agent-based model, empirical or

established model, system dynamic models, synthesis analysis).

Nominal

Data source type Was the data collected primarily, retrieved from a secondary source, or simulated? Nominal

Data type The type of data used (maps, historical or archeological data, remote sensing,

surveys, hydrologic data, and meteorological data).

Nominal

Variables for human-water linkage The data variables used for analysis in the study. Qualitative

Data sources The source of the data used in the study. Nominal

abstracts, introduction, and methods. The coders discussed
any discrepancies and made exclusion decisions together and
if needed, the group as a whole resolved any disagreement
between coders. In this phase, articles were excluded if two-way
feedbacks with both social and hydrological components were
not discussed. Studies were also excluded if they were published
as a book, thesis, dissertation, or if there was not a digital full-
text in English. After screening, there were 152 studies left for
further analysis.

Included Studies for Synthesis
Coders were trained together on how and what to code using two
studies as examples. Each coder then independently coded the
152 eligible studies using a common coding schema (Table 2).
Some of the key information included publication year, spatial
and temporal extent and resolution(s), geographic location(s)
of the study, data source(s), human and water components,
typology, and methodological approach. Disagreements or
concerns were resolved through group discussions and a
consensus was met. As an additional check two coders were
designated to review the coding for consistency and accuracy
across all studies. Throughout the screening and coding process,
coders met regularly and had weekly check-ins with the group.

RESULTS

While issues of scale are foremost of concern for this review, there
are non-scale themes across studies that warrant comparison.
These include the components of the water bodies and
social variables studied, the data sources and their types, the

methodological approach used, and finally the feedbacks and
interactions. Examined in order are these non-scale themes
followed by temporal scales, spatial scales, and spatial location
of primary studies, where each is analyzed descriptively with
relevant, non-exhaustive examples. Lastly, risk of bias is
addressed. Some studies did not provide sufficient detail for the
coder to confidently classify the category. In these cases, the code
was not recorded. It should be noted that 2021 was not fully
reported as the primary studies were defined between 2011 and
March 2021. Additionally, there were no studies in 2011 that fit
our criteria, instead 2012 was the first year of publication for the
primary studies.

Water Components Used in Primary
Studies
The non-scale themes were identified and analyzed to determine
the commonalities of the types of data and variables used to
understand the sociohydrological process. There was not a clear
temporal trend for water components addressed in the primary
studies, rather the trend was more related to an increase in
articles published under the umbrella of sociohydroly since
2011. The first non-scaler theme is water body component
that describes the hydrological process considered in the
primary study. Eight water components were identified and
coded: water resource management, flood management and
stormwater structures, farming and irrigation management,
groundwater, water quality, reservoir and lakes, drought, and
coastal zones. The most common water component was water
resource management (39%; Table 3). This was not surprising
because water resource management was defined very broadly
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TABLE 3 | The different water components considered in the primary studies along with the source of the study that used each.

Component Primary studies (N = 152) Count Percent

Water resource

management

Elshafei et al., 2014, 2016; Yaeger et al., 2014; Asbjornsen et al., 2015; Liu et al., 2015; Padowski et al., 2015;

Srinivasan, 2015; Zhou et al., 2015; Bark et al., 2016; Pramana and Ertsen, 2016; Farjad et al., 2017; Gonzales and

Ajami, 2017; Haeffner et al., 2017; Khan et al., 2017; Kotir et al., 2017; Re et al., 2017; Roobavannan et al., 2017,

2020; Schifman et al., 2017; Wei et al., 2017; Cobourn et al., 2018; Garcia and Islam, 2018; Iwanaga et al., 2018;

Keys and Wang-Erlandsson, 2018; Lei et al., 2018; Lu et al., 2018, 2021; Vollmer et al., 2018; Bojórquez-Tapia et al.,

2019; Caprario and Finotti, 2019; Coutros, 2019; Hou et al., 2019; Huber et al., 2019; Li et al., 2019; Liu, 2019; Luo

and Zuo, 2019; Ogilvie et al., 2019; Parolari and Manoli, 2019; Pouladi et al., 2019; Sun et al., 2019; Tian et al., 2019;

Wang et al., 2019; Wu et al., 2019; York et al., 2019; Albertini et al., 2020; Bano et al., 2020; Bradford et al., 2020; Du

et al., 2020; Ferdous et al., 2020; Hossain and Mertig, 2020; Lee and Kang, 2020; Li and Sivapalan, 2020; Wilfong

and Pavao-Zuckerman, 2020; Yu et al., 2020; Ekblad and Herman, 2021; Gholizadeh Sarabi et al., 2021;

ZamanZad-Ghavidel et al., 2021

59 39%

Flood management and

stormwater structures

Ferreira and Ghimire, 2012; Di Baldassarre et al., 2013, 2014, 2016, 2017; Wilhelmi and Morss, 2013; Braden et al.,

2014; O’Connell and O’Donnell, 2014; Schumann and Nijssen, 2014; Viglione et al., 2014; Chang and Huang, 2015;

Chen et al., 2016; Grames et al., 2016; Hazarika et al., 2016; Ward and Winter, 2016; Camargo, 2017; Ciullo et al.,

2017; Mostert, 2017; Yu et al., 2017; Horn and Elagib, 2018; Robinne et al., 2018; Shelton et al., 2018; Tellman et al.,

2018; Abadie et al., 2019; Abebe et al., 2019a,b, 2020; Barendrecht et al., 2019; Bojórquez-Tapia et al., 2019;

