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The lack of high-quality continental-scale groundwater table depth observations

necessitates developing an indirect method to produce reliable estimation for water table

depth anomalies (wtda) over Europe to facilitate European groundwater management

under drought conditions. Long Short-Term Memory (LSTM) networks are a deep

learning technology to exploit long-short-term dependencies in the input-output

relationship, which have been observed in the response of groundwater dynamics to

atmospheric and land surface processes. Here, we introduced different input variables

including precipitation anomalies (pra), which is the most common proxy of wtda, for

the networks to arrive at improved wtda estimates at individual pixels over Europe in

various experiments. All input and target data involved in this study were obtained

from the simulated TSMP-G2A data set. We performed wavelet coherence analysis

to gain a comprehensive understanding of the contributions of different input variable

combinations to wtda estimates. Based on the different experiments, we derived an

indirect method utilizing LSTM networks with pra and soil moisture anomaly (θa) as

input, which achieved the optimal network performance. The regional medians of test

R2 scores and RMSEs obtained by the method in the areas with wtd ≤ 3.0m were

76–95% and 0.17–0.30, respectively, constituting a 20–66% increase in median R2 and

a 0.19–0.30 decrease in median RMSEs compared to the LSTM networks only with pra
as input. Our results show that introducing θa significantly improved the performance

of the trained networks to predict wtda, indicating the substantial contribution of θa to

explain groundwater anomalies. Also, the Europeanwtda map reproduced by themethod

had good agreement with that derived from the TSMP-G2A data set with respect to

drought severity, successfully detecting ∼41% of strong drought events (wtda ≥ 1.5)

and ∼29% of extreme drought events (wtda ≥ 2) in August 2015. The study emphasizes

the importance to combine soil moisture information with precipitation information in

quantifying or predicting groundwater anomalies. In the future, the indirect method

derived in this study can be transferred to real-time monitoring of groundwater drought at

the continental scale using remotely sensed soil moisture and precipitation observations

or respective information from weather prediction models.
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INTRODUCTION

Drought is one of the major natural disasters worldwide,
considerably affecting environmental, human, and economic
well-being. According to a report of the European Environment
Agency in 2020 (European Environment Agency, 2020), in most
parts of Europe, the frequency and severity of droughts have
increased since 1950 and will further increase in the future. In
this context, many studies on drought have been carried out over
Europe, e.g., Stagge et al. (2017), Bachmair et al. (2018), Hänsel
et al. (2019).

Mishra and Singh (2010) categorized drought into five types,
namely, meteorological, hydrological, agricultural, groundwater
and socio-economic drought. Except for the last type, which
reflects socio-economic situations, the severity of the others can
be quantified by the following standardized hydrometeorological
variables: (1) precipitation anomaly (pra) and evapotranspiration
anomaly (ETa) for meteorological drought, e.g., the Standardized
Precipitation Index (McKee et al., 1993) and the Standardized
Precipitation Evapotranspiration Index (Vicente-Serrano et al.,
2010); (2) river stage anomaly (rsa) and river discharge anomaly
for hydrological drought, e.g., the Standardized Runoff Index
(Shukla and Wood, 2008) and the Streamflow Drought Index
(Nalbantis and Tsakiris, 2009); (3) soil moisture anomaly (θa)
for agricultural drought, e.g., the Crop Moisture Index (Palmer,
1968); (4) water table depth anomaly (wtda) for groundwater
drought, e.g., the Standardized Groundwater level Index
(Bloomfield and Marchant, 2013) and the GRACE Groundwater
Drought Index (Thomas et al., 2017). These examples are not
exhaustive, providing some of the related drought indices that
have been widely used for extreme event analyses.

With the advances of in-situ and remotely sensed observation
technologies, many variables mentioned above can be
monitored routinely and are also available at large scales
from, e.g., atmospheric reanalysis and forecast data sets, thereby
significantly supporting drought investigations. However, to
date, it is still challenging to obtain high-quality spatiotemporally
continuous water table depth (wtd) measurements over Europe
for the calculation of wtda(Van Loon et al., 2017; Brauns et al.,
2020). Thus, it is necessary to develop an indirect approach to
produce reliable wtda estimates over Europe in order to mitigate
the potential negative impact of scarce wtd measurements on
groundwater management at the European scale.

Indirect methods exploit the close connection between
groundwater drought and other types of natural drought
to predict wtda based on additional drought-related
hydrometeorological variables that have data available at
the continental scale. Depending on atmospheric and land
surface processes, the contributions of these variables to
wtda are non-linearly weighted and temporally lagged, which
cannot be well-represented by simple techniques such as using

Abbreviations: pra, precipitation anomaly; ETa, evapotranspiration anomaly; rsa,

river stage anomaly; θa, soil moisture anomaly; wtda, water table depth anomaly;

wtd, water table depth; LSTM networks, Long Short-Term Memory networks;

TSMP, Terrestrial Systems Modeling Platform; SWEscaled , scaled yearly averaged

snow water equivalent; SWE, snow water equivalent.

the Standardized Precipitation Index or the Standardized
Precipitation Evapotranspiration Index over extended time
scales (commonly 6 to 12 months) to represent wtda (Ma et al.,
2021).

