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Detailed knowledge of the uppermost water table representing the shallow groundwater

system is critical in order to address societal challenges that relate to the mitigation

and adaptation to climate change and enhancing climate resilience in general. Machine

learning (ML) allows for high resolution modeling of the water table depth beyond the

capabilities of conventional numerical physically-based hydrological models with respect

to spatial resolution and overall accuracy. For this, in-situ well and proxy observations

are used as training data in combination with high resolution covariates. The objective of

this study is to model the depth of the uppermost water table for a typical summer and

winter condition at 10m spatial resolution over entire Denmark (43,000 km2). CatBoost,

a state of the art implementation of gradient boosting decision trees, is employed

in this study to model the water table depth and the associated uncertainties. The

groundwater domain has not been the most prominent field of applications of recent

hydrological ML advances due to the lack of big data. This study brings forward a novel

knowledge-guided ML framework to overcome this limitation by integrating simulation

results from a physically-based groundwater flow model. The simulation data are utilized

to (1) identify wells that represent the uppermost water table, (2) augment missing

training data by accounting for simulated water level seasonality, and (3) expand the

list of covariates. The curated training dataset contains around 13,000 wells, 19,000

groundwater proxy observations at lakes, streams and coastline as well as 15 covariates.

Cross validation attests that the ML model generalizes well with a mean absolute error

of around 115 cm considering solely well observations and a MAE of <50 cm taking

also the proxy observations into consideration. Quantile regression is applied to estimate

confidence intervals and the estimated uncertainty is largest for moraine clay soils that

are characterized with a distinct geological heterogeneity. This study highlights a novel

research avenue of knowledge-guided ML for the groundwater domain by efficiently

supporting a ML model with a physically-based hydrological model to predict the depth

of the water table at unprecedented spatial detail and accuracy.
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INTRODUCTION

A key state variable of the hydrological cycle is the depth of
the uppermost water table, i.e., shallow groundwater, with a
broad range of crucial societal, and environmental implications
such as securing infrastructure, food production and sustaining
ecosystems (Gleeson et al., 2016). Following the global analysis
of water table patterns by Fan et al. (2013), up to one-third of
the land area is influenced by shallow groundwater, being either
directly groundwater-fed or having the water table or capillary
fringe within plant rooting depths. More concretely, the shallow
groundwater system plays a key role in building mitigation
and adaptation measures to address climate change, as the
uppermost water table controls greenhouse gas emissions from
wetlands (Tiemeyer et al., 2016, 2020) and as rising groundwater
exacerbates flooding and falling groundwater intensifies droughts
(Taylor et al., 2013). Floods can either be directly induced
or intensified by the shallow groundwater system which has
a special relevance for urban areas (MacDonald et al., 2012;
Bricker et al., 2017). In an agronomical context, the shallow
groundwater system is vital to meet crop water requirements
in many agricultural settings while having adverse consequences
for crop yield when the water table is too close to the surface
(Kahlown et al., 2005; Zipper et al., 2015). Moreover, the
uppermost water table constitutes a link between subsurface and
the land-surface by affecting the energy balance and near-surface
climatic conditions (Larsen et al., 2016; Maxwell and Condon,
2016).

The above mentioned relevancy of the shallow groundwater
system requires versatile modeling systems to meet the
demands of decision makers with respect to accuracy and
spatial resolution. Accuracy and spatial resolution can be
considered main bottlenecks in the advancement of physically-
based numerical hydrological models. Increasing the spatial
resolution does not necessarily go along with an improvement
of the model accuracy, as established process descriptions and
parametrizations are not always scalable (Beven and Cloke, 2012;
Clark et al., 2017). At the same time, increasing the number of
computational units results in a computational burden limiting
the possibility to conduct thorough parameter calibration and
sensitivity analysis. Due to the stringent parametrization and
rigid model structure, conventional hydrological models cannot
fully harness the wealth of readily available environmental big
data. Nevertheless, physically-based models integrate decades
of hydrological knowledge and are indispensable for integrated
assessments of the hydrological cycle and simulating hydrological
response under non-stationarity, i.e., climate change. As outlined
by Shen (2018), Reichstein et al. (2019), and Nearing et al.
(2020), machine learning (ML) is gaining increasing attention
in the hydrological science to overcome some of the previously
mentioned constraints of conventional physically-based models.
ML has the advantage of being data flexible with respect
to optimally utilizing the wealth of environmental big data
while providing accurate predictions at low computational
costs. However, ML lacks process descriptions which commonly
restricts trained ML models to deliver predictions within
observed ranges of the training dataset. In order to reconcile