Caprario and Finotti, 2019; Haer et al., 2019; Viero et al., 2019; Devkota, 2020; Dziubanski et al., 2020; Haeffner and

Hellman, 2020; Hossain et al., 2020; Huang et al., 2020; Lee and Kang, 2020; Michaelis et al., 2020; Ridolfi et al.,

2020a,b; Saia et al., 2020; Sarmento Buarque et al., 2020; Sawada and Hanazaki, 2020; Song et al., 2020; Zhao and

Mo, 2020; Akhter et al., 2021; Cian et al., 2021; Oneda and Barros, 2021; Puzyreva and de Vries, 2021

50 33%

Farming and irrigation

management

Nüsser et al., 2012, 2019; Bury et al., 2013; Ertsen et al., 2014; Liu et al., 2014; Pande and Ertsen, 2014; Schumann

and Nijssen, 2014; Purdue and Berger, 2015; Den Besten et al., 2016; Giuliani et al., 2016; Jeong and Adamowski,

2016; Martin et al., 2016; Bouziotas and Ertsen, 2017; Han et al., 2017; Noël and Cai, 2017; Nüsser and Schmidt,

2017; Roobavannan et al., 2017; Sanderson et al., 2017; Srinivasan et al., 2017; Essenfelder et al., 2018; Gunda et al.,

2018; Iwanaga et al., 2018; Kuil et al., 2018; O’Keeffe et al., 2018, 2020; Ogilvie et al., 2019; Pouladi et al., 2019; Sun

et al., 2019; Khalifa et al., 2020; Hanus, 2021; Lu et al., 2021

31 20%

Groundwater Elshafei et al., 2015; Hu et al., 2015; Bakarji et al., 2017; Han et al., 2017; Noël and Cai, 2017; Re et al., 2017;

Srinivasan et al., 2017; Al-Amin et al., 2018; Hough et al., 2018; Iwanaga et al., 2018; O’Keeffe et al., 2018; Wurl et al.,

2018; Li et al., 2019; Pouladi et al., 2019; Towler et al., 2019; Wang et al., 2019; Li and Sivapalan, 2020

17 11%

Water quality Jeong and Adamowski, 2016; Faust et al., 2017; Bojórquez-Tapia et al., 2019; Zhou, 2019; Bou Nassar et al., 2021;

Souza et al., 2021

6 4%

Reservoirs and lakes Braden et al., 2014; Garcia et al., 2016; Krahe et al., 2016; Di Baldassarre et al., 2017; Essenfelder et al., 2018;

Iwanaga et al., 2018; Liu, 2019; Luo and Zuo, 2019; Nüsser et al., 2019; Ogilvie et al., 2019; Höllermann and Evers,

2020; Riaux et al., 2020

12 8%

Drought Kuil et al., 2016; Di Baldassarre et al., 2017; Elagib et al., 2017; Gonzales and Ajami, 2017; Han et al., 2017; Breyer

et al., 2018; Pouladi et al., 2019; Towler et al., 2019; Medeiros and Sivapalan, 2020; Savelli et al., 2021

10 7%

Coastal zones Bury et al., 2013; Braden et al., 2014; Xu et al., 2016; Yu et al., 2017; Logan et al., 2018; Haeffner and Hellman, 2020 6 4%

The sum count of the studies (191) does not sum to the count of the primary studies (152) as some studies employ multiple hydrologic dimensions.

to include any study that considered an area’s water system as
a whole instead of focusing on a specific water or hydrologic
component. In other words, if a primary study did not fit into
the other seven components then water resource management
was coded. It should be noted that the percentage of the
primary studies does not add to 100% given several of the
articles featured multiple components. For instance, Iwanaga
et al. (2018) covered four components, reservoir, water resource
management, groundwater, and irrigation, in their integrated
models and scenarios based on stakeholders in the basin region.
Water resource management, reservoir, and drought often
overlapped, as did groundwater and irrigation. Additionally,
water components imbue a social-use connotation, such as
irrigation and water resource management, as well as an implied
social response, such as drought, flooding, or tsunamis in
coastal areas.

Social Components Used in Primary
Studies
In addition to water components, social components were also
identified throughout the primary studies. This was important
because the overreaching goal of sociohydrology is to no longer
treat the human factor as a stationary external force, but to
consider humans and their actions as a part of the water
cycle dynamics (Sivapalan et al., 2011). As previously noted,
modeling across and within global scales is challenging (Pande
and Sivapalan, 2017). The same is true when scaling social science
indicators. As hard as it is to capture social components spanning
macro, meso, micro, and psycho-social levels, it is even harder to
delineate social components due to their interrelation. In many
cases authors use multiple of each, and/or indexes, scales, or
theories which incorporate various, non-exclusive components.
Due to this circumstance, social components were identified
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qualitatively. Nevertheless, five overarching social components
were identified: socioeconomic, vulnerability/health, memory,
demography, and behavior.

There exists a wide range of social in sociohydrology,
the most common was socioeconomic indicator, included in
20% of the studies. Although, this social component featured
a vast range of variables. For instance, Wang et al. (2019)
approximated social by assessing population and Gross Domestic
Product (GDP) yearly (basin scale) whereas Wilhelmi and Morss
(2013) measured it using physical/language abilities and access
to resources. Sun et al. (2019) measured socioeconomic with
population, regional GDP, proportion of the secondary and
tertiary industry, labor compensation per capita, and proportion
of urban residents. Luo and Zuo’s (2019) socioeconomic index
included per capita GDP, per capita net income of rural
residents, per capita disposable income of urban residents,
tertiary industry share of GDP, population density, urbanization
rate, Engel’s coefficient, number of hospital beds per 10,000
people, per capita urban road area, and residents’ satisfaction
with the environment. Huber et al. (2019), in addition to
households, economy, water supply, etc., included tourism. In
addition, socioeconomic factors are sometimes explicitly used
to approximate inequalities in water distributions or effects
from conservation efforts. For instance, Breyer et al. (2018)
found outdoor water conservation for reservoirs at the city scale
produced, among other effects, downward redistribution of water
along a socioeconomic gradient. In other words, as a result of the
conservation, people with lower socioeconomic status had less
water access than those with higher status.