Long Short-Term Memory (LSTM) networks are a type of
recurrent neural networks used in the field of deep learning.
Without either subjective human annotation needed in the
application of simple machine learning techniques (e.g., a
predefined time lag in the response) or extensive physical
background knowledge required by physically-based models,
they can automatically detect long-short-term dependencies
between input and output sequences (Reichstein et al., 2019),
which are prevalent in hydrological responses. Benefiting
from this characteristic, LSTM networks have recently drawn
increasing attention from researchers in the hydrological
sciences, e.g., rainfall-runoff modeling, Kratzert et al. (2019);
flooding forecasting, Le et al. (2019); river stage modeling, Ma
et al. (2019); and groundwater level modeling, Zhang et al. (2018).

In a recent study (Ma et al., 2021), we have demonstrated the
utility of LSTM networks constructed at the individual pixel level
to capture the time-varying and time-lagged relationship between
monthly pra and wtda derived from the TSMP-G2A data set over
Europe. The pra is the most common proxy of wtda. The dataset
was published by Furusho-Percot et al. (2019), consisting of daily
integrated hydrologic simulation results from the Terrestrial
SystemsModeling Platform (TSMP). Furusho-Percot et al. (2019)
andHartick et al. (2021) corroborated the realism of the dataset in
a comparison of simulated temperature, precipitation, and total
column water storage anomalies with common observational
datasets (i.e., E-OBS, ERA-Interim, GRACE and GRACE-REC).
With the results of the proposed LSTM networks, we successfully
reproduced European TSMP-G2A wtda maps for drought
months in 2003 and 2015, showing good agreement concerning
the spatial distribution of dry and wet events. Nevertheless,
we also noticed relatively poor performance of the proposed
networks at some pixels, which suggested the need for additional
input to improve wtda estimates.

Introducing additional input variables supplements the
information used to estimate certain frequency components of
wtda. However, the improvement in each frequency component
is not identifiable by general evaluation metrics. In this case,
wavelet coherence analysis is a useful tool. The method reveals
time-frequency localized coherence between time series and
thus enables the detection of transient cross-correlation for a
specific frequency (Labat, 2005). Several studies, such as Lane
(2007), Salerno and Tartari (2009) and Fang et al. (2015), have
applied wavelet coherence analysis to gain insight into the cross-
correlation between modeled and target time series in the time-
frequency domain.

The objective of this study was to optimize the LSTMnetworks
proposed in Ma et al. (2021) to arrive at improved wtda estimates
at the individual pixel level over Europe. In addition to pra,
which was the original input variable, we introduced ETa, θa,
scaled yearly averaged snow water equivalent (SWEscaled), and
anomalies at adjacent pixels (e.g., rsa, see Table 2) as optional
input variables for the networks in various experiments. Using
data from the TSMP-G2A data set, we derived an indirect
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method based on the LSTM networks with the optimal input
variable combination to estimate wtda at the European scale in
order to facilitate European groundwater management under
drought conditions. General evaluation metrics (i.e., the root
mean square error, RMSE and the coefficient of determination,
R2) and wavelet coherence analysis provide a comprehensive
understanding of the contributions of different input variables to
the explanation of groundwater anomalies. As such, we presented
and evaluated a LSTM-based method of simulated wtda, which
can be transferred to other data sources for observation-based
estimation. To our best knowledge, this study is among the
first efforts applying LSTM networks on estimating groundwater
dynamics at the continental scale based on information in
addition to meteorological data.

METHODOLOGY

Wedesigned experiments that introduced different input variable
combinations into the LSTM networks proposed in Ma et al.
(2021), which utilized a supervised training algorithm with target
data (i.e., wtda data from the TSMP-G2A data set, hereafter
named TSMP-G2A wtda) to guide the training process, and
conducted wavelet coherence analysis to investigate the impact
of the input variable combinations on the estimation of wtda
over Europe in the time-frequency domain. In this section,
we start with a brief overview of LSTM networks and wavelet
coherence analysis, then describe the study area and data,
and continue with the design of the performed experiments
and a generic workflow to construct the LSTM networks at
individual pixels.

Long Short-Term Memory Networks
LSTM networks were introduced by Hochreiter and
Schmidhuber (1997) to solve the exploding and vanishing
gradient issues in standard recurrent neural networks. A LSTM
network contains one input layer for receiving inputs, one or
more hidden layers for internal computation and one output
layer for producing final outputs. Through loops on their
hidden layer(s), previous output of each hidden neuron (i.e.,
information-processing units on the hidden layer) in LSTM
networks flows back to all neurons on the same layer and is
then combined with new input to produce new neuron output.
Therefore, LSTM networks are deep in time and considered
to have memory (Shen, 2018). Here, we adopted the same
architecture of hidden neurons as Gers et al. (2000), constructed
by three gates with different functions and a constant error
carousel (CEC), as illustrated in Figure 1. Benefiting from
the interaction of these components, LSTM networks are
able to exploit dependencies over 1000 time steps, surpassing
standard recurrent neural networks that only remember up
to 10 previous inputs (Hochreiter and Schmidhuber, 1997;
Kratzert et al., 2018). The highly improved learning ability of
LSTM networks facilitates estimating wtda in deep aquifers
where a large time lag exists in the response of groundwater to
other drought-related hydrometeorological variables. Compared
to physically-based models, LSTM networks commonly
necessitate less computational time and physical background