advantages of both modeling perceptions, knowledge-guided ML
forms a promising new research avenue (Rajaee et al., 2019; Kraft
et al., 2020). Knowledge-guided ML has the aim to integrate
physical consistency into ML improve model performance
and robustness. There exist multiple approaches to design
knowledge-guided ML models as outlined by Read et al. (2019),
Reichstein et al. (2019), Konapala et al. (2020), and others, which
are also referred to as physics- or process-guided. A clear formal
definition of these modeling approaches is still lacking, but they
generally aim at integrating aspects of scientific knowledge into a
ML model.

This study aims at modeling the depth of the uppermost
water table at 10m spatial resolution over entire Denmark for
a typical summer and winter condition by implementing a
knowledge-guided ML model. The physically-based information
are obtained from the Danish national water resources model,
that integrates groundwater and surface water processes (Højberg
et al., 2013; Stisen et al., 2019). The physically-based model is
used three-fold, (1) to derive threshold depths to select wells that
reflect the shallow groundwater, (2) to augment training data at
wells with incomplete pairs of summer-winter observations, and
(3) to inform the ML model with the typical summer and winter
water table depth using simulation results at 100 m resolution.

Decision tree based ML models are popular tools for
geospatial modeling of environmental variables (Hengl et al.,
2018; Tyralis et al., 2019b). In this context a target variable,
available as point data, is used in conjunction with maps of
explanatory variables to curate a training dataset. Relationships
between the target variable and the explanatory variables are
established via the decision trees which, once trained, can be
generalized to make predictions of the target variable at all
grids. This framework has been successfully applied across the
geosciences to model water chemistry indicators (Tesoriero et al.,
2015; Erickson et al., 2021) soil properties (Møller et al., 2017;
Hengl et al., 2021), subsurface redox conditions (Close et al.,
2016; Koch et al., 2019a), water table depth (Bechtold et al.,
2014; Koch et al., 2019b), and other variables. In such modeling
frameworks, uncertainty can be quantified via quantile regression
(López López et al., 2014; Tyralis et al., 2019a). Gradient boosting
is among the state of the art techniques to build decision tree
models and, for this study we have employed the CatBoost
implementation of gradient boosting decision trees (Dorogush
et al., 2018; Prokhorenkova et al., 2018). Numerous studies apply
ML to model the temporal water table dynamics by using various
ML techniques (Sun et al., 2016; Guzman et al., 2017; Wunsch
et al., 2021). These studies highlight successful applications, but
are always limited to time series modeling, at a few selected sites.
Despite these efforts, the spatial dimension is often neglected in
the published studies. Fienen et al. (2013), Bechtold et al. (2014),
and Koch et al. (2019b) are among the few studies that model
the spatial variability of water table depth using ML. Knowledge-
guided ML applications in the groundwater domain are for
example the physics informed neural networks model developed
by Guo et al. (2020) that allows to solve partial differential
equations with less calculational time.

The three main objectives of the paper are as follows: (1) to
train a ML model to predict the uppermost water table depth
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FIGURE 1 | The left panel depicts the soil types of Denmark classified into nine dominant classes (Henriksen et al., 2020). The right panel depicts a digital elevation

map of Denmark. The Island Bornholm, located in the Eastern Baltic sea (see overview map), is added as an independent map layer to both panels.

at 10m spatial resolution over entire Denmark, (2) to quantify
uncertainty using quantile regression, and (3) to formalize a
knowledge-guided ML framework that builds upon a physically-
based hydrological model.