Social vulnerability generally measures how individuals and
communities are able to withstand shocks, including natural
hazards. Cian et al. (2021) analyzed Northeast Italy’s frequent
flooding every 5 years using the flood vulnerability index, or
FVI, which the authors claim to allow for a dynamic and
adaptable assessment of vulnerability, necessary in preparation
for the worst of climate change. Human development index
(ZamanZad-Ghavidel et al., 2021). Hazarika et al. (2016) Dhemaji
in the Upper Brahmaputra floodplain, indigenous knowledge and
adaptations has allowed floodplain dwellers to be able to coexist
with floodplain dwellers. Vulnerability can be tied to human
resource depletion or ecosystem interference beyond the natural
rate or environment (Liu et al., 2014). Related to vulnerability
is human health. Keys and Wang-Erlandsson (2018) considered
child malnutrition as an indicator of food security with moisture
recycling. Baker et al. (2015) utilized social health risk, instead
of the more widely-used contaminant concentration rate, as
an optimization variable improves water management decisions
aimed at maximizing social well-being.

Several authors assessed the social component via social
memory, or the shared histories and experiences of groups of
people in a place. In addition to the commonly-used variables
of community awareness or sensitivity, Yu et al. (2017) add
institutions for collective action and connections to an external
economic system to their assessment of flood memory. Grames
et al. (2016) include social memory and the sensitivity of
social awareness which feedback on flood adaptation within the
timespan of economic agents’ decision-making.

Demography was frequently used as a control or endogenous
variable (Braden et al., 2014; Roobavannan et al., 2017; Breyer
et al., 2018; Ferdous et al., 2018; Garcia and Islam, 2018;
Sarmento Buarque et al., 2020). A majority of sociohydrological
research containing issues of scale and feedbacks do not utilize
demographic variables to featurein analysis the latent structural
sinequalities that operate at the center of the human-water
nexus (Sanderson, 2018). Studies that did include these structural
inequalities featured the typical demographic categories of race,
age, sex, gender. Demographic factors and their influence on
behavior were also examined. For example, Huang et al. (2020)
find demographics and flood risk perception do not have direct
impacts on protective coping behaviors with flooding, but are
mediated by flood risk knowledge and flood risk attitude. If
demographics are used, they are included in indexes with more
traditional socioeconomic variables income, population, GDP,
and so forth (e.g., Huber et al., 2019).

Finally, human behavior was the last social component
identified throughout the primary studies. There are no
universally accepted laws of human behavior as there are for
physical systems. Therefore, the variables and methods which
measure behavior are wide-ranging. One aspect of behavior
was public participation, such as capacity building, participatory
activities, and workshop discussions (Kotir et al., 2017; Re
et al., 2017; Bojórquez-Tapia et al., 2019; Bradford et al., 2020).
These were conducted with surveys, interviews, workshops, or
data from previous studies. Public participation is generally
considered to signal bottom-up socio-behavioral change over
time. A socio-behavioral measure considered to have greater
top-down determination is policy preference, choice, action,
or intention. In fact, 21% of the studies included variables
representing a socio-behavioral dimension including policies or
a policy (Liu et al., 2015; Srinivasan, 2015; Di Baldassarre et al.,
2016; Garcia and You, 2016; Giuliani et al., 2016; Grames et al.,
2016; Bakarji et al., 2017; Farjad et al., 2017; Gonzales and Ajami,
2017; Haeffner et al., 2017; Han et al., 2017; Khan et al., 2017;
Kotir et al., 2017; Noël and Cai, 2017; Re et al., 2017; Sanderson
et al., 2017; Essenfelder et al., 2018; Keys and Wang-Erlandsson,
2018; Robinne et al., 2018; Abebe et al., 2019a,b; York et al.,
2019; Bradford et al., 2020; Du et al., 2020; Wilfong and Pavao-
Zuckerman, 2020; Bou Nassar et al., 2021; Hanus, 2021; Oneda
and Barros, 2021; Savelli et al., 2021; ZamanZad-Ghavidel et al.,
2021).

Studies not only examine the outward-facing socio-behavioral
measures, but those more inward, deeply-seated, and
traditionally sociological. These include value systems, attitudes
(Ciullo et al., 2017; Huang et al., 2020; Bou Nassar et al., 2021),
beliefs (e.g., Souza et al., 2021) and norms (e.g., Braden et al.,
2014). The authors consider perceptions (Elagib et al., 2017;
Devkota, 2020) behavioral because they are often conceptualized
and operationalized in ways that assume that by perceiving
something in a particular light, the agent’s behavior or action will
follow accordingly.

Data Source Type
The data source types identified and coded for the primary
studies were primary, secondary, simulated, and combinations
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TABLE 4 | Data source type used for the primary studies.

Data source type Count of studies Percent of studies

Secondary 72 47%

Primary and Secondary 30 20%

Simulated 21 14%

Secondary and Simulated 14 9%

Primary 12 8%

Primary and Simulated 2 1%

Primary, Secondary, and Simulated 1 1%

TABLE 5 | Data type used for the primary studies.