FIGURE 1 | A LSTM hidden neuron. i, f, and o represent the input, forget, and

output gates, which are activated by the sigmoid function. The green arrows

indicate the entry of new inputs into the hidden neuron, and the blue arrows

show the entry of neuron outputs of the previous time step (i.e., t – 1) into the

hidden neuron. For the sake of simplicity, biases are not shown here.

knowledge (e.g., topography). Moreover, when the LSTM
networks are available, they only require the data of input
variables to estimate wtda, which can be easily accessed from
observations and reanalysis products. For details about the
functions of the components in LSTM hidden neurons, the
reader is referred to Hochreiter and Schmidhuber (1997) and
Gers et al. (2000).

Given an input variable whose time series is x (t) (t ≥ 1), the
computing process in a LSTM hidden neuron (Figure 1) at the
time step t is presented by Eqs 1–6.

i (t) = σ (wix (t)+ bi + wihh (t − 1)+ bih) (1)

f (t) = σ (wf x (t)+ bf + wfhh (t − 1)+ bfh) (2)

o (t) = σ (wox (t)+ bo + wohh (t − 1)+ boh) (3)

g (t) = tanh(wcx (t)+ bc + wchh (t − 1)+ bch) (4)

c (t) = f (t)∗ c (t − 1)+ i (t)∗ g (t) (5)

h (t) = o (t)∗ tanh(c (t)) (6)

where, i (t), f (t), o (t) are the information that enters into
the neuron via the input, forget and output gates, respectively;
h (t − 1) and h (t) are the neuron output at time step t – 1 and
t, respectively; c (t − 1) and c (t) are the cell state at time step
t – 1 and t, respectively; w∗ and b∗ are the learnable weight
and bias on a linkage between neurons, respectively, and the
subscripts i, f, o and c represent the input, forget and output
gates and the cell state, respectively, e.g., wi is the weight on
the linkage of the new input x (t) to the input gate of a hidden
neuron while wih is the weight on the linkage of the previous
neuron output h (t − 1) to the input gate of a hidden neuron; σ
represents the sigmoid function; tanh represents the hyperbolic
tangent function; ∗ represents the Hadamard product.

At the individual pixel level, we constructed one-hidden-layer
LSTM networks, due to the relatively small amount of data
available (i.e., a total of 252 time steps). The numbers of neurons
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on the input and output layers depend on the numbers of input
and output variables, respectively, and they are constant in each
experiment. Therefore, in this study, the network complexity
is only affected by the number of hidden neurons, which is
the only hyperparameter to tune during network validation
(described in Section Experimental Design). The desired number
of hidden neurons should allow a network not only to gain
enough knowledge from a given data set but also be able to handle
previously unobserved data (Dawson and Wilby, 2001; Müller
and Guido, 2017).

Wavelet Coherence Analysis
Wavelet transforms map time series into the time-frequency
domain and help localizing intermittent periodicities.
Continuous wavelet transform is a common type of wavelet
transforms useful for feature extraction (Grinsted et al., 2004).
The continuous wavelet transform of a discrete time series xn0 at
the time step n and a specific time scale s is given by Eq. 7.

W (s, n) =

N−1
∑

n0=0

xn0ψ
∗

[

(n0 − n)δt

s

]

(7)

where, ψ is the mother wavelet, here using the Morlet wavelet,
and ψ∗ is the complex conjugate of ψ ; δt is the time step
of xn0 ; N is the total number of δt in xn0 . The power of the

continuous wavelet transform is defined as
∣

∣W(s, n)
∣

∣

2
(Torrence

and Compo, 1998). While continuous wavelet transform can
effectively identify localized intermittent oscillations in the time-
frequency domain, it is only applicable to a single time series.

Wavelet coherence analysis is a method that measures the
cross-correlation of two time-dependent variables in the time-
frequency domain, of which calculation (Eq. 8) is based on
continuous wavelet transform. The results of wavelet coherence
analysis are comparable with traditional correlation coefficients,
ranging from 0 to 1.

Coherence (s, n) =

∣

∣

〈

s−1Wxy(s, n)
〉∣

∣

2

〈

s−1
∣

∣Wx(s, n)
∣

∣

2
〉 〈

s−1
∣

∣Wy(s, n)
∣

∣

2
〉 (8)

where, the 〈 • 〉 indicates smoothing in both time and scale;
Wx(s, n) and Wy(s, n) are the continuous wavelet transforms
of the time series xn0 and yn0 ; Wxy (s, n) is the cross-
wavelet spectrum of the time series xn0 and yn0 and equal to
Wx (s, n)W

∗
y (s, n), and the (∗) indicates the complex conjugate

(Torrence and Webster, 1999; Grinsted et al., 2004).
The phase shift in the results of wavelet coherence analysis is

calculated by:

φ (s, n) = tan−1
(

I
{〈

s−1Wxy(s, n)
〉}

/R
{〈

s−1Wxy(s, n)
〉})

(9)

where, I { • } and R { • } signify the imaginary and real parts of
a complex number, respectively (Torrence and Webster, 1999).
φ (s, n) = 0 means that the wavelets of two considered time
series at the time step n and the time scale s are in phase. Detailed
descriptions of wavelet coherence analysis and phase shift can be

found in Torrence andWebster (1999), Grinsted et al. (2004) and
Rahmati et al. (2020).