MATERIALS AND METHODS

Study Area
This study is carried out for the entire land phase of Denmark,
located in Northern Europe and covering an area of around
43,000 km2 (Figure 1). Denmark is generally flat with a
maximum elevation of 170m.a.s.l. and agriculture is the main
land cover with around 70%. The landscape of Denmark was
formed by a sequence of Pleistocene glaciations and postglacial
processes. The soils of eastern Denmark are dominated by
Weichselian moraine sediments with a moderate clay content,
whereas western Denmark is characterized by older moraine
sediments originating from the Saalian age intertwined by sandy
Weichselian outwash plains.

In Denmark, the groundwater system is under pressure as
a consequence of climate change and abstractions, revealed by
quantitative modeling assessments conducted by Henriksen et al.
(2008) and Karlsson et al. (2016). More specifically, a shallow
water table rise of up to 1.5m for a 100-year event relative

to present average conditions was estimated by Kidmose et al.
(2013) for an urban catchment.

Data
In order to make seasonal estimates (typical winter and typical
summer) of the shallow water table at high resolution, an initial
comprehensive data processing has been conducted to curate
a high-quality dataset containing water level observations at
shallow wells, additional groundwater observations as well as
national maps of explanatory variables.

Physically-Based Model
The national water resources model of Denmark (DK-model),
which has previously been refined from the original 500m
resolution to an updated 100m resolution, was employed in
this study (Højberg et al., 2013; Stisen et al., 2019; Henriksen
et al., 2020). The core of the DK-model is an integrated surface-
subsurface hydrological model (MIKE SHE model code) that is
calibrated against streamflow and groundwater observations. We
utilized simulation results of the depth of the uppermost water
table at daily time step from a 30 year simulation period (1990–
2019) and processed the data to the maps depicted in Figure 2.
The summer condition reflects amedian across 30 summers, each
summer defined as the median of the months June, July, and
August. Analogous, the winter condition is based on the median
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FIGURE 2 | Simulation results for the depth of the uppermost water table from a national physically-based model (PBM) at 100m spatial resolution: The left panel

shows the simulated median summer condition (JJA). The center panel shows the simulated median winter condition (DJF). The right panel depicts the median

seasonality, calculated as summer minus winter.

of 30 winters, where each winter is defined as the median of the
months December, January, and February of the same winter
season. The third processed variable is the simulated median
seasonality, which is based on the median across 30 annual
seasonalities. For each year, the seasonality has been calculated
as median summer condition minus median winter condition.
The simulated summer condition has a mean water table depth
of 3.5m whereas the simulated winter condition has a mean of
2.6m, with a standard deviation of 5.8 and 4.8m, respectively
In terms of the spatial pattern, the simulated water table depth
shows overall resemblance between the summer and the winter
condition. Deepest groundwater levels are found in the Western
part of Denmark alongside high elevation and for sandy soils.
The moraine clay soils are characterized with a dominant shallow
water table, especially during the winter months. The simulated
median seasonality has a mean of 85 cm. The spatial pattern of
the simulated seasonality reflects a complex interplay of geology
and topography. The amplitude is generally low in topographical
sinks and high for areas with an elevated topography. A majority
of the moraine clay soils possess an amplitude larger than 1m,
which is caused by a winter water table at the surface due
to slow infiltration in combination with a drying out in the
summer months.

Groundwater Observations
The open-access Danish well database (Jupiter) contains around
100,000 wells with at least a single water table observation in the
selected 30-year period between 1990 and 2019. Based on the
national well dataset, we first identified the wells that represent
the shallow groundwater system, i.e., characterize the uppermost
water table. Given the geological complexity of Denmark, this can
vary from just a few meters for locations with a thick surficial

clay layer to several tens of meters for the sandy outwash plains.
In order to find suitable threshold depths, that classify a well as
being either shallow or not, we combined the national soil map
(Figure 1) and the simulated uppermost water table (Figure 2).
For this analysis, themidpoint intake depth of each well was used,
which is relative to the top and the bottom of the intake. The
95th percentile of the simulated water table depth was calculated
for each soil type which guided the definition of the presented
threshold depths applied to the midpoint intake depths of the
wells (Table 1). Wells were only selected if the intake depth was
lower than the soil type dependent threshold depth. A spatially
soil type distributed threshold depth, guided by a physically-
based model, has the advantage to reflect the natural conditions
best possibly. Alternative, a constant threshold depth of e.g., 10
m would result in the selection of wells that do not reflect the
uppermost water table in clayey settings where a well may be
placed in a sand unit below a 6m surficial clay layer containing
the uppermost water table.

