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Large-scale image velocimetry is a novel approach for non-contact remote sensing of

flow in rivers. Research within this topic has largely focussed on developing specific

aspects of the image velocimetry work-flow, or alternatively, testing specific tools or

software using case studies. This has resulted in the development of a multitude of

techniques, with varying practice being employed between groups, and authorities.

As such, for those new to image velocimetry, it may be hard to decipher which

methods are suited for particular challenges. This research collates, synthesises, and

presents current understanding related to the application of particle image velocimetry

(PIV) and particle tracking velocimetry (PTV) approaches in a fluvial setting. The image

velocimetry work-flow is compartmentalised into sub-systems of: capture optimisation,

pre-processing, processing, and post-processing. The focus of each section is to provide

examples from the wider literature for best practice, or where this is not possible, to

provide an overview of the theoretical basis and provide examples to use as precedence

and inform decision making. We present literature from a range of sources from

across the hydrology and remote sensing literature to suggest circumstances in which

specific approaches are best applied. For most sub-systems, there is clear research or

precedence indicating how to best perform analysis. However, there are some stages

in the process that are not conclusive with one set method and require user intuition

or further research. For example, the role of external environmental conditions on the

performance of image velocimetry being a key aspect that is currently lacking research.

Further understanding in areas that are lacking, such as environmental challenges, is vital

if image velocimetry is to be used as a method for the extraction of river flow information

across the range of hydro-geomorphic conditions.
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1. INTRODUCTION

Advances in understanding of hydrological processes and the characterisation of river flows have
been driven by development of novel sensing instruments, data acquisition platforms, and new
analytical techniques (e.g., Chen et al., 2007; Assem et al., 2017; Mishra et al., 2019). Of the recent
advances in sensing river flows, arguably the most pronounced is the widespread adoption of
acoustic Doppler current profiler (aDcp) technologies (Kostaschuk et al., 2005). This has led to
advances in the ability to reliably collect data over large areas, most importantly, entire water
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columns (Neill and Hashemi, 2018). Whilst this technology
offers some advantages over traditional gauging techniques (e.g.,
ultrasonic sensors, electromagnetic current meters), they fail to
overcome a critical limitation in that they require contact with the
water-body, whichmay not be viable during high-flow conditions
or where physical access to the channel is not possible.

In recognition of these challenges, the development of non-
contact sensors for velocity measurements (e.g., surface velocity
radar), and non-intrusive approaches for acquiring bathymetric
data (e.g., bathymetric LiDAR, radar, photogrammetry) is now
facilitating the non-contact and autonomous monitoring of
fluvial flows (Costa et al., 2006; Flener et al., 2013; Javernick et al.,
2014; Alimenti et al., 2020). These methods have been shown to
provide data as reliable as conventional methods (Costa et al.,
2006; Alimenti et al., 2020), but they may be costly to deploy,
therefore limiting their widespread adoption of use. They are also
subject to their own operational limitations. For example, surface
velocity radar is highly dependent on the surface roughness of
the river and may be influenced by environmental noise (Fulton,
2020).

An exciting, alternative approach which may be used to
determine fluvial flows (when coupled with bathymetric data),
is that of large-scale image velocimetry. Research into large-
scale image velocimtery has been increasing year-on-year the
past two decades, with more of an increasing emphasis on the
application of software suites (Figure 1). This technique shares
many principles to that of the lab-based image velocimetry
method (Lindken et al., 2009), which was initially developed to

FIGURE 1 | An insight into the number of publications over the past two decades into the research of large scale PIV and PTV, compared with those focused on the

application of PIV and PTV on rivers. Data found via www.webofscience.com. The following refinements were applied to the search: Total papers, topic “Surface

velocimetry PIV” OR topic “Surface velocimetry PTV” AND all fields “rivers.” Application papers, topic “Surface velocimetry PIV application” OR topic “Surface

velocimetry PTV application” AND all fields “Rivers”.

conduct hydraulic analysis in controlled, laboratory settings. The
fundamental principles of the lab-based approach include the
seeding of the flow with neutrally buoyant particles, which are
then illuminated with laser light and their movement recorded
by camera before the particle displacements are determined
using either Particle Tracking Velocimetry (PTV) or Particle
Image Velocimetry (PIV) (Willert et al., 1996). Whilst large-scale
image velocimetry often utilises these same tracking procedures
in uncontrolled outdoor environments, certain elements are
changed out of necessity and for optimisation of the outputs.
Lab-based image velocimetry has been widely adopted with
standardised procedures published (e.g., Gollin et al., 2017;
Cerqueira et al., 2018). However, the flexible nature of large-scale
image velocimetry has meant that techniques and approaches
may vary based on the hydrological setting, environmental
conditions, and platform of acquisition; this has ultimately made
standardisation a more complex activity (Perks, 2020).

The aim of this review is to present and discuss the
key challenges and considerations when seeking to acquire
image velocimetry data within a fluvial setting (i.e., large-
scale image velocimetry). The key stages in large-scale image
velocimetry work-flows can be characterised as (i) capture
optimisation (section 2.1); (ii) pre-processing (section 2.2); (iii)
image processing (section 2.3); and (iv) post-processing steps
(section 2.4), as outlined in Figure 2. Capture optimisation
steps involve the appropriate selection of, and preparation of,
equipment and its parameters for reliable image sequence capture
(e.g., maximising tracer visibility, minimising environmental
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FIGURE 2 | A generalised system of the required processes for analysing river flow using image velocimetry methods. Pink sections are the steps required for capture

optimisation (section 2.1), blue represents pre-processing stages (section 2.2), yellow the processing stages (section 2.3), and red shows post-processing stages

(section 2.4) (Harpold et al., 2006; Koutalakis et al., 2019; Perks, 2020).

noise, and ensuring optimal ground sampling distance). Pre-
processing steps may be described as those which ensure
stable footage with a common spatial reference, with image
properties being altered to minimise noise (e.g., removal of
visible river bed), and to maximise the signal (e.g., visibility
of surface tracers). Processing involves the application of 1D

or 2D analysis of feature displacements across a defined
field of view. Post-processing steps seek to validate the
generated data and remove spurious results. The filtered
dataset may then be used to generate secondary products
(e.g., discharge) when combined with surrogate information
(e.g., cross-section measurements).
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FIGURE 3 | How GSD is described and can be altered using either an increase

in resolution, or decreasing the distance between the subject and the camera.

2. IMAGE VELOCIMETRY PROCESSES

2.1. Capture Optimisation
2.1.1. Ground Sampling Distance
The ground sampling distance (GSD) of imagery is the distance
between the centroid of two adjacent pixels (Figure 3). The GSD
of the imagery used in large-scale image velocimetry analysis is
a critical consideration with features smaller than the GSD being
poorly resolved. For example, imagery with a GSD of 1 cm/px
may include features of 0.008 m length, but these would not be
depicted as being any less than 0.01 m length in the imagery.
Critically, if the GSD is significantly larger that the individual
features present on the water surface, these features may not
be visible in the imagery, and these features would therefore be
unsuitable for image velocimetry purposes. Although there is no
clear guidance on specific values relating to the point at which
tracers are no longer visible, generally, a tracer would have to
be significantly brighter than the background to dominate the
overall contrast of the pixel. As a result of these factors, it is
important that the image GSD (cm/px) for the proposed image
acquisition settings is known in advance. This will ensure that
features visible on the free-surface will be adequately resolved by
the camera system. In a scenario where the footage is acquired
at nadir, this is governed by the focal length (F; mm), sensor
width (SW; mm) and image width (IwP; pixels). Using these
characteristics of the camera sensor, and user knowledge of the
desired GSD, the required height of image acquisition can be
calculated (Equation 1; Pix4d, 2019), see Figure 4.

FIGURE 4 | Schematics of GSD of Nadir angle.

Height (m) =
IwP × GSD× F

SW × 100
(1)

The image sensor is the apparatus in the camera that converts
optical imagery into an electric signal using a matrix of small
potential wells (pixels) (Edmund Optics, 2021). The size of image
sensor relates to the amount of light a camera can capture, and
typical security/IP type cameras use a range between 1/4” (6.35
mm) to a 2/3” (16.9 mm) sensor (Caputo, 2010). Without a large
enough image sensor, detail is lost due to a lack of capability to
add detail through pixel colour/tone, or due to a high signal:noise
ratio seen with smaller sensors (Morrow, 2021).