In this study, we conducted wavelet coherence analysis to
derive the time-frequency correlation and phase shifts between
regionally averaged wtda time series obtained from the TSMP-
G2A data set and the LSTM network results. In this way, we
expected to gain an understanding of the network performance
in various experiments and thus help explain the contributions
of different input variable combinations to the estimation ofwtda
over Europe in the time-frequency domain.

Study Area and Data Set
We utilized the TSMP-G2A data set to evaluate the ability of
the proposed LSTM networks to estimate wtda over Europe in
different experiments. As aforementioned, the dataset contains
daily averaged continuous simulation results over Europe
from TSMP, which is a fully coupled atmosphere-land-surface-
subsurface modeling system. The spatial resolution of the dataset
is 0.11◦ (∼12.5 km). For details regarding TSMP and the TSMP-
G2A data set, the reader is referred to Gasper et al. (2014),
Shrestha et al. (2014) and Furusho-Percot et al. (2019).

This study focused on eight different European regions,
which are known as the PRUDENCE regions (Christensen
and Christensen, 2007): Scandinavia (SC), British Isles (BI),
Mid-Europe (ME), Eastern Europe (EA), France (FR), Alps
(AL), Iberian Peninsula (IB), and Mediterranean (MD).
The individual PRUDENCE regions are characterized by
different hydrometeorological regimes, potentially resulting
in various responses of groundwater anomalies to other
hydrometeorological variables, and constitute reference
regions in climate science. Regionally averaged precipitation,
evapotranspiration and soil moisture values calculated from
the TSMP-G2A data set range from 776mm (EA) to 1,494mm
(AL), 283mm (SC) to 518mm (MD) and 0.29 m3m−3 (IB) to
0.36 m3m−3 (BI), respectively. Regionally averaged wtd values
are from 2m to 3m, apart from AL (4.14m), IB (6.62m) and
MD (6.48m). Figure 2 presents the yearly averaged spatially
distributed wtd values calculated from the TSMP-G2A data set
from 01/1996 to 12/2016. Based on intervals of yearly averaged
wtd, we categorized pixel values into three classes following
Ma et al. (2021), that is, C1 corresponding to 0.0m < wtd
≤ 3.0m, C2 corresponding to 3.0m < wtd ≤ 10.0m and C3
corresponding to wtd > 10.0m. Most pixels on the European
continent belong to C1 (colored in light blue), accounting for
52% to 75% of different PRUDENCE regions. <20% of pixels
in each PRUDENCE region belong to C2 (colored in orange).
<15% of pixels in each PRUDENCE region belong to C3
(colored in red), except for AL (24%), IB (30%) and MD (28%).
In addition, there is also a heterogeneous pattern in the yearly
averaged snow water equivalent (SWE) values (not shown here)
derived from the TSMP-G2A data set. SC and AL have the largest
regionally averaged SWE (>60mm) while the other regions have
regionally averaged SWE< 10 mm.

The anomaly data were calculated from the TSMP-G2A data
set for each calendar month and pixel individually for the period
01/1996 to 12/2016 to enable the spatial comparability and
to account for the seasonality in the variables. Here, we only
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FIGURE 2 | TSMP-G2A wtd [m] climatology over the European continent from

01/1996 to 12/2016. Areas bounded by the black polygons show PRUDENCE

regions (i.e., SC, Scandinavia; BI, British Isles; ME, Mid-Europe; EA, Eastern

Europe; FR, France; AL, Alps; IB, Iberian Peninsula; MD, Mediterranean).

TABLE 1 | Definition of drought severity based on anomalies.

Drought severity pra/θa ETa/rsa/wtda

Extreme drought ≤-2 ≥2

Severe drought −2–−1.5 1.5–2

Moderate drought −1.5–−1 1–1.5

Minor drought −1–0 0–1

No drought >0 <0

considered the data after the year 1996 to avoid the influence of
spinup effects on the simulation results (Furusho-Percot et al.,
2019). We used Eq. 10 to calculate pra, ETa, θa and wtda, where
the climatological average and standard deviation values were
derived from the training set (i.e., the data from 01/1996 to
12/2012, described in Section Experimental Design) to prevent
future information from leaking into the training process. rsa =
wtda at pixels where wtd ≤ 0m. Regionally averaged pra, ETa, θa
and wtda time series for the wtd categories C1 to C3 in different
PRUDENCE regions are presented in Supplementary Figure 1.

va = (vm − vav)/vsd (10)

where, v is the considered variable, such aswtd; vm is the monthly
data of v calculated from the TSMP-G2A data set; vav is the
climatological average of vm (i.e., averages of vm in January,
February, . . . , December); vsd is the climatological standard
deviation of vm.

pra, ETa, θa, rsa and wtda are measures of different types of
drought.Table 1 provides the definition of drought severity based
on anomalies, following McKee et al. (1993).

Moreover, we utilized Eqs 11, 12 to calculate SWEscaled from
SWE which has data only available from 01/2003 to 12/2010. The
obtained SWEscaled data only has one value in the range from−1

TABLE 2 | Combinations of input variables in different experiments.