After applying the soil types dependent threshold depths,
summer, and winter depths to the uppermost groundwater
were calculated at each well. For this task, summer refers to
observations from the months June, July, and August (JJA)
whereas winter refers to the months December, January, and
February (DJF). Inter-annual variation was not considered
during this processing step and in case a well contained
several summer or winter observations a median was calculated.
This resulted in 13,047 well, as shown in Figure 3, of which
1,378 wells had both a summer and a winter observation,
5,651 only a winter observation and 6,018 only a summer
observation. For the wells that were missing either a winter
or a summer observation the simulated median seasonality
(Figure 2) was used to augment the missing season, i.e., winter
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TABLE 1 | Threshold depths that define a shallow well with respect to soil types

(Figure 1).

Soil Type Max depth (m.b.g.l.)

Sand 15

Moraine Sand 20

Peat 3

Chalk 20

Unclassified 3

Moraine Clay 3

Sand and Gravel 10

Marine Sand 3

Silt 3

Values of max depth were derived from the 95th percentile of the simulated water table

depths for each of the given soil types and were applied to the midpoint intake depths of

the wells.

= summer—seasonality, and vice versa. Further, the training
dataset was extended by additional observations that reflect proxy
observations for surficial groundwater levels with a depth of zero.
In total, 19,074 groundwater connected lakes with an aerial extent
of at least 100 m2 were used for this purpose. Additionally, 1,000
points, randomly placed along each, the stream network and
along the coastline, were added to better represent these under
sampled settings where the water table is expected to be at the
surface year-round. This resulted in a total number of 34,061
groundwater observations spread across Denmark, yielding a
density of around 0.8 observations per km2. Based on the well
data only, the average summer depth is 3.6 and 3.1m for the
winter season with a standard deviation of 2.8m for both.

Explanatory Variables
In Table 2, an overview of the covariates used to model the
depth of the uppermost water table is presented. In total, 15
covariates were assembled as input to the ML model. This list
comprises information on soil texture, geology, topography-
based characteristics, water body proximity, land cover, and
outputs from a hydrological simulation with the DK-model.
The native spatial resolution of the covariates varied, but all
covariates were resampled to 10m to be in agreement with the
defined output resolution. For the resampling we used a bilinear
interpolation method for the continuous variables. The water
body proximity was expressed as both the vertical and horizontal
distance to the nearest water body, which contained rivers, lakes,
and the coastline.

Gradient Boosting Decision Trees
We applied a new implementation of the gradient boosting
decision tree (GBDT) algorithm, i.e., Cat Boost that was first
developed by Yandex engineers in 2017 (Dorogush et al., 2018;
Prokhorenkova et al., 2018). GBDT, first introduced by Friedman
(2001), is a popular MLmethod that is increasingly being applied
across the geosciences for both, classification, and regression
tasks (Fan et al., 2018; Georganos et al., 2018; Møller et al.,
2018). GBDT builds a prediction model based on an ensemble of
weak learners, i.e., decision trees. In an additive training process,

GBDT attempts to correct itself by adding a decision tree trained
against the residuals of the ensemble sum of its predecessors
for a pre-defined number of iterations. Small incremental steps
are taken to correct the residuals, which is controlled via the
learning rate. The learning rate is a key hyper parameter of
GBDT that is multiplied with the predicted residuals of each
decision tree. In order to further alleviate overfitting, stochasticity
is added to the training process via subsampling of the training
dataset each time a new tree is built. Also, CatBoost allows
for early stopping of the training process once the objective
function for a test dataset stagnates for a defined number of
iterations. The individual decision trees are constrained by a
number of hyper parameters, such as tree depth or the minimum
number observations per split. CatBoost is specifically designed
to work well with categorical variables and a preprocessing of
categorical variables by means of different encoding methods
is not necessary. Also, CatBoost is favorable over similar ML
algorithms, such as Random Forests, Support Vector Machines,
or other GBDT implementations (e.g., XGboost or LightGBM),
with respect to computational time and memory usage, while
achieving a competitive accuracy (Huang et al., 2019; Hancock
and Khoshgoftaar, 2020). Given the size of the training dataset
(34,061 grids and 15 variables) and the prediction dataset (430
million grids and 15 variables) the memory efficiency and the
overall computational time were crucial parameters for the
selection of the ML algorithm. The covariate importance of a
trained CatBoost model can be revealed through analysis of the
tree splits to calculate how much the prediction changes on
average if the feature value changes.