Data type Count Percent of studies

Hydrologic 63 41%

Survey (government) 48 32%

Survey (interview) 45 30%

Remote sensing 30 20%

Meteorological 28 18%

Survey (site investigation) 15 10%

Archeological/Historical 15 10%

Maps 13 9%

TABLE 6 | Results by journal for the top 5 journals with the most primary studies.

Journal name Count Percent of studies

Hydrology and Earth System Sciences 20 13%

Water Resources Research 20 13%

Journal of Hydrology 14 9%

Hydrological Sciences Journal 11 7%

Water 7 5%

Others (N = 53 Journals) 80 53%

thereof (Table 4). Primary data source is defined as data
collected by the authors. Secondary data sources includes data
that the authors retrieved from another source, such as local,
regional, and state-based sources, however, most came from
governmental surveys, such as the USDA (Dziubanski et al.,
2020), Census Bureau (Sanderson et al., 2017), CIRD (Camargo,
2017), international organizations (ZamanZad-Ghavidel et al.,
2021) which often provided economic and social variables.
Simulated data was defined as data that the authors simulated for
the study. The most common data source type throughout the
primary studies was secondary data (47%) followed by primary
and secondary (30%). There were 21 studies which included
simulated data (e.g., Garcia and You, 2016; Gonzales and Ajami,
2017).

Data Types Throughout the Primary
Studies
Following the identification of the data type source, eight
unique data types emerged from the review: remote sensing,
meteorological, survey (interview), survey (site investigation),

survey (government), archaeological/historical, hydrologic, and
maps. The results show that hydrologic data was included in
63 studies (41% of total), by far the most (Table 5). This is not
surprising given 24% of the journals in this review were primarily
hydrological (Table 6), with 20 alone coming fromHydrology and
Earth System Sciences. Examples of hydrologic data included in
the primary studies were stream gauge data (e.g., Garcia et al.,
2016), soil moisture (e.g., Den Besten et al., 2016), groundwater
and irrigation rates (e.g., Tellman et al., 2018; Gholizadeh Sarabi
et al., 2021), and hydropower (e.g., Huber et al., 2019). Maps
were defined as those not derived from remote sensing and were
used the least (9%). In most cases, maps were used in addition
historical or archeological studies (e.g., Nüsser et al., 2012; Baker
et al., 2015; Chang and Huang, 2015; Caprario and Finotti, 2019;
Cian et al., 2021; Gholizadeh Sarabi et al., 2021). Where historical
and archaeological data was only used in 10% of the primary
studies, by showing how human and water systems co-evolve
over time, from ancient Rome (Di Baldassarre et al., 2017) to
West Africa (Coutros, 2019) to the Tarim River basin in Western
China and beyond (Liu et al., 2014).

Typology and Methodological Approach of
Primary Studies
Typology and methodological approaches were coded in this
review to understand what types of methods were used
to combine social and hydrological variables within the
sociohydrological framework. Three typologies were coded based
upon the types of sociohydrology analysis identified in Pande
and Sivapalan (2017). These include process, historical, and
comparative. These typology codes were used to identify how
the methods and tools are used, including what types of
questions they help answer about a system. Additionally, the
following methodological approaches were identified throughout
the primary studies: established modeling, system dynamic
models, agent-based models, and synthesis analysis. The
methodological codes provide insight into the diversity of
tools and methods being used in sociohydrological research,
as well as drawing attention to approaches unique to the
developing field. Typologies were coded based upon the types
of sociohydrology analysis identified in Pande and Sivapalan
(2017). These include historical, comparative, and process
sociohydrology. Each of these approaches varies from traditional
hydrologic studies or modeling because they endogenize social
factors into their analysis. Sociohydrologic approaches focus
less on calculating flow rates and finite numerical outcomes
and focus more on understanding system the nature of system
evolution. Specifically, historical sociohydrology was defined
as having the aim to understand a coupled system from
its immediate or distant past and often leverages historical
accounts of specific events. A major emphasis in historical
sociohydrology is understanding the major events that forced
a system to evolve to its current state. Examples of these
major events include, but are not limited to, wars, regime
changes, major infrastructure projects, policy changes, droughts,
and other severe weather events. Comparative sociohydrology
was defined as a study that compares different systems
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FIGURE 2 | A histogram showing the count of primary study typology over time.

across space or time, with the goal of understanding how
different systems respond to similar events, or testing if certain
generalizations can be made about interactions in larger human-
water systems. Lastly, process sociohydrology was defined as
trying to understand and hypothesize about the nature of
observed processes. Process sociohydrology often asks “what
if ” questions to understand how a system would respond to
certain changes. Such changes can come in the form of new
policies, the addition of new stakeholders, reductions in resource
availability, or technological improvements. While models are
not specifically required for sociohydrology analysis, they greatly
assist process sociohydrology. Themost common typologies were
process and historical, with process being the most common in
the year 2020 (Figure 2). Comparative studies peeked in 2019
with 4 studies.

Next, methodological approaches was coded to identify how
methods or tools are used. Firstly, established models are models
which have been replicated, used, and modified across studies
and over time. Established models were identified in 22% of
the primary studies and examples include MIKE SHE/MIKE
11 (Farjad et al., 2017), SWAT (Baker et al., 2015; Martin
et al., 2016; Khan et al., 2017; Essenfelder et al., 2018), and
ISBA-MODCOU (Medeiros and Sivapalan, 2020). By nature,

these models are most familiar to traditional hydrologists but
are modified to incorporate additional social parameters to study
system feedbacks.