Experiment Combination of input variables

E1 E1.1 pra

E1.2 ETa

E1.3 θa

E1.4 pra, ETa

E1.5 pra, θa

E1.6 ETa, θa

E1.7 pra, ETa, θa

E2 E2.1 Optimal input variable combination in

E1, SWEscaled

E2.2 Optimal input variable combination in

E1 at the considered pixel and

adjacent pixels

E2.3 Optimal input variable combination in

E1, rsa at adjacent pixels

to 1 at each pixel, so it is static.

SWE0 = (SWEy − SWEmin)/(SWEmax − SWEmin) (11)

SWEscaled = SWE0 ∗ [1− (−1)]+ (−1) (12)

where, SWEy is the yearly averaged SWE value from 2003 to
2010; SWEmin is the minimum value of SWEy over the European
continent; SWEmax is the maximum value of SWEy over the
European continent.

Experimental Design
In this study, we varied a number of input variables, in addition
to pra used in the LSTM networks proposed in Ma et al. (2021),
to arrive at improved wtda estimates. The combinations of input
variables used in different experiments are listed in Table 2.
We selected the input variables based on their demonstrated
relationship with wtda (Van Loon, 2015) and availability in the
TSMP-G2A data set and common observational datasets. In E1,
the LSTM networks used combinations of pra, ETa and θa as
input. pra, ETa and θa are drought-related hydrometeorological
variables with spatiotemporally continuous data over Europe,
which can be easily obtained from observations and reanalysis
datasets, e.g., ERA5-Land. pra and ETa are measures of
meteorological drought, while θa shows the degree of agricultural
drought. Except for the input variables involved in E1, the quality
of wtda estimates can also be affected by SWE; Ma et al. (2021)
found that large SWE can degrade the network test performance.
Moreover, in an unconfined aquifer, groundwater and surface
water dynamics have a strong lateral connection, and thus, wtda
at a pixel is also influenced by the change in water dynamics at
neighboring pixels, especially for a pixel close to a river, due to
the interaction between surface water and groundwater. Here, in
addition to the optimal input variable combination determined
in E1, we introduced a static input SWEscaled and anomalies at
adjacent pixels as input to the LSTM networks in E2, to explore
potential improvement in the network performance. Especially,
at pixels close to rivers, we investigated the impact of rsa at
adjacent pixels on the network performance (see E2.3).
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TABLE 3 | Hyperparameter setting of the applied LSTM networks [adopted from

Ma et al. (2021)].

Hyperparameter Value or method

Number of input, hidden, and output

layer(s)

(1, 1, 1)

Number of input, hidden and output

neuron(s)

(number of input variables,

1–100, 1)

Initial weights and biases on all

connections between neurons

U(−0.5, 0.5)*

Initial cell states of LSTM neurons 0

Optimizer, learning rate RMSprop (Hinton et al.,

2012), 0.001

Loss function Mean square error

*U(–0.5, 0.5): uniform distribution bounded by –0.5 and 0.5.

At the individual pixel level, we divided anomaly data into
a training set (01/1996–12/2012, 204 time steps, about 80% of
the total data), a validation set (01/2013–12/2014, 24 time steps,
about 10% of the total data) and a test set (01/2015–12/2016, 24
time steps, about 10% of the total data) for network training,
validation and testing, respectively. The static input SWEscaled
provided the same value at every time step.

The LSTM networks applied here have the same configuration
of hyperparameters (listed in Table 3) as Ma et al. (2021),
except for the number of input neurons which depends on the
number of input variables used in the different experiments.
As described in Section Long Short-Term Memory Networks,
the number of hidden neurons has a significant impact on the
network performance and is the only hyperparameter to tune
here, ranging from 1 to 100.

Figure 3 illustrates the generic workflow used to construct
the LSTM networks at the individual pixel level in the different
experiments. The workflow started with the network training
process during which we fitted the training set to the LSTM
networks with 1 to 100 hidden neurons. An epoch is an iteration
when the whole training set travels once through the network
forward and backward. Weights and biases on all connections
between neurons commenced from random values selected from
a uniform distribution bounded by −0.5 and 0.5, and in each
epoch, the networks automatically updated weights and biases
based on the difference between the network output and the
target data (i.e., TSMP-G2A wtda) calculated by the loss function
(here Mean Square Error). The technique of adjusting weights
and biases is termed an optimizer (here RMSprop), and the rate at
which an optimizer adjusts weights and biases is termed learning
rate (here 0.001). In the interval of two consecutive epochs, the
network validation process was run to check the performance
of the trained network in each epoch on the validation set. The
criteria for stopping the training process were (1) the number
of epochs ≥50; and (2) the validation performance started to
decrease. Based on the validation performance, we determined
three optimal numbers of hidden neurons, which were often
various for the LSTM networks constructed at different pixels. In
the end, we applied the trained networks with the three optimal

FIGURE 3 | A generic workflow to construct the LSTM networks at individual

pixels [adopted from Ma et al. (2021)]. The blue dashed lines with arrows

represent data transmission paths.

numbers of hidden neurons on the test set (i.e., unobserved data
during training) and averaged the results from the three networks
as the final result for evaluation. In this way, we compensated
for the individual shortcomings of the selected networks to some
extent and obtained improved final results. For details about the
network setup, the reader is referred to Ma et al. (2021).