Subsequently, the GSD may be affected by the camera
angle and the camera distance from the source. Introducing
a non-nadir angle to the camera increases the length between
the camera and the background of the image, in addition to
increasing the width of the coverage. Effectively, with a shift in
the pitch of the camera, it will create a trapezoidal shaped image
grid, where the background is scaled proportionally to the angle
and distance from source. This results in the GSD being variable
across the field of view (FOV), and the image background
being relatively poorly resolved. For this reason, the sensing of
environments using oblique camera angles, particularly over long
distances, may result in image acquisition where features on the
water surface in the background cannot be easily detected. In
instances of oblique image capture, the GSD (cm/px) can be
determined using Equation (2), where L is a given length both
horizontally (Lh;m) and vertically (Lv;m), IwP is the image width
(px) (Equations 3–4), αv is the angle of tilt seen in the roll axis
(Equation 3), αh is the angle of tilt seen in the pitch axis (Equation
4).2◦ is the angle of capture (Equation 5), calculated by using the
SensorWidth (SW) and the Focal Length (F). These equations are
implemented within GSDCalc (Jolley, 2021), Figure 5.

GSD =
L× 200

IwP
(2)

Lv (m) = H
sin(θ ± αv)

sin(90− (θ ± αv))
(3)
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FIGURE 5 | Schematics of GSD at an oblique angle.

Lh (m) = H
sin(θ ± αh)

sin(90− (θ ± αh))
(4)

2
◦ = tanh

SW

F
(5)

When discussing camera angles, it is important to note the
type of camera station in use. Camera stations are typically
described as being either fixed or mobile platforms, these are
discussed in section 2.1.5. Due to the flexible nature of large-
scale image velocimetry, a wide variety of camera angles are
adopted. The fixed camera deployments described in Perks et al.
(2020) includes camera angles up to 57 degrees from nadir.
Alternatively, for mobile cameras, Eltner et al. (2020) suggests
that a tilt angle more than 10◦ from nadir should be avoided
where possible. Generally, for both fixed and mobile platforms,
the closer that the camera sensor is to nadir the better, providing
that the region-of-interest is visible throughout, along with
ground control points, and static features to enable stabilisation
(when required). Finally, when installing fixed camera stations, a
critical consideration is the effect of stage variation of the camera’s
FOV. As stage increases, the distance between the water surface
and camera decreases, which can result in a reduction in the
area sensed.

Camera focal length (usually given in mm), is the distance
between the image sensor and the camera lens when the subject
area is in focus. The smaller the focal length, the larger the area
captured, but at a smaller apparent size. Subsequently, the larger
the focal length, the smaller the area captured, but in higher
detail. Generally, cameras have either prime (non-adjustable)
or zoom (adjustable) lenses. It has been recommended that
independent of the lens used, the internal parameters of the
camera should be established (Detert, 2021), and used to removal

lens distortion effects prior to the the extrinsic calibration stage
(i.e., orthorectification; section 2.2.2).

Finally, the GSD is greatly affected by the image resolution
(i.e., number of pixels present within an image). Whilst it
may seem intuitive to seek to minimise the GSD by using the
highest resolution of imagery available, this approach comes at
a time/power cost when undertaking image velocimetry analysis,
with the benefits reaching an asymptote once the surface patterns
and features in the image can be adequately resolved. This has
been demonstrated in lab-based studies. For example, Prasad
et al. (1992) observed that when image resolution was reduced
by a factor of two, this was accompanied with only a small loss in
the ability to detect tracers (equivalent to a loss of 0.3% of “good”
features). However, processing speed increased fourfold. Similar
findings have also been observed within field settings. Analysis of
low resolution imagery (144p, 256×144), produced deviations in
longitudinal velocity of only 5% relative to full resolution imagery
(1,080p) (Le Boursicaud et al., 2016), and negligible changes to
velocity results between 1,280×720 and 256×144 (Leitão et al.,
2018). Similarly, Tosi et al. (2020) observed that reducing the
resolution of full HD images to 25%, resulted in mean velocity
outputs differing by less than 0.05 m/s (<10%), with a reduction
in computation time of roughly 23%. Further to this research, it
is also demonstrated that reducing the resolution from full (1,430
× 1,080 px) to half (715×540 px) reduces power consumption
enough to increase the number of cycles that can be performed
on a single charge by 30% when using a 5,000 mA/h battery
on a single charge (Livoroi et al., 2021). However, a formal
analysis and evaluation of the influence of image resolution on
resultant accuracy across spatial scales is generally lacking. The
lack of consensus regarding the optimal resolution for image
acquisition has led to researchers adopting intuition to define
appropriate configurations (e.g., Dal Sasso et al., 2018). Ultra-HD
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FIGURE 6 | Examples of usable tracers highlighted from a study using a fixed

camera with frames exactly 1 s apart.

and 4K videos could be used to enhance tracer visibility (e.g.,
when sensing over long distances, or oblique angles), and to
enable the sensing of smaller tracers (section 2.1.2). However,
the processing power required to analyse higher definition videos
is a constraint. In instances where imagery has been acquired at
very high resolution (e.g., Ultra-HD and 4K), it may be beneficial
to sub-sample the imagery to a lower resolution to improve
processing speeds providing tracers are still visible.

2.1.2. Tracers
Tracers are thermally, or optically, distinct features present
on the water surface that are advected by the current of the
flow. Where hydrological conditions permit (e.g., fast-flowing,
turbulent streams), sufficient naturally occurring features (e.g.,
foam, turbulent structures) may be present for successful image
velocimetry analysis (see Figure 6). However, the spatial and
temporal distribution of tracers can have a significant bearing
on the performance of image velocimetry deployments with
Meselhe et al. (2004) recommending that 10–30% of the surface
should be traceable throughout the process. More recent work
has strongly suggested that the density, dispersion index, and
spatial variance of tracers are critical controls on the suitability
and performance of image velocimetry approaches (Dal Sasso
et al., 2020). Recent research into Seeding Density Indexing (SDI)
shows that, by selecting frames to analyse based on optimum
tracer characteristics (e.g., dispersion, density), then a reduction
in surface velocity error of between 16.1 and 39% can be achieved
using either PIV or PTV methods (Pizarro et al., 2020b; Dal
Sasso et al., 2021). Consequently, by optimising frame selection
based on SDI, discharge errors can be reduced to 0.12–0.4%
of the total error seen when not optimising frame selection
using PIV methods (Pizarro et al., 2020a). The most recent
research into SDI has produced a threshold parameter (τ ). τ

sets a benchmark for frames and their subsequent SDI values,

disregarding data that does not exceed the threshold SDI (Dal
Sasso et al., 2021).

In instances where the spatial distribution of naturally
occurring tracers is sub-optimal, with naturally occurring
features that are either inhomogeneous in space and
discontinuous in time, artificial tracers may be adopted. This
is usually achieved by deploying an environmentally friendly
substance such as bark or a decomposing polymer. They should
be passive to flow, easily distinguishable, and have no effect on
water quality (Detert and Weitbrecht, 2015). The size and the
shape of the tracers is also important. As a minimum, tracers
should be larger than 1px, which is a function of the ground
sampling distance (see section 2.1.1; Dal Sasso et al., 2020),
and their size/shape should be stable over time (Tsubaki et al.,
2011; Tauro et al., 2017). Wu Tang et al. (2008) experimented
with seeding sizes and shapes and determined that for artificially
placed tracers, ellipsoidal particles of 2–5 pixels in size perform
well. These are not large enough to be greatly affected by internal
forces, and are less likely to form agglomerates compared to
spherical tracers.

2.1.3. Capture Frame Rates
Commercially available cameras generally have default frame
rates that are typically more than sufficient for capturing image
sequences required for image velocimetry purposes (i.e.,> 5 Hz).
Given that the acquisition frame rate is not usually a constraint,
the most important aspect is to ensure that the frame rate is
consistent throughout the duration of acquisition (Perks, 2020;
Detert, 2021), and that it matches the value present within the
video metadata. This can be determined through analysis of the
time stamps embedded within the on-screen display (Detert,
2021). This is generally configurable to be visible on footage
acquired by Internet Protocol (IP) camera systems.

IP cameras are digital cameras which use networked
connections to transfer data and can allow the user to access live
imagery remotely (Safesite, 2021). Often, these types of cameras
are connected to a data logger which can receive, store, and
send the imagery. The limitation with some data loggers can be
their processing power. For instance, frames can be lost from
sequences if using a logger and there is insufficient CPU power.
This impacts the time consistency of frames, something that is
vital to accurately using image velocimetry.