In contrast, t system dynamic models represented frameworks
developed specifically for sociohydrologic analysis (e.g., Den
Besten et al., 2016; Sanderson et al., 2017; Gholizadeh Sarabi
et al., 2021). System dynamic models represent top-down
feedback approaches utilizing multi-loop, non-linear structures.
They can be as simple as a causal loop, or as complex
as a system of differential equations. While these models
should mimic general interactions between stakeholders and
resources, they generally do not require extensive calibration
(Ding et al., 2018). System dynamic models were used in
42% of the primary studies and were useful to studies
spanning the global scale (e.g., Elshafei et al., 2014; Hou
et al., 2019; Liu et al., 2019; Hossain and Mertig, 2020). Hou
et al. (2019) examined the social water cycle fluxes across 39
countries assessing total water use of countries and evolution
mechanisms. Liu et al. (2019) looked at global virtual water
use across 44 nations and regions. Hossain and Mertig (2020)
considered water footprint or “virtual water consumption”
by looking at energy, world position, beef consumption,
and urbanization.
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Agent-based modeling (ABM) simulates the interactions
between water systems and one or multiple agents, which
can be conceptualized as individuals or collective groups
(Akhbari and Grigg, 2013). Rather than using causal loops or
differential equations to describe interactions, ABMs rely on
computational information streams and predetermined rules.
The predetermined rules in ABMs govern how each agent will
respond to model scenarios and interact with other agents. While
ABM is similar to system dynamic models in that they model
interactions, the authors established separate categories for these
approaches because ABM is considered a bottom-up approach
to modeling sociohydrological processes while system dynamic
models are considered top-down models (Ding et al., 2018).
ABM appeared in 13% of the primary studies and has been
used to analyze farmer’s agency shaping their financial situation
and their water conservation (Pouladi et al., 2019) and can
be used as a decision support tool for watershed management
(Huber et al., 2019). ABM are flexible and dynamic and can
incorporate established models. For instance, Khan et al. (2017)
develop an ABM framework that includes a SWAT model to
simulate the impacts of water resource management decisions
that affect the food–water–energy–environment (FWEE) nexus
at a watershed scale.

Finally, synthesis analyses integrate varying perspectives, data
types, and approaches to provide a narrative of the system.
Synthesis analyses generally attempt to describe the current state
of a system by analyzing individual components and making
inferences about how the states of those components are linked.
While not always the case, this approach is often qualitative
in nature, and as a minimum requirement, incorporates some
form of qualitative data in the analysis. For instance, Haeffner
et al. (2017) examined the historical, biophysical, economic,
and cultural relations embedded in the development of urban
water infrastructure in an urban Mexico watershed. Vollmer
et al. (2018) created the Freshwater Health Index that integrates
governance mechanisms, ecosystem dynamics, and stakeholder
perceptions to better engage stakeholders in addressing multiple
freshwater demands. In addition, Zhao and Mo (2020) provide
a comprehensive analysis of the Holocene hydro-environmental
evolution in Jianghan-Dongting Basin in China by studying
sediment cores.

Spatial-Temporal Interactions and
Feedbacks
Variables used for studying feedbacks were coded qualitatively.
This was done because of the complexity and variety of
variables that the primary studies used to quantitatively or
qualifiedly describe the sociohydrology interactions. A few
notable examples of feedbacks used are Bojórquez-Tapia et al.’s
(2019) Analytic Network Process-situated feedback loop which
involved synchronous and parallel updating of the geographic
data river discharge time series (streamflow/inflow to reservoir).
Roobavannan et al. (2017) mimicked and explained feedback
between various subsystems of the human-water system, water
availability, agriculture, environment health, manufacturing and
services, technology, human population, and derived reservoir

outflow from variation in water storage. Puzyreva and de Vries
(2021) examined historical exposure to flooding, the community
response and preparedness, evolution of risk acceptance,
community engagement, perceptions of flooding causes, and
how they feedback one another. Towler et al. (2019) drought
feedbacks were influenced by science, technology, as well as
historical lessons learned and management strategies. Robinne
et al. (2018) included education capacity in their social variables.
Baker et al. (2015) included media coverage and comments into
their feedbacks. These are but a few of the feedback variables and
mechanisms—creative, useful, and potentially transformative—
found throughout the primary studies.

Temporal Scale
Temporal scale was investigated through both the temporal
extent of a study and the temporal resolution at which
the sociohydrological processes in the study was analyzed.
Temporal extent was determined using the following categories:
millennia, century, decadal, yearly, and event-based. A study
was categorized as “millennia” if the temporal extent of the
sociohydrological processes was over the course of one or
multiple millennia. A study was categorized as “century” if the
process was analyzed over the course of one or multiple centuries
but less than a millennium. All other temporal extents followed
this classification method with the exception of event-based
studies. Event-based temporal extents referred to studies that did
not specify a time frame within which analysis took place, but
instead analyzed sociohydrological processes for the duration of
a specific event or events. This was most common for studies
that used simulated data to examine sociohydrological processes.
For example, multiple studies simulated flood events to better
understand pathways for city development (Viglione et al., 2014)
or observe interactions between flood risk and behavior (Ridolfi
et al., 2020a). Alternatively, some studies used models to simulate
changes in a sociohydrology system over the course of the
implementation of a specific policy (Du et al., 2020) or flood
management strategy (Albertini et al., 2020). In these cases,
temporal extent is not explicitly stated, but there is an implicit
understanding that these events occur over a definite amount
of time.