For the purpose of simulating the depth of the uppermost
water table using CatBoost we employ two different objective
functions. First, the mean absolute error (MAE) is used to train
the best estimate of the winter and summer condition. Onemodel
is trained for each season. The MAE is expressed as follows:

MAE =

∑n
i=1

∣

∣simi − obsi
∣

∣

n
, (1)

where sim is the simulated groundwater depth and obs the
observed for a total of n training data. Besides simulating the best
estimate, we are also interested in quantifying the uncertainty
of the model. For this, we utilized quantile regression to define
objective functions targeting specific quantiles of the distribution.
This yields a probabilistic model that is not trained to estimate
the conditional mean, but to estimate a defined quantile q of the
distribution instead:

Quantile =

∑n
i=1

(

q− 1 •
(

obsi ≤ simi

))

•
(

obsi − simi

)

n
. (2)

Setting q to 0.5 yields the same result as the MAE, but setting
q to other values will give asymmetric weights to the residual
depending on q and the overall sign of the error. Setting q to
0.1 will estimate the 10th percentile, by associating a weight of
0.9 to over predictions and a weight of 0.1 to under predictions.
Thereby the 10th percentile can be approximated, meaning that
the model will be trained to over predict 90% of the times.
With the uncertainty analysis we intend to estimate the 68 and
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FIGURE 3 | Training dataset containing wells (left panel) and additional observations (right panel). The dataset contains 13,047 shallow wells with both a winter and a

summer observation. The additional observations comprise 19,074 groundwater connected lakes, 1,000 stream points and 1,000 coastal points. All additional

observations were defined with zero depth of the uppermost water table.

95% confidence intervals which can be achieved by training four
models, each model targeting a single quantile (e.g., 0.16 and
0.84 for the 68% confidence interval). The four models have to
be trained individually for both, summer, and winter condition.
We used CPU on a Windows machine (4 2.2 GHz Intel Xeon
processors with 56 cores in total, 256 GB RAM) for training
and prediction.

RESULTS

High Resolution Groundwater Model
CatBoost regression was used to simulate the depth of the
uppermost water table for a typical winter and summer condition
at 10m resolution over entire Denmark. Hyper parameters
were first manually calibrated and afterwards automatically fine-
tuned using a randomized search approach. Table 3 contains
the nine hyper parameters included in the randomized search,
a short description, and the tested values. The randomized hyper
parameter search was conducted for the summer and the winter
model using a 3-fold cross validation approach using 75% of
the data. The 3-fold cross validation is the default of CatBoost’s
randomized hyper parameter search algorithm. The MAE, based
on the 2,500 hyper parameter combination derived from the

randomized search algorithm, varied just 4 cm. A common hyper
parameter set that was among the top 2% for both, summer,
and winter model, was selected for further modeling (Table 3).
We found that the performance did not deteriorate for the
test data (25%).

Table 4 shows results obtained from a 4-fold cross validation
test for the summer and winter models. For this, four CatBoost
regression models were trained using 75% of the data for training
and 25% of the data was held back for validation. Overall,
little variation was found across the cross validation models,
which indicates an overall robustness. The MAE, averaged across
the four cross validation test, is 47 cm for both, summer, and
winter model. This calculation is based on the entire training
dataset. Only considering well data yields an average MAE of
around 1.15m. The increase in MAE is due to the fact that
the additional observations, all with a depth of zero, are well-
captured by the model and generally yield lower residuals. Based
on the coefficient of determination over half of the variance
in the well data is accounted for by the models and over 70%
of the variance of the entire training dataset. The 19,000 lakes
are represented with a MAE of below 5 cm, whereas additional
observations along the stream network and coastline possess a
MAE of around 10 cm.
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TABLE 2 | Overview of the explanatory variables used to model the uppermost water table.