Complications with these methods can also arise from a lack
of bandwidth. Increasing the frame rate has been shown to
proportionally increase bandwidth usage (1 fps = 0.179 Mb/s,
10 FPS = 4x more than 1FPS, 30 FPS = 7x more than 1FPS)
(IPVM Team, 2021). The relationship between frame rate and
bandwidth is not linear due to the way that IP cameras capture
frames. IP cameras captures either an I-frame (initial/full frame
or a P-frame (predictive frame). I-frames capture the entirety of
the FOV and are used as a reference frame, whereas P-frames will
only capture changes in an image in relation to the I-frame (Ace,
2013). The report by Ace (2013) also suggests that increasing
the I-frame rate from 1 per second does not necessarily greatly
improve image quality, but increasing the time between I-frames
can significantly reduce image quality.
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2.1.4. Managing External Environmental Conditions
The performance of image velocimetry analysis may be
influenced by external environmental factors that cannot be
easily controlled. These factors include the presence of wind,
rain, varied lighting, fog, falling snow, and glare. The impacts of
wind are most acutely seen during times of low flow when wind
shear may produce a surface expression that is independent of
flow velocity (Le Coz et al., 2010). A recent development on the
impact of wind demonstrated that, on average, surface velocity
deviates by 3% and can reach a maximum of 8%, most typically
when wind opposes flow direction and when its magnitude is
significant relative to the flow (Peña-haro et al., 2020). The
impacts of precipitation are not fully understood but have been
reported to blur imagery, ultimately interrupting the processing
of data (Fujita et al., 2007). Inhomogeneous lighting and glare
on the river surface generates the false impression of colour
gradients across the area of interest. This variation in brightness
may cause blind spots and the loss of tracer visibility (Hauet et al.,
2008; Zhang et al., 2013). Fog impacts velocity results by severely
increasing the noise on the surface of the river as it hinders the
traceability of surface patterns; acquiring imagery during foggy
conditions is generally to be avoided where possible (Zhang et al.,
2013). Finally, for falling snow, there is little research in the
true impact that it has on velocity results, however, in instances
where large scale PIV has been used with falling snow present,
authors tend to disregard data due to the scatter that it creates in
results (Daigle et al., 2013).

The relative impact that these external environmental
conditions have on the quality of image velocimetry results is
currently unpredictable, and the overall impacts are currently
unknown. Where there are instances of noticeable snow or fog,
currently due to the lack of evidence saying otherwise, data
should be disregarded. Secondly, the exposure of a monitoring
location to variations in wind, precipitation, and glare should be
minimised where possible through adjustments in the acquisition
methods adopted. For example, in instances with high levels of
glare the use of a polarising filter may be beneficial. Alternatively,
near infrared (NIR) cameras may act to reduce the severity
in brightness difference and may visualise the tracers more
prominently. However, it should be noted that application of NIR
sensors in some environments may lead to the loss of visible
tracers due to attenuation of the NIR signal by the water (Zhang
et al., 2013). Whilst future work will seek to provide correction
factors for observable external environmental conditions (e.g.,
wind shear), these relations have yet to be established so their
effects should be minimised where possible.

2.1.5. Choice of Platform
Fixed stations allow a specific area of river to be analysed,
providing a time-series of images that can be used to determine
surface velocities. Usually, fixed stations are commissioned in
order tomonitor river flows, and to develop and extend discharge
rating curves (e.g., Hauet et al., 2008). There are several ways that
fixed stations can operate in regards to the capture and processing
of data. The study of Tosi et al. (2020) evaluates methods of
capturing and processing data in situ to reduce the amount of
data that is required to be sent via external networks. This can

be useful where stations are in remote locations and affordable
networks (e.g., mobile networks), are scarce. Alternatively, as
seen in the case studies of Perks (2020), networked cameras (as
discussed in section 2.1.3) can be used to stream imagery across a
network to be processed either near real-time or at a later date.

Regardless of the proposed fixed station processing method,
limitations include the inability to alter the field-of-view without
recalculation of the coefficients for converting pixel space to
real world distances (see section 2.2.2). Resultantly, there is the
potential for the site configurations being optimal under certain
flow conditions, but unsuitable during others (e.g., during bypass
flows, out-of-bank flows, etc.) Additionally, supplementary
information is required in order to properly scale the imagery as
a result of fluctuating water levels. This is typically in the form of
river stage measurements which enable the distance between the
water surface and the camera to be accounted for.

Alternatively, mobile platforms may be used to acquire
footage for image velocimetry purposes. An example of this
is the use of Uncrewed Aerial Vehicles/Systems (UAVs/UASs),
or helicopters in fluvial environments that are hard to reach,
dangerous to the operator, or where the inundated extent
is greater than the field-of-view of the fixed monitoring
station. These approaches have been particularly beneficial for
understanding turbulent flows in rivers for sediment transport
(e.g., Thumser et al., 2017), capturing flow data at ungauged
sites (e.g., Kim et al., 2008), and determining river velocities
during periods of high-flow (e.g., Perks et al., 2016). Additionally,
this has opened up the possibility of large spatial extents being
observed rapidly (e.g., Perks, 2020). Generally, using a mobile
platform involves similar processes to those of fixed stations, but
requires some extra stages in the pre-processing stage such as
image stabilisation (see section 2.2.1). A key advantage of using
mobile platforms for image capture over fixed stations is that
many of the optimisations listed in section 2.1 could be met (e.g.,
camera angle being nadir, flexible fields of view, and spatially
consistent GSD).

Although UASs are currently the main focus of mobile
methods, it is important to note that there are other methods
of mobile image velocimetry. Prior to UAS being reasonably
attainable, mobile methods could be conducted using telescopic
poles, as demonstrated in Le Coz et al. (2010) and Dramais
et al. (2011). Secondly, an important revelation of mobile image
velocimetry is the use of software on mobile phones (Hain et al.,
2016; Caldwell et al., 2019). Lab based studies on the use ofmobile
discharge apps (e.g., DischargeApp) show that the methods can
reproduce discharges without the need of illumination within a
15% error 87% of the time (hand-held), and 100% of the time
using a tripod (Carrel et al., 2019).

A more recent and promising advancement is the use of
satellite imagery as a capture method, but is still in its infancy
of development. There are limitations to using satellite data,
such as the limitation of the GSD that is achievable by satellite
imagery and whether it is capable of detecting and tracking
features on a river surface. For reference on image quality, Kääb
et al. (2019) uses satellite imagery to track river-ice and water
velocities, and does so with a resolution of 3m using PlanetScope
satellite imagery (Planet Labs Inc., 2021), capturing each frame
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FIGURE 7 | Drone movement shown by overlapping stabilised frames onto original frames. The green mask seen on the processed row highlights where the stable

image is within frame, with the final stabilised images cropping all unstable edges.

at 90 s intervals. Satellite data stores (such as PlanetScope), are
capable supplying high-resolution image sequences (as seen with
Kääb et al., 2019), and videos of less than or around 1m resolution
(typically nadir). Video footage is usually only captured in the
panchromatic band of the central detector and at a frame rate
of between 30 and 120 FPS. It is still yet to be seen how well
these datasets can provide river flow gauging, and much more
research is required into the feasibility of satellites before it
can become a recommended method of remote sensing using
image velocimetry.

2.2. Pre-processing
2.2.1. Stabilisation
Image stabilisation is required due to the inevitable movement
of mobile platforms (e.g., Perks et al., 2016; Bolognesi et al.,
2017), and random movements of fixed cameras from vibrations
due to influences such as wind or traffic (when fixed on a
bridge) (Perks, 2020). Figure 7 demonstrates how images are
impacted by stabilisation. Borders of the full initial image are
cropped out by the algorithm in each frame (shown as the black
boxes around the edges of the image) to only show the sections
that are constant (shown in the green overlapping of imagery).
Here we can see transformations in both shift and scale due to
platform movement. Modern methods of stabilisation may use
GPS locations of the camera and/or stable features in the region

of interest to create a stable frame of reference for subsequent
analysis (Ljubičić et al., 2021).