We adopted RMSE and R2 as the metrics to assess the network
performance, which show the goodness of fit of the LSTM
networks in terms of the magnitude and variance of the error.
They are calculated by Eqs 13, 14, and the LSTM networks having
good performance are expected to obtain low RMSEs and high
R2 scores.

RMSE =

√

√

√

√

N
∑

i=1

(

yt − ym
)2
/N (13)

R2 = 1−

N
∑

i=1

(

yt − ym
)2
/

N
∑

i=1

(yt − yt)
2 (14)

where, yt and yt are the target value (i.e., TSMP-G2A wtda) and
the average of the target values, respectively; ym is the modeled
value (i.e., the network output, hereafter named LSTM wtda); N
is the number of time steps in the given time series.

To save computational resources, we constructed the LSTM
networks locally at a limited number of pixels, which were
randomly selected in each PRUDENCE region. Ma et al. (2021)
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FIGURE 4 | Box plots of test R2 scores achieved by the LSTM networks of E1 and E2: E1.1: pra; E1.2: ETa; E1.3: θa; E1.4: pra and ETa; E1.5: pra and θa; E1.6: ETa
and θa; E1.7: pra, ETa and θa; E2.1: pra, θa and SWEscaled ; E2.2: pra, θa at the selected pixels and adjacent pixels; and E2.3: pra, θa at the selected pixels close to

rivers and rsa at the adjacent pixels. (A–H) show the comparison of the box plots at the selected pixels belonging to the wtd categories C1 to C3 in each PRUDENCE

region. The box plots show the ranges of the R2 scores from the first quartile to the third quartile; the red lines indicate the medians of the R2 scores; and the upper

and lower ends represent the maximum and minimum values of the R2 scores, respectively. The medians of the R2 scores obtained by the LSTM networks of E1.5 are

marked with red stars. The box plots for E1 and E2 are separated by gray dotted lines.
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FIGURE 5 | Box plots of test RMSEs achieved by the LSTM networks of E1 and E2. (A–H) show the comparison of the box plots at the selected pixels belonging to

the wtd categories C1 to C3 in each PRUDENCE region. The labels have the same definitions as Figure 4, but for RMSEs.
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found that yearly averaged wtd considerably affected the test
performance of the LSTM networks with pra as input, and for
increasing wtd, the networks tended to behave poorly. Hence,
during the analyses of the network results (presented in Section
Results), we separated the selected pixels in each PRUDENCE
region into thewtd categories C1 to C3 based on theirwtd values.

RESULTS

Test Performance of the LSTM Networks in
the Different Experiments
We aimed to identify the LSTM networks with the best test
performance in the designed experiments in handling previously
unobserved data. Figures 4, 5 illustrate the box plots of the test
R2 scores and RMSEs achieved by the LSTM networks in the
different experiments at the selected pixels belonging to the wtd
categories C1 to C3 in each PRUDENCE region, respectively.
For a better visualization, we set negative R2 scores to zero in
Figure 4. The medians of the test R2 and RMSEs achieved in
different experiments for C1 to C3 in each PRUDENCE region
are listed in Supplementary Table 1.

The LSTM networks of E1.5 (marked with red stars in
Figures 4, 5) achieved the optimal test performance not only in
E1 but also in all the designed experiments, which used pra and
θa as input. They obtained the test scores as follows: median
R2 of 76–95% for C1, 0–58% for C2, and 0–14% for C3; and
median RMSEs of 0.17–0.30 for C1, 0.32–0.60 for C2, and 0.36–
0.94 for C3. The evaluation metrics were significantly improved
compared to those obtained by the LSTM networks employed in
Ma et al. (2021), particularly for C1 (with a 20–66% increase in
median R2 and a 0.19–0.30 decrease in median RMSEs), which
is the major wtd category in Europe. Over Europe, the LSTM
networks of E1.5 showed good test performance with a test R2

score ≥ 50% at most selected pixels (Figure 6). In addition,
Table 4 gives close to or over half of the selected pixels with a
test R2 score ≥50% in the PRUDENCE regions for the LSTM
networks of E1.5, constituting an increase of 8 to 22% compared
to Ma et al. (2021). The highly improved wtda estimates by
including θa as input suggest that θa plays an important role
in explaining groundwater dynamics over Europe. One possible
reason for that is, compared with pra and ETa, θa provides
more information about subsurface hydrological processes, such
as vegetation influence, soil heterogeneity and, thus, varying
infiltration and recharge rates. Because θa and wtda are measures
of agricultural drought and groundwater drought, respectively,
the substantial contribution of θa to wtda also suggests the
close connection between agricultural drought and groundwater
drought over Europe.

In E2.1, no noticeable improvement was detected in the test R2

scores and RMSEs especially in SC and AL that have large SWE
(see Figures 4, 5) by adding SWEscaled as additional input to the
LSTM networks of E1.5, implying little additional contribution of
snow accumulation to the estimation of wtda over Europe. This
seems to be inconsistent with the conclusion of Ma et al. (2021)
that SWE strongly affects the quality of wtda estimates. However,
the discrepancy can be explained by the fact that soil moisture

FIGURE 6 | Map of test R2 scores achieved by the LSTM networks of E1.5

(pra and θa) in the PRUDENCE regions.