Variable Abbreviation Description Source

Clay content 0–30 cm ClayA

Adhikari et al., 2013
Clay content 30–60 cm ClayB Clay content in percentage for four soil layers at

Clay content 60–100 cm ClayC 30m resolution

Clay content 100–200 cm ClayD

Thickness of top clay ClayThick Thickness of the uppermost clay layer at 100m

resolution

DK-model

Landscape typology* LType Geomorphological classification in 13 classes as polygon

shape file

Breuning-Madsen and Jensen (1992)

Land Use* LUse 7 land use classes at 100m spatial resolution Levin et al. (2012)

Degree of urbanization Urban Percentage of grid cell that is paved at 10m spatial

resolution

Water Body* WBody Binary water layer containing rivers, lakes and coastline

at 10m spatial resolution

Elevation model DEM Digital elevation model at 10m spatial resolution The Danish Agency for Data Supply and

Efficiency (SDFE)

Terrain slope Slope Rise and fall of the terrain surface in degree at 10m

spatial resolution

Horizontal distance to WBody HDis Horizontal distance to nearest water body at 10m spatial

resolution

Vertical distance to WBody VDis Vertical distance to nearest water body at 10m spatial

resolution

PBM—winter condition PBMw Depth of water table for median winter condition

simulated by a PBM at 100m spatial resolution

DK-model

PBM—summer condition PBMs Depth of water table for median summer condition

simulated by a PBM at 100m spatial resolution

Categorical variables are indicated with an asterisk.

TABLE 3 | CatBoost hyper parameter used in the randomized search (2,500 combinations).

Hyperparameter Description Tested values Optimized value

learning_rate Reduces the gradient step during training 0.05, 0.075, 0.1, 0.125, 0.15 0.05

Depth Number of levels in the decision trees 8, 9, 10, 11, 12, 13 13

l2_leaf_reg The coefficient of the L2 regularization term of the loss function 0, 2, 4, 6, 8, 10, 12 4

Subsample Random selection of training data for defining splits 0.5, 0.6, 0.7, 0.8, 0.9, 1 1

rsm Random selection of covariates for defining splits 0.5, 0.6, 0.7, 0.8, 0.9, 1 0.6

random_strength Randomness for selecting the optimal split 0.5, 0.75, 1, 1.25, 1.5 0.5

min_data_in_leaf Minimum data in each leaf 1, 5, 9, 13, 17, 21, 25 25

bagging_temperature Random weights to training data 0, 0.5, 1, 1.5 1.5

The maximum number of decision trees, i.e., iterations in the gradient boosting, was set to 1,000.

Figure 4 depicts the simulated national maps of the depth
of the uppermost water table at 10m spatial resolution for
summer and winter. The maps offer much detail revealing the
interplay of geology, topography, and waterbody proximity. The
overall regional patterns show resemblance with the simulations
results of the physically-based model at 100m, which were
used as covariate in the 10m ML models (Figure 2). However,
disagreements between the 100m physically-based model and
the 10m ML model are also present. The former simulates
a shallower water table in the Eastern part of Demark where
moraine clay is the dominant lithology. This is especially the

case for the winter condition. Further, the 100m physically-
based model simulates a homogeneously deep water table in the
sandy areas whereas the MLmodel results in more heterogeneity.
The disagreements may be explained by the differences in
spatial resolution, but also with the vertical discretization of the
computational layers in the physically-based model. Sandy layers
quickly run dry which results in a deep water table and clayey
layers hold water which yields a very shallow water table. The ML
based median seasonality is calculated as the difference between
the summer and the winter maps. The amplitude is generally
lowest close to streams and lakes and highest in the center of
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TABLE 4 | Results for a 4-fold cross validation (cv) applied on the summer and winter model.