Stabilisation takes into account the effect of image translation,
rotation, and scaling. Translation of the scene is a movement
in the image within the xy plane (parallel to the ground).
Rotation is a movement that causes a tilt in any direction of
the camera (yaw, pitch, and roll). Scaling is impacted by change
in platform elevation (z-direction) resulting in changes to the
representation of pixel sizes in real world units. When running
feature detection algorithms, static points are used and are
either detected corner points or clearly distinguishable stationary
objects. For a full projective transformation, a minimum of
four pairs (eight features), are required (Szeliski, 2006) to
match the degrees of freedom (three pairs are required for
affine transformations). Stabilised frames are often referenced
to either the initial frame, or a subsequently stabilised frame
(every nth frame of a series). This may be achieved using a
3D stabilisation technique (e.g., structure-from-motion; SfM),
or more commonly a 2D motion estimation technique e.g.,
single-step discrete Fourier transform algorithm (Guizar-Sicairos
et al., 2008), whereby it is assumed that the moving camera
is perpendicular to the region of interest and undergoes only
changes in the horizontal plane (movements in translation
and yaw), and hence, planar transformations are sufficient
(Rodriguez-Padilla et al., 2019).
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Stabilisation techniques can be manual or automatic. Manual
methods rely on a selection of static reference points which are
then automatically processed to determine displacement between
frames (Rodriguez-Padilla et al., 2019), while automatic methods
select features and then track displacements using binary feature
matching techniques (e.g., Harris Corner Detection and FAST)
(Liu and Cheng, 2008; Muja and Lowe, 2012; Mingkhwan
and Khawsuk, 2017). A general process for stabilisation
techniques is: breaking down videos into sequential frames,
selecting of static features manually or automatically (i.e., feature
detection), feature matching and outlier rejection, derivation of
transformation function, and image reconstruction and stitching
(Tareen and Saleem, 2018). The coordinate grid can either
be fixed or be updated throughout the process. Whilst fixed
coordinate grids are typically used, the grid may need to
be updated over time if there is excessive movement (e.g.,
translation of the platform). Grids may be altered through the
use of similarity, affine, or projective transformations. Accurate
transformation depends on the number of point pairs available in
the image. Similarity transformations require shifts in the plane
parallel to the ground and can result in translational, rotational,
and scaling transformations. For these, a minimum of two point
pairs are required. Affine transformation includes the same shift
changes as similarity with the addition of shear transformations.
This requires three point pairs. Finally, for a full projective
transformation which includes all of the above as well as
perspective deformation, four point pairs are required (Ljubičić
et al., 2021).

For fixed cameras, stabilisation is not necessarily required,
unless the camera experience movement (e.g., oscillations
generated by vibrations, or wind). Detert and Weitbrecht (2015)
observed that residual motion of 1 px/s caused by camera
shake produced an apparent ground velocity of at least 0.02–
0.03 m/s. More recently, Detert (2021) observed that the lack
of stabilisation of image sequences acquired using a telescopic
pole produced a shift in both image axes by upto ±4 pixels
per time step (equivalent to 2 cm in this instance). This
unaccounted for movement may substantially impact velocity
outputs, especially under flow velocity conditions, relative to
the amount of movement seen in frame. When using mobile
platforms to acquire footage for image velocimetry purposes,
unstabilised image sequences may be a major contributor toward
error. An example of this is presented in Detert (2021), where
a re-analysis of previously published studies demonstrated that
accounting for residual movement reduced errors by 20–30%.

2.2.2. Orthorectification
Following stabilisation of the image sequence (when required),
orthorectification needs to be carried out, unless the image
is being captured at nadir and image distortion has been
removed. This seeks to remove perspective distortion and
manipulate the image to represent accurate real-world distances.
Orthorectification manipulates an image such that all pixels are
of equal real world length, such that when using a camera at an
oblique angle, a pixel in the foreground is equivalent to a pixel in
the background.

Orthorectification relies on Ground Control Points (GCPs)
to calibrate known coordinate points in the field of view (Tauro
et al., 2014). GCPs that have known real-world coordinates are
established in the frame of view and these are paired with the
pixel location of these GCPs. 2D transformations can be made
when the GCPs are located on a similar plane to the surface
of the river. 2D transformations have an 8-parameter plan-to-
plan perspective projection, which requires at least four GCPs
at the river free-surface elevation (Fujita et al., 1998; Detert
and Weitbrecht, 2015; Detert et al., 2017; Detert, 2021). 3D
transformations are made where there are large variations of
elevation seen between GCPs and the river surface. If this is the
case then the orthorectification matrix will have 11 unknowns
and therefore can only be solved with six or more GCPs (Jodeau
et al., 2008). It has been suggested that a minimum of 4 GCPs
should be used in or immediately around the region of interest
to best orthorectify 2D imagery captured orthogonally to the
river surface (Detert and Weitbrecht, 2015; Detert et al., 2017;
Detert, 2021), however, reliability of orthorectification can only
increase with the number of accurate GCPs used. An increase in
GCPs used increases the redundancy of the orthorectified system
improving the reliability of the results.

The process of orthorectification can either be explicit or
implicit i.e., transformations can either be applied to the raw
footage (explicit), or to the vector fields (implicit). Higham and
Brevis (2019) suggested that orthorectification of the velocity
vector field, rather than the imagery, is more effective in most
cases, more specifically with PIV examples. The smoothing of
data is a process where the extremities of results are normalised
and brought closer to the average. When footage undergoes PIV
analysis, vectors are created using an average of the interrogation
area surrounding it. This process of using the average values
for vectors inherently smooths data, reducing the impact that
spurious/outlier tracer velocities has on the overall results. If
orthorectification is applied after PIV analysis, then any spurious
vectors which have been smoothed due to the averaging of
the area will have less of an impact on error associated with
converting pixel size to real world lengths and consequently
velocities. Alternatively, if this is done explicitly, then applying
transformations to erroneous velocity values can exaggerate
them, reducing accuracy. Conversely, explicit orthorectification
has the advantage of ensuring each pixel has the same real-world
dimensions prior to processing (Perks, 2020). An example of
explicit orthorectification can be seen in Figure 8.

2.2.3. Image Manipulation
Imagemanipulation is the process of altering the properties of the
acquired images with the aim of reducing interference (e.g., glare,
visibility of the river bed, environmental impacts such as wind
and rain), and enhancing the visibility of tracers. The first step
in the image manipulation process is the conversion of multi-
band imagery into single-band imagery (e.g Fujita et al., 2007;
Dobson et al., 2014). However, this is not required when footage
is captured using a —scale camera (e.g., Patalano et al., 2017), or
thermal camera (e.g., Kinzel and Legleiter, 2019). The conversion
of multi-band imagery to grey-scale is achieved by eliminating
saturation levels and hue, keeping only levels of luminance
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FIGURE 8 | Example of a river surface acquired at Todmorden, UK (bottom

left). The red region indicates the region of interest selected by the user. The

greyscale image is the orthorectified product produced using KLT-IV.

(Perks, 2020). Subsequent image manipulation is optional but
may be beneficial.

Frequently used image enhancement techniques include:
intensity normalisation, histogram equalisation, contrast limited
histogram equalisation, and binarisation, which are all further
explained below (Thielicke and Stamhuis, 2014; The Mathworks
Inc., 2020). One of the most important processes for most image
velocimetry techniques is to enhance imagery through contrast
enhancement steps (Dellenback et al., 2000). Improving the
contrast of images helps tracers stand out more in comparison
to their environment, making tracking more effective and
increasing displacement peak detectability, ultimately improving
velocity fields (Deen et al., 2010). Figure 9 highlights the process
of typical image processing carried out in PIV and PTVmethods.
Some of these methods were used in the examples seen in
Figure 10.

Intensity normalisation spreads out the contrast histogram of
an image such that a user defined percent of the image is saturated
in the high and low intensities. For footage where tracers are
barely distinguishable, normalisation may improve the contrast
of the colours across the image. Histogram equalisation is the
process of enhancing contrast by averaging out the brightness
variation across the band. It increases the range and standard
deviation of colour histograms and introduces a larger statistical
range (Jyoti Bora, 2017). This has been shown to be effective
in situations where a colour band shows a cluster of contrast
level (Fujita and Aya, 2004). Image binarisation typically uses
threshold algorithms to split histograms into two, sometimes
using several sub-processes such as background detection and
edge detection (Malepati, 2010) to ensure foreground textures
stand out as much as possible against their backgrounds
(Tensmeyer and Martinez, 2020). This can be especially useful
when, despite all previous efforts, tracers are still not prevalent
to their background and surroundings. To improve the impact
of all image manipulation processes, it would be recommended

that footage limits the amount of unnecessary image in frame,
and focuses on the area of interest to ensure that the stretch of the
normalisation is altering tracers and the water surface, as opposed
to surrounding vegetation.

Should the background of the image or river bed be too
prevalent in imagery and there is a bias error toward zero
displacement, then it is advised that it is removed. To do
this, it is possible to use the double-frame background removal
process (Honkanen and Nobach, 2005; Patalano et al., 2017).
Subsequent frames are analysed and anything that remains
stationary between the two frames is defined as background
and noise, and therefore can be removed from the image. This
will leave only the tracers that have been displaced. Detert and
Weitbrecht (2015) makes a point of applying numerous methods
of manipulation to achieve the clearest possible tracers. The study
uses grey-scaling but also uses a Gaussian filter to remove noise
in the background (which helps sharpen edges), then it sets
the intensity of pixels below a certain limit to zero and finally
performs CLAHE.