Results of coding showed primary studies analyzing
sociohydrological processes over decadal (28%), yearly (30%),
and event-based (18%) temporal extents to be the most common
(Table 7). This trend could be indicative of the availability of
necessary data to analyze human-water systems. For example,
multiple studies reviewed relied on social data from either the
Australian census (Elshafei et al., 2014, 2015; Roobavannan
et al., 2017; Wei et al., 2017), which takes place every 5 years,
or the United states census (Sanderson et al., 2017), which
takes place on a decennial basis, providing reliable quantitative
social data for studies investigating sociohydrologic processes
over multiple decades. Moreover, data necessary to model
hydrological processes is more abundant at these time scales as
well, such as yearly water budgets (Keys and Wang-Erlandsson,
2018), water footprints (Souza et al., 2021), and data from
Resource Bulletins that provide yearly data on water use and
reservoir flows (Hou et al., 2019; Li et al., 2019; Luo and Zuo,
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TABLE 7 | Temporal extent identified for the primary studies.

Temporal extent of the primary studies

Temporal extent Count of studies Percent of studies

Millenia 7 5%

Century 14 9%

Decadal 42 28%

Yearly 46 30%

Event-Based 28 18%

FIGURE 3 | Count of the primary studies’ three most common temporal

extents by year of publication between 2012 and 2020.

2019; Sun et al., 2019). Studies analyzing processes over centuries
or millennia are more limited by data availability and often rely
on archeological data (Pande and Ertsen, 2014; Wei et al., 2017;
Lu et al., 2018; Zhao and Mo, 2020; Puzyreva and de Vries,
2021) or are limited to specific geographical areas that have
well-documented hydrological and social data (Di Baldassarre
et al., 2017). Examining the frequency of studies using these
different temporal extents over time revealed that decadal and
yearly temporal extents steadily increased as publications in
sociohydrology increased (Figure 3). However, in 2020 studies
employing decadal and yearly temporal extents decreased, and
event-based studies increased.

Temporal resolution was also coded by recording the
overall temporal resolution for a study or individually
recording the temporal resolutions of the different data
used in a study. Temporal resolution varied from groundwater
level data collected every 15min (O’Keeffe et al., 2020)
to sociohydrological interactions over 6,000-year periods
(early-Neolithic, middle-Neolithic, and late-Neolithic; Zhao and
Mo, 2020). However, this variable is not reported quantitatively
as the majority of studies reviewed did not provide sufficient
information for coders to confidently identify temporal

resolution. Lack of clear, explicitly stated temporal resolution
emerged as a trend among the sociohydrology studies reviewed
and was especially prominent among studies that used solely
simulated data. Further, in the event that temporal resolution
was reported for each data type used in a study, explanation
of how these data types of differing temporal resolutions were
integrated was often not present.

Spatial Scale
Similar to temporal scale, spatial scale for each primary study was
examined through spatial extent and spatial resolution. Spatial
extent was determined by identifying the spatial boundaries
of a study as they fit into one of the following categories:
global, international, national, regional, state, county, city, social
network, watershed, or water body network. Primary studies
categorized as having a “regional” spatial extent include studies
that were analyzing sociohydrological processes at a spatial extent
that did not conform to political boundaries (nation, state,
county) but also did not belong to the water or network based
categories (watershed, social network, water body network). For
example, Sun et al. (2019) examined sociohydrological processes
in a region covering 31 provincial-level administrative areas
in China to better understand virtual water trade and water
consumptions patterns. A study was categorized as having
the spatial extent of a “water body network” when the study
boundaries were determined by a specific geographical area
surrounding a water body or system, such as an irrigation
system (Khalifa et al., 2020), floodplain (Ferdous et al., 2018),
or aquifer (Towler et al., 2019). A study was coded as having
the spatial extent of a “social network” when the study area was
defined by a social structure but did not conform to any of
the more common social boundaries, such as county or state.
For example, Bojórquez-Tapia et al. (2019) defined their study
area by the sewage system in Mexico City. As a sewage system
is socially constructed, this spatial extent qualified as a social
network. Lastly, some primary studies were coded with more
than one spatial extent as they analyzed areas of varying spatial
extent for the purpose of comparison. For example, Akhter et al.
(2021) compared sociohydrolocial processes at the national, state,
and county level to gain a better understanding of flood risk
management in floodplains across the United States.

The results of coding for spatial extent showed that the
most common were watershed (37%), regional (24%), and city
(23%; Table 8). Coders also observed that specific watersheds
were of particular interest to researchers. For example, multiple
primary studies focused on the Heihe River Basin in China
(Lu et al., 2016; Wang et al., 2019; Du et al., 2020) and the
Murrumbigee River Basin in Australia (Roobavannan et al.,
2017, 2018, 2020). Further, studies analyzing sociohydrological
processes within watersheds often prioritized water resource
management, especially as it concerned the sociohydrological
processes of irrigation (Roobavannan et al., 2017; Sanderson
et al., 2017; Nüsser et al., 2019; Ogilvie et al., 2019; O’Keeffe
et al., 2020) and drought (Di Baldassarre et al., 2017; Pouladi
et al., 2019; Medeiros and Sivapalan, 2020). Studies analyzing
sociohydrological processes at the city level were often focused on
water resource management as it related to stormwater (Tellman
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TABLE 8 | Spatial extent identified for the primary studies.