Performance Summer model Winter model

cv1 cv2 cv3 cv4 Mean cv1 cv2 cv3 cv4 Mean

All data MAE 0.48 0.48 0.48 0.46 0.47 0.47 0.47 0.47 0.45 0.47

RMSE 1.24 1.21 1.23 1.19 1.22 1.23 1.21 1.21 1.18 1.20

R2 0.75 0.76 0.75 0.77 0.76 0.72 0.72 0.71 0.73 0.72

Only well observations MAE 1.17 1.18 1.19 1.15 1.17 1.16 1.17 1.18 1.13 1.16

RMSE 1.96 1.92 1.95 1.91 1.93 1.94 1.92 1.93 1.89 1.92

R2 0.51 0.53 0.51 0.54 0.52 0.51 0.52 0.51 0.53 0.51

Only lakes MAE 0.03 0.04 0.04 0.03 0.04 0.03 0.03 0.03 0.03 0.03

RMSE 0.30 0.27 0.33 0.27 0.29 0.26 0.25 0.28 0.23 0.25

R2

Only river and coastline MAE 0.13 0.11 0.13 0.12 0.12 0.09 0.08 0.11 0.10 0.10

RMSE 0.31 0.31 0.35 0.32 0.32 0.27 0.22 0.28 0.27 0.26

R2

Performance is quantified by means of a mean absolute error (MAE), root mean squared error (RMSE) and coefficient of determination (R2 ). Results are given for different subset of the

data (all data, only wells, only lakes and only river and coastline).

Denmark where topography is high and a permeable subsurface
is present. Similar to the physically-based simulated amplitude,
the ML derived amplitude has intermediate values around 0.5m
(yellow category) in the Western part of Denmark for the sandy
outwash plains. Based on both approaches, the amplitude for the
moraine clay settings is around 1m (green category) which is
mainly driven by the very shallow water table during winter.

Figure 5 presents the same data as shown in Figure 4, just
for a zoom section of ∼15 km2. Here, the imprint of the stream
network as well as the many lakes, become apparent as areas
with a very shallow depth of the uppermost water table (<0.5m).
The difference between the drier summer and the wetter winter
is clearly notable and the difference between the two models is
plotted as the seasonality. The largest amplitude is present in
areas with high topography and the lowest amplitude is found
along the river network and lakes.

Covariate Importance
The quantified importance of each input feature for the summer
and winter model is presented in Figure 6 for the entire training
dataset and for a subset containing only the well data. Based on a
trained model, CatBoost calculates the “prediction value change”
to quantify how much on average the prediction changes if the
covariate value changes. The average changes that represent the
importance of a given covariate are normalized to add up to 100.
The vertical distance to the closest water body (VDis) clearly
stands out as the most importance covariate in both models. At
locations with VDis close to zero, the water table is typically
also close to the surface. However, large VDis values, which
indicate small scale topographical variations often result in a
deeper water level, as the shallow groundwater does not follow
the topography in such settings. The most important categorical
covariate is the landscape type classification (LType) which
contains 13 landscape classes, such as moraine, marine plains,
outwash plains, and others. There is little difference between

winter and summer model, which indicates robustness between
the two models. Differences between covariate importance with
respect to the entire dataset and only well data conveys that the
horizontal distance to the closest water body (HDis) is mostly
relevant to the additional observations, namely lakes, rivers,
and coast, which is expectable as these are characterized with a
distance of zero. The physically-based model (PBM) stands out
as second most important covariate when only considering the
well-training dataset. This underlines that the physically-based
model can provide theMLmodel with a meaningful information,
despite the differences in spatial resolution, since both model the
same variable.

Uncertainty Analysis
Quantile regression has been applied in order to estimate the
uncertainties associated with the summer and winter models.
For both models, four quantile models have been trained using
the same hyper parameters as applied previously. The quantile
models were set with q = 0.16 and 0.84 for the 68% confidence
interval and q= 0.025 and 0.975 for the 95% confidence interval.
Results are shown in Figure 7 and were calculated on the basis
of the same 4-fold cross validation test as presented in Table 4.
Figure 7 only contains wells and data are sorted with respect
to the simulated groundwater depth and increase alongside an
increasing x-axis. The observations, 13,047 in total, are plotted
as a density plot and an overall good agreement between model
and observations can be attested to both, summer, and winter.
The blue envelope plots indicate the two confidence intervals
and following the quantile regression definition, 5% of the
observations are expected to be outside the light blue envelope
(95% confidence) and 32% are expected to be outside the dark
blue envelope (68% confidence). For both, the summer, and
winter model, the uncertainty increases with depth, which gets
supported by the large spread of observations for larger depths.
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FIGURE 4 | Simulation results for the depth of the uppermost water table obtained from the summer and winter model at 10m spatial resolution, left and center

panel, respectively. The right panel depicts the simulated amplitude calculated as summer depth minus winter depth.