TABLE 4 | Percentages of the selected pixels with a test R2 score ≥50% in the

PRUDENCE regions (%) for the LSTM networks of E1.5.

SC BI ME EA FR AL IB MD

37.90 50.10 64.49 50.60 65.74 61.99 44.50 44.90

is partly replenished by snow water and thus θa already includes
information about SWE.

In Figures 4, 5, we found that only the test R2 scores and
RMSEs for the wtd categories C2 and C3 (wtd > 3.0m) were
partially improved by adding anomalies available at neighboring
pixels as input to the LSTM networks of E1.5 (i.e., E2.2 and E2.3).
It indicates the lateral exchange of groundwatermainly influences
groundwater dynamics in deep aquifers. The improvement was
small (<0.1 for median RMSEs) for C2 and C3, and the network
test performance was generally degraded for C1 to which more
than half of the pixels over Europe belong, and thus, the LSTM
networks of E2.2 and E2.3 are expected to gain worse test
performance compared to the LSTM networks of E1.5 at the
European scale.

In general, Figures 4, 5 show the decrease in network test
performance with increasing average wtd (from C1 to C3),
manifested in the smaller medians of test R2 scores and larger
medians of test RMSEs, which is in good agreement with the
finding in Ma et al. (2021). Moreover, we also found only small
contributions of ETa to the estimation of wtda at the European
scale compared to other drought-related input variables reflected
in the worst test performance in E1.2 (ETa).

European Water Table Depth Anomaly Map
in 2015 Reproduced by the Results of the
Optimal LSTM Networks
In 2015, large parts of the European continent were affected
by an extreme summer heatwave, causing severe drought (Van
Loon et al., 2017). Here, based on the results of the optimal
LSTM networks (E1.5: pra and θa), we reproduced the European
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wtda map derived from the TSMP-G2A data set for August 2015
(Figure 7), which was one of the driest months in 2015. The
study month is in the testing period, and thus, the networks have
not seen the data during training. Nevertheless, the reproduced
map is in good agreement with the original map (Figure 7)
concerning drought severity through a visual inspection. Both
show the spatially heterogeneous distribution of wtda over
Europe, including the strong groundwater anomalies (wtda ≥

1.5) in ME, EA, and AL and the very wet conditions (wtda ≤

−1.5) in SC and BI, which is consistent with previous studies
(e.g., Dong et al., 2016; Van Lanen et al., 2016; Van Loon
et al., 2017). Moreover, the optimal LSTM networks successfully
detected∼41% of strong drought events (wtda ≥ 1.5) and∼29%
of extreme drought events (wtda ≥ 2) at the European scale
in August 2015, outperforming the original LSTM networks
proposed in Ma et al. (2021), (E1.1, Supplementary Figure 2B)
with the hit rates only∼15% for strong drought events and∼3%
for extreme drought events.

Wavelet Coherence Analysis on Regionally
Averaged Water Table Depth Anomaly Time
Series in ME
The significantly improved test performance of the LSTM
networks of E1.5 is attributed to information contained in θa
for estimating certain frequency components of wtda. Therefore,
here we conducted wavelet coherence analysis on the regionally
averaged wtda time series for the wtd categories C1 to C3 in
ME (Figure 8), which were derived from the TSMP-G2A data
set and the LSTM network results in E1.1 and E1.5. We focused
on the areas within the black dashed lines to eliminate edge
effects and to gain a better understanding of the contribution
of θa on the explanation of groundwater anomalies in the time-
frequency domain.

By introducing θa as additional input, the coherence between
the regionally averagedwtda time series was significant improved
at periods between 2 and 8 months, especially for the wtd
categories C1 and C2, revealing the larger contribution of
θa to explain groundwater dynamics at the monthly and
seasonal cycles compared to pra. Moreover, in Figure 8B,
most phase shifts at periods between 2 and 8 months are
zero for the wtd categories C1, suggesting almost no time
lag between the modeled and target regionally averaged wtda
time series in shallow aquifers of ME. The similar conclusions
can also be drawn from the results of wavelet coherence
analysis in other PRUDENCE regions, which are shown in
Supplementary Figures 3–9.

DISCUSSION

The scarcity of wtd observations complicates groundwater
monitoring and requires alternative methods to quantify or
predict wtda. The pra is the most common proxy of wtda,
mainly due to the close connection between meteorological
and groundwater droughts and the easy access to global
precipitation data. This study, however, showed the limits of
merely using pra and/or ETa data to estimate wtda over Europe.

Similar conclusions were also drawn by e.g., Kumar et al.
(2016), Uddameri et al. (2019), who compared the performance
of the Standardized Precipitation Index over extended time
scales to quantify groundwater drought with the Standardized
Groundwater level Index. One potential reason is that the
occurrence of groundwater drought depends not only on
the precipitation and temperature anomalies but also on the
antecedent water storage (Van Lanen et al., 2016). Therefore,
including ground-based information such as θa significantly
improved the network results in the presented study. In addition,
similar to precipitation, soil moisture data is available from e.g.,
remotely sensed observations and reanalysis products, which
removes the barriers to using θa as input for estimating wtda in
real world applications.