To summarise these findings, there is a clear generalisation
of processes for image manipulation and pre-processing of
videos for image velocimetry. As a minimum, images should
be converted to a single-band image (e.g., grey-scaled) and
cropped to the area of interest to reduce unnecessary data
processing and noise where possible. If tracers are not clearly
distinguishable from the surface throughout the video, imagery
should be normalised to highlight areas of most intense light
and dark, and equalised to further distinguish the average levels
of brightness seen across the image. Should this not be enough
and the background or bed of the river is still overwhelming
the tracking features, Gaussian filters can be applied to decrease
image noise and sharpen edges or background removal can
be used to remove the background altogether, followed by a
binarisation of the image in an attempt to isolate the tracers.

2.3. Image Processing
2.3.1. Founding Principles
The founding principles upon which image velocimetry
algorithms are based, stem from either Eulerian or Lagrangian
techniques, which are used to describe inter-dimensional
flows (Hirt et al., 1974). These techniques are then applied to
image velocimetry methodology. Lagrangian is the basis of
PTV methods, and Eulerian is the foundation of PIV methods
(Amelinckx, 1971; Euler, 2008). These principles alter the way
that we perceive and record velocimetry data such that, if we
were to record an identical point at the same instant using both
methods, similar results are not guaranteed (Durst et al., 1984).
With Lagrangian/PTV motion, the particle’s velocity vector can
be described at any given point in space-time. It provides a
complete assessment of the dynamics of a fluid particle, knowing
where the particle is in any given moment and what velocity
it possess, making it a function of time in respect to an initial
position (Price, 2006). Conversely, the Eulerian/PIV approach
is the movement of a fluid past a control volume of known
coordinates, making the velocity a function of a fixed space
and time.
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FIGURE 9 | A remodel of the Patalano et al. (2017) study, showing a flowchart for typical image processing sub-sequences with either PIVlab or PTVlab.

Problems can occur with Lagrangian/PTV motion when
using natural tracers, as natural tracers are not entirely stable
in structure and are capable of deformation, breaking-up,
agglomerating, and interacting with one-another. Deformation
of tracers also impacts upon the tracking of a centre of mass
which, if a tracer deforms, can change position and ultimately
impact the assessment of the tracers dynamics. For Eulerian/PIV,
cross-correlation methods are used to determine patterns on the
river surface and does allow for some transformations in tracers,
so long as the 2D patterns are broadly consistent between the
interrogation and search areas (Keane and Adrian, 1992).

2.3.2. Flow State
Steady flow is used to describe fluid properties that remain
constant with time, while unsteady flow does not. In the case
of open channels where velocity is the property in question, we
must look at the rate of change of velocity in respect to time,
also known as acceleration. For steady flow, we require that
δv
δt = 0, whereas for unsteady flows δv

δt 6= 0. One of the core
assumptions of Eulers equation of motion is that of steady flow
(Euler, 2008). Eulerian motion and PIV focuses on set of known
locations of flow and represents an average of a body of fluid

through a known location at a specific time (Durst et al., 1984).
Although this average can potentially represent useful analysis of
a body of fluid regarding an average of flow velocity for use in
discharge estimation, challenges arise when sections experience
multi-dimensional acceleration, as a variation of velocity as the
steady state assumption is not met. Lagrangian and PTV does
not encounter similar issues regarding flow steadiness because its
foundations are built around calculating the particles position at
any given moment in time (Durst et al., 1984). These conditions
are typically assumed as reasonable for many applications of PIV
as the technique tends to analyse two consecutive images with
only a minor time-step.

2.3.3. Feature Detection and Tracking Schemes
PIV and PTV adopt differing principles for the determination
of flow velocities. PIV uses an Eulerian understanding of flow
motion, using dimensions of length along the river as search
areas, utilising tracers or visible patterns that pass through or
along these sections to calculate instantaneous velocity vectors
for each area. Conversely, PTV uses the Lagrangian approach
to calculate flow velocity, focusing on individual particles
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FIGURE 10 | A series of image manipulation processes performed in Matlab using frames from the same video file. Note the amount of information in the binarized

images if normalisation and histogram equalisation is performed prior. This shows that there are cases where more than one method of pre processing can improve

the amount of data that is traceable by programmes.

of flow visible on the surface and tracking their movement
through space.

PIV utilises search and interrogation areas within an image
to obtain particle displacements (Figure 11). Small window
interrogation areas are tracked within larger search areas, and
the centres of the interrogation areas are measured regarding
distance and divided by the time between frames to produce
an average velocity over that search area (Muste et al., 2008).
This approach has been shown to be capable of producing highly
accurate results (e.g., Creutin et al., 2003; Muste et al., 2008).

Given that a collection of individual tracers (surface patterns) are
used to infer displacement, this approach is less sensitive to the
transformation of individual features. However, inhomogeneity
and discontinuity of tracers are critical issues that may negatively
affect the quality of PIV analysis. In these instances, PTV
techniques may perform better over PIV techniques (Tauro et al.,
2016).

PTV-based approaches (Figure 12), rely on tracking
individual particles along a long-profile. This technique has been
shown to perform well under low seeding density conditions
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FIGURE 11 | Schematics of general PIV (A) mechanics.

FIGURE 12 | Schematics of general PTV (B) mechanics.

(Lloyd et al., 1995; Tauro et al., 2017). However, analysis may
be adversely affected in instances where tracers change shape,
size and from time-to-time disappear from frame. The greater
number of tracers that are successfully tracked, the higher the
probability of producing an accurate representation of the
surface velocity. However, as the number of tracers increases,
the required processing time/power also increases. The presence
of very high tracer densities may also increase the ambiguity
of the individual tracer detection and tracking process (Zhang
et al., 1997). There are a range of particle detection and tracking
algorithms available for PTV. For feature detection, Good
Features to Track (GFTT) (Shi and Tomasi, 1994), FAST
(Rosten and Drummond, 2006), and SIFT (Lowe, 1999). For
tracking algorithms, cross-correlation can be used, but there
are also others such as Kanade-Lucas-Tomasi (KLT) (Tomasi,
1991; Perks, 2020), and variations of the Nearest-Neighbour
algorithm (e.g., Tauro et al., 2019).

Studies into the optimisation of processing using synthetic
models have been highly successful in recent years in highlighting
potential areas that are prone to causing errors in velocity results.
The importance of the synthetic studies is to aid in selecting
appropriate optimisations for differing scenarios (e.g., video
length and frame rate). Both Pumo et al. (2021) for LSPIV and

Dal Sasso et al. (2018) for PTV methods concur with the Pizarro
et al. (2020a) study in that the concentration of particles are
a crucial variable in relation to relative error. They also agree
that, where seeding density is below-optimal, longer durations
of imagery are required and that the contour region around the
border of frames should not be included within analysis. These
current pieces of synthetic research, however, acknowledge the
studies are not exhaustive in variables considered, and more is
required to cover more areas of associative error.

Table 1 summarises software suites that are available for users
that wish to performPIV or PTV analysis. Each software will have
its own feature detection and tracking scheme, along with varying
methods of preparing and presenting data. Each software suite
comes with a user-friendly GUI to load in imagery and perform
several pieces of analysis on. The suites listed in this table are
open-source or freely available to use.

2.4. Post-processing
Post-processing has two main elements; error reduction (e.g.,
vector correction, section 2.4.1), and velocimetry application
(section 2.4.2). Error reduction is the process of highlighting
and filtering possible erroneous datasets and velocity fields, while
progressive calculations can use the velocity data and apply it to
secondary datasets, such as when using the surface velocities to
calculate discharge (through the incorporation of alpha values
and bathymetry information).