Spatial extent of the primary studies

Spatial extent Count of studies Percent of studies

Global 5 3%

International 6 4%

National 11 7%

Regional 37 24%

State 5 3%

County 3 2%

City 35 23%

Social Network 2 1%

Watershed 56 37%

Waterbody Network 6 4%

FIGURE 4 | Count of the primary studies’ three most common spatial extents

by year of publication between 2012 and 2020.

et al., 2018; Oneda and Barros, 2021), wastewater infrastructure
(Faust et al., 2017; Tellman et al., 2018; Souza et al., 2021), and
human water consumption (Li et al., 2019; Savelli et al., 2021).

Watershed, regional, and city spatial extents being the
most common among primary studies is also important for
understanding the lens through which sociohydrology studies
are framed. One of the key challenges of sociohydrology is
appropriately integrating water systems that do not conform to
political boundaries, and human systems that do not naturally
align with hydrologic boundaries or networks. Reconciling
these differences to model human-water systems or synthesize
data to better understand sociohydrological processes requires
careful consideration of the spatial extent of the study. Studies
using watershed spatial extents inherently prioritize hydrological
processes in the human-water system. Similarly, studies using
city level spatial extents prioritize social processes in the

human-water system. As regions can be defined both physically
and socially, the popularity of this spatial extent potentially
demonstrates the general flexibility of not using specific political
or hydrological boundaries. Additionally, examining the use of
these spatial extents over time, it can be observed that the use
of regional spatial extents peaks in 2017, while the use of the
watershed and city spatial extents steadily increases, peaking in
2020 (Figure 4).

Spatial resolution was also coded for by recording the overall
spatial resolution for a study or individually recording the spatial
resolutions of the different data used in a study. However,
similar to the data gathered for temporal resolution, spatial
resolution was not reported consistently or clearly enough in the
primary studies reviewed for the coders to confidently identify
the spatial resolution of each study and is therefore not reported
quantitatively. Qualitatively, though, the coders observed that
spatial resolution was reported more frequently for raster data
than it was for vector data. In studies that used both vector and
raster data for their modeling or analysis, this is especially notable
given vector and raster data are inherently incompatible and
must be manipulated to reach compatibility. Converting raster
to vector or vector to raster to create compatible data layers
comes with its own trade-offs (Congalton, 1997), such as loss
of data quality due to aggregation or lessened reliability of data
due to interpolation. However, transforming and manipulating
data within the same data format to adjust for different scales
still requires careful consideration of how the data and its
subsequent interpretation and representation will be affected.
Without explicit reporting of the spatial scales of these data
sources or how these data sources are being manipulated within
a model or series of analyses, it is difficult to critically reflect
on scale issues in sociohydrology, as having access to this
information is key to understanding the implications of scale
issues on methodological approach and study results.

There were few studies that engaged in full transparency when
reporting, though. For example, Wilhelmi and Morss (2013)
conducted a case study of Fort Collins, Colorado, to gain a
better understanding of interactions between social vulnerability
and extreme precipitation events. The authors listed the data
being used in the social vulnerability index in a table and
included spatial and temporal scale information for each data
source. Further, the authors explained how precipitation data was
measured, manipulated, and ultimately integrated with the social
vulnerability measures of sensitivity and coping capacity. In this
study, a combination of tables, figures, and text explanation
were used to explicitly communicate spatial and temporal scale,
data manipulation as it related to scale, and data integration,
allowing the reader to critically interrogate the results of
the study.

Spatial Distribution of Research in
Sociohydrology
The spatial distribution of the countries where the primary
studies reviewed took place revealed high frequencies of studies
in the United States, Australia, and China (Figure 5). This is
undoubtedly partially due to the authors limiting their systematic
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FIGURE 5 | Geographic location of the primary studies by country.

literature search to English-only journal articles. However, this
could also be indicative of a focus in sociohydrology literature
on areas that are facing difficult social and water situations. For
example, Australia has been experiencing extreme droughts and
water shortages that are having severe effects on agriculture and
farmers (Di Baldassarre et al., 2017; Roobavannan et al., 2017). A
focus on sociohydrology issues in Australia is thus not surprising.
Lastly, data availability plays an important role in the distribution
of sociohydrology papers reviewed in this study.

Risk of Bias Across Primary Studies
There is a risk of coding error, as official intercoder reliability
scores were not calculated. That said, the authors aimed to
minimize error by randomly checking each other’s work ex
post facto for accuracy and detail. It is acknowledged that
selective reporting of complete studies, such as publication bias
or “outcome reporting bias” within individual studies, may occur
in our methods and reporting results (Moher et al., 2009). The
implications of these biases may be unclear, yet there is little
dispute that selective outcome reporting typically occurs in the
context of systematic reviews (Moja et al., 2005). To minimize
biases, Moher et al.’s (2009) PRISMA checklist was used. Future
systematic reviews could adapt this scale for those in the natural
or social sciences, to more rigorously check for, and alleviate,
these biases. However, such a re-tooling is outside the scope of
this review.

DISCUSSION

This review used categorization of the spatial-temporal scales
and physical and social components used to study human-
water systems to provide an overview of sociohydrology since
2011. This categorization and overview combined to form the
first step in identifying challenges, specifically spatial-temporal
scale challenges, in the nascent field of sociohydrology. It was
found that the most common temporal extents were yearly and

decadal with event-based studies becoming more popular in
recent years. In addition, watersheds, cities, and regions were
the most used spatial extents with regions becoming less used
in recent years. China and the United States were the locations
of the most studies where there is a larger hydrological focus
demonstrated through a majority of publications in hydrological
focused journals compared to sociology journals. The results
also showed data coming largely from secondary sources relying
primarily on hydrologic data and government surveys. It was
also demonstrated that research within sociohydrology considers
water from a variety of perspectives, such as water quantity,
water use, and water management. However, with only 4% of
studies focusing on water quality, agricultural studies generally
focusing on irrigation management and water use, and no
studies focusing on mining and industry. There is a clear
lack of research in sociohydrology targeting issues of water
quality. While definitions of sociohydrology do not explicitly
state that the focus of this interdisciplinary field is not on
water quality, the results indicate that the interactions and
feedbacks between humans and water quality is not the focus of
sociohydrological issues.