The 2015 European summer heatwave started in June and
resulted in peak temperatures in early July (Dong et al., 2016).
Because most aquifers in Europe are shallow (with simulated
wtd ≤ 3m), a rapid response of groundwater was noticed,
and the groundwater drought was already severe in several
parts of Europe in August 2015. Although the impact of
the groundwater drought continued until the end of 2015
(not shown here), its affected area was much smaller than
the meteorological drought in the same year (Dong et al.,
2016; Van Lanen et al., 2016). This indicates that not all
meteorological droughts will evolve into groundwater droughts,
and thus simply considering precipitation information is not
enough to quantify groundwater drought, which is consistent
with our previous observation. Moreover, the locations with
groundwater drought coincided well with those with vegetation
stress presented in Van Lanen et al. (2016), which also confirms
the usefulness of soil moisture information in the estimation of
groundwater anomalies.

The wavelet coherence analysis helped to explain the added
value of θa as input in the estimation of wtda from the time-
frequency perspective. Considering θa consistently increased the
coherence between regionally averaged TSMP-G2A and LSTM
wtda time series at periods between 2 and 8 months. This
reflects the systematic contribution of θa to the explanation of
groundwater anomalies.

Temporal Convolutional Networks (Yan et al., 2020)
and Transformers (Vaswani et al., 2017) may constitute
alternatives to the LSTM networks proposed here, which
have been shown to outperform LSTM networks in handling
long time series. The estimation of groundwater anomalies
in deep aquifers may benefit from the application of these
methods. Yet, in the simulations, most aquifers in Europe
have yearly averaged wtd value ≤ 3m, in which the response
of wtda to hydrometeorological variables is expected to
be relatively fast. Therefore, the improvement achieved
by these methods may be not significant compared to
LSTM networks.

SUMMARY AND CONCLUSIONS

In this study, we conducted several experiments to investigate
the impacts of additional input variable combinations

Frontiers in Water | www.frontiersin.org 10 November 2021 | Volume 3 | Article 723548

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Ma et al. European Groundwater Anomaly Estimation

FIGURE 7 | European wtda maps for August 2015 (i.e., in the testing period), derived from (A) the TSMP-G2A data set and (B) results from the LSTM networks of

E1.5 (pra and θa).

FIGURE 8 | Results of wavelet coherence analysis on the regionally averaged wtda time series for the wtd categories C1 to C3 in ME, which were derived from the

TSMP-G2A data set and the results of the LSTM networks of: (A) E1.1: pra; and (B) E1.5: pra and θa. The training, validation and testing periods are separated by

gray dashed lines.

in the LSTM networks proposed in Ma et al. (2021) to
improve monthly wtda estimates at individual pixels in
eight hydrometeorologically different regions over Europe
(i.e., PRUDENCE regions). Except for the original input
variable pra, we introduced ETa, θa, SWEscaled, and anomalies
at adjacent pixels (e.g., rsa, see Table 2) as optional input
variables to the LSTM networks. All assessments were based
on anomalies derived from the TSMP-G2A data set, which
contains daily integrated hydrologic simulation results over the
European continent.

Because R2 scores and RMSEs only provide limited
information on the network performance, we also applied

wavelet coherence analysis to investigate the contribution of the
input variable(s) to explain groundwater anomalies over Europe
in the time-frequency domain.

The optimal LSTM networks were found with pra and
θa as input. Considering θa strongly improved the network
test performance particularly in the areas with wtd ≤ 3m
(i.e., the major wtd category), suggesting that θa plays a
significant role in the estimation of wtda over Europe.
Because θa is related to agricultural drought and wtda
shows the degree of groundwater drought, we conclude
that a strong link exists between agricultural drought and
groundwater drought on the European continent. The
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proposed LSTM networks can generate good results in
shallow aquifers but may fail in deep aquifers. Therefore,
one should be careful to use such networks in areas with
large wtd.

We recognize that the network performance was limited
by the relatively small amount of available training data, the
simplified tuning of hyperparameters, and the application of
simulation data (i.e., the TSMP-G2A data set) for evaluation. The
biases of the TSMP-G2A dataset mainly come from uncalibrated
parameters and neglect of human impacts (Furusho-Percot
et al., 2019). Nevertheless, due to the good agreement of the
TSMP-G2A data set with hydrological observational datasets,
we argue that the methodology is useful in determining
the optimal input variable combination for the estimation
of wtda over Europe. Our study highlights the benefit
in combining soil moisture information with precipitation
information to estimate wtda over Europe. The input of
the LSTM networks should have valid values continuous
in time. In the future, the indirect method based on the
optimal LSTM networks may be transferred to real-time
monitoring of groundwater drought at the European scale using
remotely sensed surface soil moisture observations from e.g.,
the SMOS (Kerr et al., 2010) and SMAP (Entekhabi et al.,
2010) missions and precipitation observations from e.g., the
GPM (Hou et al., 2014) and TRMM (Huffman et al., 2007)
missions. Similarly, also some numerical weather prediction
models provide the necessary variables, e.g., the ECMWF
Integrated Forecasting System with assimilated ASCAT (MetOp
Advanced SCATerometer) soil moisture data (Aires et al.,
2021).
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