2.4.1. Vector Correction
Post-processing may reduce errors through the application
of statistical methodologies to highlight and filter erroneous
outputs. For PIV, details of vector validation can be found in the
study of Raffel et al. (2018), which implements several statistical
methods of achieving data validation. Statistical validation
methods perform similar techniques to distinguish outliers in
PIV data, and do so typically by comparing vectors to its
surrounding neighbours (Hart, 2000; Masullo and Theunissen,
2016). Alternatively, there is a bootstrapping technique available
that does not generate statistics from its nearest neighbours,
but instead, a statistic is generated for each component (Pun
et al., 2007). Typically, the difference between each method is the
type of statistical calculation applied to determine outliers. The
basic statistical methods include, but are not limited to, vector
difference tests, median tests (Westerweel, 1994), and normalised
median tests (Westerweel and Scarano, 2005). Masullo and
Theunissen (2016) suggests that overall, the most common
detection techniques used in practice are the universal outlier
detection scheme (adaptation of median test but normalises the
median residual with respect to an estimate of local variation)
(Westerweel and Scarano, 2005), and the distance-weighted
universal outlier detection scheme for unstructured data (a
generalisation of the universal outlier detection method, but
with a variance in the definition and weighting to neighbouring
vectors) (Duncan et al., 2010). These should be used in all studies
where spurious vectors are evident (especially with evident
turbulence) (Westerweel, 1994), or results of velocimetry are
being used for further applications (e.g., discharge).
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TABLE 1 | A non-exhaustive, generalised, overview of software suites that are currently available with some of their requirements and functions listed.

Software Overview Requirements and functions

PTVlab

(Brevis et al., 2011)

PTVlab is also a MATLAB code, using particle identification to

track movement. PTVlab enhances the images to better show

particles and their centroids. With this data, it performs integrated

cross-correlation and iterative relaxation labelling techniques to

better represent varying seeding densities and track their

trajectories.

Image enhancement is performed to highlight the flowing particles

and their centroids which are tracked by the software. This

tracking requires the user to input interrogation area sizes.

Fudaa-LSPIV

(Le Coz et al., 2014)

Fudaa-LSPIV is a free software created using a Java GUI. It begins

with image pre-processing taking video clips and converting

image sequences into PGM ASCII formats. It then sequentially

performs orthorectification, PIV analysis, result processing, and

discharge computation. Within the software is the ability to

visualise and export the data in different formats.

For accurate results, users will need to input GCPs, water level

estimations and the positioning of the viewpoint. For discharge

measurements, bathymetry profiles area required.

PIVlab

(Thielicke and Stamhuis, 2014)

PIVlab is available as an open source GUI within MATLAB, using

several of the built-in processes that MATLAB has to offer

regarding image pre-processing, image analysis, post-processing

and data exploration, producing outputs in video, image, or vector

map forms.

The software uses image enhancement, camera calibration and

orthorectification improve the images. It relies on the user to

choose interrogation and search area sizes to perform direct

cross-correlation and direct Frourier transformations.

RIVeR

(Patalano et al., 2017)

RIVeR is a standalone MATLAB code that uses the theories behind

PIV/PTV software but has been designed to provide a simple

user-friendly application. It extracts images from video footage,

processes them using PIVlab/PTVlab algorithms, then uses GCPs

to orthorectify the images and produce velocity and/or discharge

results.

Video image extraction rates, frame rates, colour depths, and

camera and lens parameterisation is required as an initial input to

the software. GCPs also need to be referenced in the images for

orthorectification. For discharges, section bathymetry is required.

OTV

(Tauro et al., 2018)

OTV processes data through feature detection, feature tracking

(using the Lucas-Kanade algorithm), and trajectory-based filtering.

This improves the reliability of the velocities as it only retains what

are believed to be reliable feature trajectories to reduce error. This

produces an average surface velocity estimation.

The software automatically detects features and does not rely on

inputting tracers. The direction and length of the flow is determined

by the user, who can also determine the quantity of trajectories.

Can be mildly affected by lower resolutions and image frequency.

Photrak. SSIV

(Leitão et al., 2018; Carrel et al.,

2019)

SSIV uses cross-correlation like most other PIV methods, but

unlike other PIV methods, SSIV filters erroneous vectors rather

than attempting to correct them. Photrak has two systems

available for use: DischargeKeeper which is a fixed IP camera with

local processing for continuous measurements, and the

DischargeApp for smartphone compatibility. Initially designed for

use with consumer-grade surveillance equipment in urban

environments.

SSIV requires full camera calibration to take place, with several

reference points in the frame of view for orthorectification of the

images. Search and interrogation areas need to be defined by the

user. Without water level information, SSIV cannot provide

discharge but only flow velocity.

KLT-IV

(Perks, 2020)

KLT-IV is a user friendly interface that aids users with a step by

step process, taking video sequences from fixed or mobile

platforms and GCP data and producing surface velocity results

and discharges (with the addition of alpha values and

cross-sectional data). The software allows users to stabilise videos

and orthorectify frames. KLT-IV uses GFTT and subsequently the

Kanade-Lucas-Tomasi tracking scheme for tracking. This is a

pyramidal tracking scheme that searches 30 iterations within

interrogation areas to find the new location of each point until it

reaches convergence, discarding any results that produce an error

of 1px or more.

For accurate results, camera calibration is required. This relies on

knowing the model of the camera for removal of lens distortion

and orthorectification of images. This software then tracks

individual trajectories through a known “extraction rate,” block

sizes, and known reference points. Variations occur dependant

upon extraction rates.

Typically, corrective methods for spurious vector will perform
statistical analysis as seen above to detect outliers and determine
if it falls under a set threshold as to whether or not it is
likely a false reading or likely to be reliable. If it is determined
to be erroneous, the vector should be removed and replaced
using most commonly, a 2D interpolation, or alternatively linear
or polynomial interpolation (Stamhuis, 2006). Some common
PIV statistical corrective methods are: Penalised Least-Squares
Method (Tang et al., 2017), Kriging Regression (De Baar et al.,
2014), and Proper Orthogonal Decomposition Outlier Detection
(POD-OC) (Wang et al., 2015). Replacing these vectors is

important to ensure the results produce statistically meaningful
velocities, and without it, can limit the accuracy, resolution, and
usefulness of PIV (Hart, 2000).

For PTV data, detecting erroneous vectors is slightly more
challenging due to its unstructured features (i.e., does not
conform to a gridded system when processing, like seen with PIV
methods). Many common PTV algorithms stem from techniques
used by PIV regarding the way that it associates vectors with
its nearest neighbours, but are altered to deal with the issue of
identifying neighbouring vectors in PTV, and not being equally
spaced. For PTV validation and correction, should there be more
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than 15% of outliers, automated programmes could potentially
fail to highlight them due to algorithms using neighbouring
velocities to determine what classifies as an outlier and should
there be a high percentage of outliers, determining what is
correct, and what is not, is challenging (Duncan et al., 2010).

Techniques for PTV error correction typically involve a
smoothing of displacement fields to use as a baseline to outliers
(e.g., Akhmetbekov et al., 1996; Young et al., 2004). Duncan
et al. (2010) constructed the Universal Outlier Detection Scheme
(which can be used for both PIV and PTV), but it is a
development of the algorithm from the Westerweel and Scarano
(2005) study for PIV correctional algorithms. An alternative
to these methods, is a model based technique (e.g., Young
et al., 2004), which has been shown to validate upto 25%
of outliers. In this study, the model is described as a 5-
stage process. The first stage is initialisation, which involves
displacement normalisation, the building of constraints, and then
a regularised version of the displacement field is calculated.
Secondly is relaxation, this stage produces a displacement field
where invalid estimates are replaced with statistically more likely
vectors. Third is point removal which uses several statistical
methods to determine validation scores (based on user defined
thresholds and a T value determined in the relaxation stage).
The next stage is attraction designed to iterate landmarks toward
their associated termination landmarks. Finally, displacement
interpolation which can be used to estimate the displacement at
any position in the image field.

2.4.2. Velocimetry Applications
The most common application for image velocimetry datasets
is attempting to calculate discharge. Discharge can be calculated
with the introduction of known, measured, transects of the river
within the camera field of view. These transects can be part of
the geo-referencing local coordinate system and measured at the
same time as the GCPs. For the discharge calculations to be as
accurate as possible, when using PTV methods especially, the
river surface needs to have a good spread of tracers, and where
this is not the case, it is possible to interpolate or extrapolate
measurements using polynomial, cubic, or the constant Froude
method (Perks, 2020). Typically, discharge can be estimated
using a velocity-areamethod, introducing typical fluidmechanics
parameters [e.g., depth-average velocities, influenced by α (Le
Coz et al., 2010)]. When calculating α values, vertical velocity
profiles can be found using an aDcp, but Creutin et al. (2003)
finds that using 0.85 is a reasonable assumption where this is not
possible. Combining α with the calculated velocity, along with
bathymetry can give reasonable discharge calculations as found
with many studies on river discharge (e.g., Kim et al., 2008; Le
Coz et al., 2010; Perks, 2020).

An issue to consider when studying river discharge via
velocimetry is the variation of river channel cross-sectional
area due to rising stage scour and waning stage fill, or due to
passage of sediment waves and bed forms even in more steady
flows. It is suggested that after peaks of high flow that river
bathymetry is remeasured to ensure that cross-sections are as
accurate as possible.