Sociohydrology by definition tries to be distinct from other
coupled human-water fields of study as it considers humans
to be endogenous to the system (Pande and Sivapalan, 2017).
However, the authors observed a wide variety of social variables
that represent different interpretations of what it means for
humans to be “endogenous” to a system. Studies varied from
accounting for social components of the human-water system
exclusively through agent-based modeling or GDP (Krahe et al.,
2016; Wang et al., 2019) to conducting surveys with stakeholders
(Bakarji et al., 2017; Bano et al., 2020). Even among studies that
used similar components to represent humans in sociohydrology,
models varied in how those components were measured. For
instance, Dodge et al. (2012) reviews and explains “well-
being,” by identifying multiple definitions and indexes ranging
in spatial (individual to social to global) and temporal (past,
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present, future, or generational well-being) scales. While the
authors agree that treating humans as endogenous variables of
human-water systems is important and a distinct characteristic
of sociohydrology, differing interpretations of what it means for
humans to be treated endogenously has led to a wide variety
of research within sociohydrology that does not necessarily
align with the original goals set out by Sivapalan et al. (2011)
The absence of a common understanding of endogonization of
humans in human-water systems leads to isolated knowledge that
is not likely to accumulate.

However, the most apparent observation resulting from this
systematic literature review of sociohydrology research is there
are little to no norms for how to present methods, data, and
results as there are in most disciplines. If sociohydrology’s aim
is to situate itself as its own field, then norms need to develop
and be explicitly stated and followed. The authors of this review
do not intend to restrict the ideas, scales, or variables used
in sociohydrology. Rather, the authors intend to advocate for
some level of uniformity in how sociohydrology research is
communicated to improve understanding of differing methods
acrossmultiple disciplines. As it stands, sociohydrology reporting
depends on the original discipline of the authors. There is
risk of inconsistency in measuring and reporting scale, both
spatially and temporally, and minimizing the ability to truly
reach an interdisciplinary audience. Bridging the messiness that
comes hand-in-hand with interdisciplinary research is not a
new challenge; if scale issues are to be “resolved,” or at least
mitigated as much as possible, then future studies wishing to
resolve those issues may find the best approach to be starting
from a common parameter of reporting and method-making.
For example, the authors observed significant variety in the
reporting of spatial and temporal resolution, with many primary
studies not reporting these measures at all. Further, even among
studies that reported both spatial and temporal scale (extent and
resolution), reporting varied from general statements of study
scale to detailed tables of data scale and text-based explanations of
how data was integrated to achieve compatible scales for analysis
(Wilhelmi and Morss, 2013). These inconsistencies point to an
overarching issue—that is, there are large discrepancies between
the spatial and temporal resolutions that social and hydrological
factors are being monitored. Clearly, assumptions must be made
to combine these datasets into some greater understanding, but
the assumptions researchers made to integrate these datasets
were not consistently well-documented. Establishing norms
for reporting scale within the field of sociohydrology would
allow for interdisciplinary audiences to better understand and
critically engage in sociohydrology literature. Additionally,
consistency in the reporting of spatial and temporal scale
is essential addressing challenges and issues concerning scale
in sociohydrology.

The authors recognize limitations in this systematic review
based on several key decisions. First, the authors chose to narrow
the review to only include peer-reviewed articles written in
English with full texts available online. Therefore, this review
neglects any sociohydrologic research presented in conference
proceedings or textbooks. Only including research published
in English biases the findings of the study toward Anglophone

geographies and settings while underrepresenting others.
Additionally, only research published after the introduction of
sociohydrology by Sivapalan et al. (2011) was considered in this
review. The authors recognize that other fields have studied
coupled human-water systems at different scales decades before
2011, but the focus for this review limited the search timeframe
to understand how coupled human-water systems are being
studied since the introduction of sociohydrology. Lastly, the
authors faced many challenges in identifying an appropriate
classification system to summarize the main findings in the
primary studies. The classification system was revised multiple
times throughout the process to be as precise and inclusive as
possible. However, the wide scope of data types, data sources,
and methodologies found in the primary studies are likely not
fully represented.

Despite these limitations, this review summarized key
challenges in terms of interactions within coupled human-water
systems and the varying spatial-temporal scales at which the
interactions are occurring and the scale at which they are being
studied. As Levy et al. (2016) titled their article “Wicked but
worth it,” found that sociohydrology was “wicked” because of
its unwieldy complexity and the challenges of scaling spatial-
temporal boundaries and systems. Nevertheless, sociohydrology
is “worth it,” the authors contended, because of sociohydrology’s
tremendous potential and benefit. The lead authors of this
present review came to a similar conclusion, sociohydrology is
multifaceted, multi-dimensional, and complex, which is needed
to continue the good interdisciplinary work aiming to solve
problems at the human-water nexus and incorporate feedbacks.
However, if the aim of sociohydrology is unification around
a more precise ontology, epistemology, and methodology of
human-hydrology interactions, then sociohydrology has a way
to go. This conclusion should not imply disciplinary ossification,
but rather, a unified plurality aimed at solving a—nay, the—
common crisis of our time.
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