More recently, as an alternative to using estimated alpha
values, mobile image velocimetry techniques have been used
to derive Gauckler-Manning-Strickler coefficient (K), for cross-
sectional roughness in rivers (Bandini et al., 2021). The method
simultaneously solves for K and discharge using both linear
equations of Manning’s and the mean-section method for
computing discharge from depth-average vertical velocity. The
uncertainty at the 95% confidence level resulted in most of
the observations to be near ±10% of the in situ discharge
measurements. This method can be used to counter issues with
streams that are non-ideal (e.g., highly meandering, non-uniform
in slope, etc.).

For users who are looking to apply image velcoimetry to
analyse data for the first time, it can be difficult to understand
which method (PIV or PTV), to use. The research presented
throughout this study should provide some indication on what
is the best method for the particular datasets. For further
information to help aid decision making regarding methodology
choices and how to best apply PIV or PTV, see Table 2. These
papers have been studied and briefly summarised regarding the
background of the site, the hardware that the method uses, and
the results that are discussed by the author. This also includes the
challenges that the author faced, as well as the possible causes for
such challenges. These papers have been selected as they provide
similar but different methodologies using PIV or PTV (e.g., fixed
platforms, mobile platforms, thermal cameras).

3. CONCLUSION

Over the last two decades researchers have created numerous
techniques for both PIV and PTV methods. Algorithms have
been shown to be capable of estimating surface velocity accurately
(compared to that of aDcp’s), however, the onus is on the
user to decipher the ideal methodology. The aim of this
research was to present and discuss instances of best practice
for image velocimetry processes based on existing papers and
case studies, summarised by Figure 2. Where this study has
stated it was not viable to suggest an optimal setting due to
the lack of information surrounding the topic, example case
studies were provided in an attempt to suggest precedence as
an alternative.

Research was categorised into four main topics: capture
optimisation, pre-processing, processing, and post processing.
For capture optimisation, GSD should be as small as possible
without having to rely on high resolutions. Adding an angle
to the camera can skew GSD in the background of images
and this should be accounted for where the region of interest
overlaps foregrounds and backgrounds. Tracers are a critical part
of image velocimetry techniques and it is important that they
remain stable and cover at least 10-30% of the region of interest
consistently. It is important that frame rates remain constant
throughout the process and this can be checked against time
stamps provided by most video cameras. The choice of platform
used to capture data depends on the event that is to be captured.
For capturing single events or for short term studies, UAS can be
used but needs additional steps such as stabilisation. For longer
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TABLE 2 | A selection of application papers chosen due to their variation of hardware and software suites.

Details Background Results

Author: Creutin et al. (2003)

Case Study: Iowa River, Iowa

Software Application: In-house

algorithm (PIV)

“Proof of concept” research paper. PIV was used without

artificial tracers. GCPs used with a 70 m wide channel. Ten,

10 min, recordings used for processing. Sony DCR-TRV320

camera used at an angle of 60◦ and 14 m above the river

level. GSD was 6.4 pixel/m. Interrogation areas set at 64 ×

64 pixels and search areas set at 24 pixels.

Discharges from the 10 sequences ranged from 50 to 300 m3s−1.

Results were compared to 215 current meter measurements and

PIV results agree with the defined rating curve. Average velocities

mostly agreed, except for two measurements. Disregarding these

two results, error ranged between −11.6 and +4.2%. The study

highlighted the issue of results being sensitive to light, with

reflections and shadows making it hard to detect movement.

Author: Jodeau et al. (2008)

Case Study: River Arc, France

Software Application: LS-PIV

Dam flushing, discharge rate between 10 and 150 m3/s.

Survey area roughly 60 × 40 m. Tilt angle roughly 20◦ to the

horizontal. Calculated alpha to be 0.79 (0.85 is default). DEM

used for bed elevations.

Bias (thought to be due to friction coefficients used), toward the

shallow areas of the river; under-estimated compared to a

2D-model. Lack of tracer visibility on right bank due to tree shadow

and lack of tracers. At smaller levels of discharge (60 m3/s),

calculated error (compared to a rating curve) was large (30%),

however, at higher estimated discharges (77 m3/s), estimated

discharge was within 0–6% of the rating curve.

Author: Legleiter et al. (2017)

Case Study: Alaska, USA

Software Application: LS-PIV

(Thermal)

Benchmarked using aDcp (velocity, discharge, depths).

Thermal camera (FLIR SC8340) used to capture data (1,280

× 720px). Frame rate at 10 Hz captured for 1min. Cameras

were fixed, with most angles set to nadir, however, some

instances 13 degrees off nadir was used. 25mm focal lens

used (provided a view of 41.2◦ x 24.8◦). ROI of 512 × 512px

used (roughly 6 × 3.5 m, GSD 0.005 m).

Angling the cameras resulted in issues; the distortion of the FOV

(between 2 and 9%), but also reduced the near-field thermal energy

received. The paper does not track “tracers” per se, but instead

thermally distinct patterns. Results skewed from not accounting for

camera distortions (e.g., camera tilts), however, the edges of the

frames were trimmed when processing (where most of the distortion

would occur). Velocities (from both aDcp’s and PIV), ranged between

0.5 and 3 m/s for all the sites. The mean error for all sites was within

one standard deviation (range of error between 0.09 and 0.187 m/s

with a ±1 standard deviation of between 0.132 and 0.247 m/s)

Author: Tauro et al. (2018)

Case Study: Brenta River, Italy

Software Application: OTV (PTV

based)

Camera used was a GoPro Hero 4 Black, set to capture at full

HD (1,920 × 1,080 pixels) at a capture rate of 50 Hz. Out of a

4 min video, twelve 20s clips were extracted with a resolution

of 1,430×1,080 pixels (equalling a field size of 7.1 × 5.3 m2 )

at a rate of 25 Hz. Image manipulation was used, including

greyscaling and gamma correction to darken mid-tones.

Processing time was measured using OTV and compared against

PTVLab and PIVLab and was shown to be two magnitudes quicker

using a simple personal computer (2 min for OTV and 17 ± 7 min for

PIVLab/PTVLab). RMSE and R2 values were used for comparisons

with results. These results were compared against a benchmark

from a deployed current meter (3 cm below the surface).

FAST-based OTV produced a R2 value of 0.83 compared to

reference data, with ORB-based OTV 2nd best with 0.74. For

comparison, PIVLab produced a R2 value of 0.49 and PTVLab 0.6

compared to the reference data.

Author: Dal Sasso et al. (2018)

Case Study: Noce Rivers, Italy

Software Application: PTV-Lab

Field study after numerical experimentation on optical settings

for PTV solutions. Average channel width 28 m, slope

gradient 1.1%. Waded current meter benchmarking. DJI

Phantom 3 Quadcopter with a 4k UHD mounted camera with

3 axis stabilisation system. 10m hover above surface with

orthogonal angle to surface (nadir). Captured in HD (1,920 ×

1,080px) at 24 FPS. Surface captured was 17.0 × 9.6 m2.

Artificial tracers were used.

Reconstruction of velocities at banks show higher uncertainty due to

bank effects, and a lack of tracer movement; produces significant

underestimation. Emphasis on frame rate being such that a particles

displacement is larger than that of the particle being tracked, and if

not, to subsample frames (reduce framerate to increase

displacement). Results compared to benchmark show a good

comparison in the middle of the reach (1% error), compared to that

of the edges which are much less reliable (48% error). Benchmark

velocities show a median of 0.437 m/s, and a max of 0.48 m/s,

whereas PTV-Lab produced a RMSE of 0.125 m/s for the full width,

and 0.04 m/s when considering only the areas with good seeding

concentration.

Author: Tauro et al. (2019)

Case Study: Brenta River, Italy

Software Application: PTV-Stream

Telescopic pole used with a GoPro Hero 4 Black. Nadir angle

to surface to remove need for orthorectification. FOV was 9.5

× 5.3 m. HD (1,920 × 1,080px) used with 50 Hz capture rate.

Split into 12 20s videos and edges removed to crop image to

1,430 × 1,080px. Mask used to cover vegetation visible.

Distortion removed from camera. Artificial tracers were used.

Results agree with widely used PTV-Lab, but PTV-Stream

significantly reduced computational requirements (reported to be

around 10% of the total time usually required to process a video).

Sampled at 25, 12, and 8 Hz and all results overlap (showing

robustness). Mean velocity was above average compared to current

meter benchmark (0.46 m/s compared to 0.38 m/s), attributed to

the difference in depth of the readings (surface vs. few centimetres

below water surface. Results show that PTV-Stream capture the

fluctuation in shape of velocity across the river cross-section (higher

in middle).

Author: Jin and Liao (2019)

Case Study: Milwaukee River,

USA

Flow ranged between 6-60m3/s. Camera used was a

NikonD7000 with HD 1080p imaging and a distortion free

lens (50 mm F1.4). Oblique angle used (between 79◦ and

Median tests used, average error between 29 and 36% over the

whole study. The RMS of the velocity agrees well with the ADV

benchmarking after the median tests were performed to remove

(Continued)
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TABLE 2 | Continued

Details Background Results

Software Application: LS-PIV 86◦). Images were orthorectified using 11 GCPs. Water level

found by marking extra GCP just above water level. ADV

used for benchmarking along cross-section. 25FPS used

over a 10min period. Images used have GSD of 0.02 m/px

over an area of 70 × 23 m.

outliers. Good correlation between the ADV and the PIV magnitude

(0.12 and 0.14m/s from the ADV and PIV, respectively). Typically,

results were larger than that of the ADV and it is thought to be due

to the ADV measurements coming from 5cm under the surface of

the river, resulting in less turbulence compared to that of the surface

velocity. Velocity index for depth average calculations set at 0.85.

Author: Pearce et al. (2020)

Case Study: Kolubara River,

Serbia

Software Application: KLT-IV,

LSPIV, LSPTV, OTV, SSIV

Comparison paper between software suites. Low flow

experiments (approx. 3.4 m3s−1, benchmarked with aDcp.

Mobile platform used (DJI Phantom 4 Pro) with a standard

fitted camera sensor (1” CMOS 20MP). Artificial tracers used.

Six GCPs were used along the channel. Resolution of 4k

(4096 × 2160 pixels) and a FPS of 23.98. Two videos of 30s

were sub-sampled captured from 26 m elevation (GSD of

0.77 cm/px), and 32 m (GSD of 0.95 cm/px).

The aDcp was used across three cross-sections. KLT-IV and LSPIV

provided the best correlation with the results from the aDcp

averaging a range between 0 and 0.07 ms−1. On average, KLT-IV,

LSPIV, OTV and SSIV software suites are in better agreement with

the aDcp than LSPTV. The Nash-Sutcliffe results for the softwares

compared to the aDcp are for video one: 0.535 (KLT-IV), 0.3592

(OTV), 0.4905 (LSPIV), 0.1609 (LSPTV), and 0.3875 (SSIV). A

sensitivity study was also produced. The results show that KLT-IV is

generally insensitive to changes in configurations. OTV had the

lowest sensitivity scores across software suites, however, can be

sensitive to the particle trajectory length threshold.

Author: Perks (2020)

Case Study: River Feshie,

Scotland

Software Application: KLT-IV (PTV

based)

Hikvision AcuSense 4mMP IF network camera (20 Hz, 2,688

× 1,520px), and DJI phantom 4 (29.97 fps, 4,096 ×

2,160px). High flow conditions (stage range between 0.785

and 1.762 m). GCPs were used throughout detection and the

images were stabilised to negate platform movement.

A range of stage was used to reconstruct the flow (between 0.785

and 1.762 m). Mobile and fixed cameras produced deviations from a

rating curve at 4 and 1% at stages above 1.5m. Vegetation

obstructed mobile imaging, had to extrapolate edge, but had over

one-million trajectories. Fixed camera had 7433 trajectories (10s of

video), mostly in centre, both banks needed extrapolating.

Each has been briefly summarised for their backgrounds and their results.

studies such as monitoring river flows and developing discharge
rating curves, fixed stations can be used to provide a time-series
of images.

For mobile stations, stabilisation is a critical component to
the process, sometimes the same is true for fixed cameras that
witness oscillations or vibrations due to external influences. For
the best results, it is suggested that at least four pairs are used
for a full projective transformation to be available and can be
selected either manually or automatically. It is also possible to
use GPS tracking to detect movement of the camera. The best
features to use are static points such as corners of structures.
Orthorectification is also required where the camera angle is not
nadir. An absolute minimum of six GCPs is required, however,
it is the case of the more the better. At least four GCPs should
be in the immediate area of the region of interest. If tracers
are not prevalent throughout the imagery, it is suggested that
imagery is manipulated using contrast enhancement steps. After
enhancement, should tracers still not be defined against the
background, further image enhancement steps can be applied
such as binarisations. As a minimum, images need to be
greyscaled and cropped where possible.

Lagrangian and Eulerian algorithms are the basis for PTV
and PIV respectively. Each mechanic of motion has its own
assumptions and limitations, but also their own advantages.
Where tracers are dense and interact with one another
consistently or deform and break up, Lagrangian motion is
difficult to define. Conversely, for Eulerian, a steady state of flow
and tracer availability is required for reliable results. Steadiness
of flow is not as much of an issue for Lagrangian techniques
as it defines the particles energy and location at any moment

of time. PIV methods can be used with more confidence if
there are a steady amount of tracers throughout the whole time
of processing, providing an output of average velocity across a
gridded system on the surface of the river. PTVmethods aremore
detailed, in that they trace an individual particles movement
along the longitude of the river surface and can work well where
seeding is more scarce.

After calculating surface velocities, general practice should
include the detection of outliers and either the removal or
the replacement of said outliers. There are numerous statistical
algorithms available to the user to aid in achieving corrected
velocity vectors, mostly using a statistical means (e.g., median
tests), and the nearest neighbouring vector; errors are then
replaced using interpolation methods. This is achievable for
both PIV and PTV data, however, more research has been
done into PIV corrective techniques because of its results being
gridded and structured, making the nearest neighbours easier
to identify computationally. From this research it is suggested
that any datasets being used in further calculations or designs
(e.g., discharge), should undergo statistical validations and
corrections. Discharge calculations rely on an alpha value being
used (typically around 0.85), which estimates the average depth
velocity. The alpha value coupled with the bathymetry of a known
transect of the river can be used in an area-velocity method of
calculating discharge.Where surface velocity is not constant (due
to lack of tracers or anything else), velocity can be interpolated or
extrapolated using the data readily available from the rest of the
river. This can then be used in calculating discharges.

Image velocimetry is a process upon which each stage
is ultimately dependant on the previous. Without adequate

Frontiers in Water | www.frontiersin.org 17 December 2021 | Volume 3 | Article 709269

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Jolley et al. Considerations When Applying LS-PIV/PTV

consideration in prior steps, subsequent stages cannot be relied
upon to accurately convey flow data. This research has depicted
many of the aspects that require careful planning regarding the
best practice for PIV and PTV methods. There are many studies
currently available, cited in this research, that allow a user to
deduce how to optimally capture and process imagery, either
through experimental evidence or through applied precedence.
Some stages are less evidenced than others, and require the
users intuition to best determine methodology; one of the most
important of these, arguably, is GSD. GSD is a complex balance
between detail and resources, it is a mix of physical characteristics
such as distances and angles, coupled with resolutions and
hardware (sensors and lenses). Without optimising GSD to
be small enough for a specific site, detail is lost and can
hinder the processing capability of PIV/PTV through the lack
of ability to detect and track good features. Alternatively, too
small of a GSD could critically increase the processing power,
storage, and bandwidth requirements to a point that they are
unjustifiable. With that being said, it is also vital that stabilisation
is competently applied. Stabilisation, where platform movement
is detected, can be just as critical as GSD, as research shows that
large positional errors can be removed with a good, accurate
stabilisation being applied to the imagery. Decisively, however, as
previously stated, PIV and PTV are processes with each stage as
important as its predecessor and that one of the main limitations
with the ideal settings suggested throughout this research, is
that it conforms to a generalised process. This means that,
despite there being sufficient evidence for the optimal practices
suggested, there is always a need for discretion from the user to

best meet the requirements for their brief; such as challenging
terrains or budget limitations.

To conclude, image velocimetry is a well researched field.
The algorithms that are currently available to users tend to
prove effective for remote sensing of river surface velocities. As
there are currently many software suites available for processing
of imagery (e.g., PIVlab, PTVlab, KLT-IV, etc.), a shift of
emphasis should be made from focusing on the use of a
single algorithm and stating its error bounds, to optimising
the methodology of a study to suggest best practice and
choice of algorithm and its corresponding variables. With that
said, areas such as environmental conditions and the errors
associated with them require further study to determine the
overall impact that they can have on results, and if possible,
quantifying so that further optimisation to the processing system
can be suggested, depending on the conditions of time of
image capture.
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