Groundwater depths above 6m have an uncertainty of around 4
and 8m following the 68 and 95% confidence intervals.

Based on the 95% confidence interval, which reflects the
spread of ∼±2 standard deviations around the mean, a
map of the standard deviation at 10m spatial resolution has
been calculated. Overall, the relationship between the standard
deviation and the water table depth is nearly linear and the
coefficient of determination, expressed as the average standard
deviation over the average water table depth is 0.58. This indicates
that the uncertainty is roughly half of its water table depth value.
Figure 8 exemplifies the relationship between the simulated
depth of water table and the associated uncertainty (standard
deviation) for two soil types. In moraine clay soils, the depth
of the uppermost water table is typically in the top few meters,
whereas moraine sand soils are characterized with deeper water
tables. The coefficient of variation for the two soil types is 0.74
for moraine clay and 0.44 for moraine sand which underlines that
uncertainty is larger for moraine clay soils as opposed to moraine
sand soils. This can be expected given the distinct geological
heterogeneity in the moraine clay soils.

DISCUSSION

Training Dataset
The winter trainings dataset comprises all DJF water level
observations and JJA represents summer conditions. The median
was calculated in the case of multiple observations per well per
season. This approach introduces uncertainties since it rules
out inter-annual variability and further, variability within the
summer and winter seasons is also ignored. This compromise
was accepted in order to obtain a large trainings dataset of
groundwater observations. Large-scale groundwater datasets are
typically very heterogenous, which is especially the case for

FIGURE 5 | Same data as presented in Figure 4, but zoomed to an ∼15 km2

area located on the island of Fyn. The zoom location is indicated in the

overview map (bottom left).

the temporal dimension. The spatial density of wells may be
high, but the temporal resolution of water level observations
poses challenges to ML applications. Heterogeneity originates
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FIGURE 6 | Covariate importance quantified as prediction change in %

calculated for summer and winter model for two subsets of training data (all

data and well data only). The covariate abbreviations are explained in Table 2.

from varying frequencies and periods of observations. As an
example, around 66% of the 104,000 wells in Denmark have only
a single observation in the period of 1990–2019. In order to
capitalize on under sampled shallow wells in a big data context,
this study brings forward a knowledge-guided ML framework
that employs the simulated seasonality from a physically-based
groundwater flow model. With this augmentation strategy, the
training dataset could be expanded significantly from 1,378
shallow wells with both, summer and winter observations, to
13,047 with either gap-filled summer or winter observation.
Previously, Koch et al. (2019b) employed a temporal projection
of any given well observation to a representative extreme
winter condition using a simple sinusoidal model that was
fitted to numerous hydrogeological units. While this approach
was purely observational based it was limited to a few pre-
defined hydrogeological units whereas the knowledge-guided
framework presented herein made use of a spatially distributed
groundwater model that provides groundwater amplitudes, i.e.,
seasonality, at higher spatial detail. Further, the training dataset
was extended by groundwater proxy observations featuring lakes,
rivers, and coastline where the water table depth is expected
to be zero. These information were partly derived from expert
knowledge, which is another important aspect of the concept
of knowledge-guided ML, which has special relevance for the
data-scarce groundwater domain. The simulation results of the
physically-based groundwater model were employed to identify
wells that are representative for the shallow groundwater system,
i.e., representing the uppermost water table, by means of soil type
dependent threshold depths. This process step was essential to
train the ML against a homogenized well dataset and omitting
this would result in a dataset with well observations containing
water levels of different aquifer systems.

This study utilized a comprehensive set of 15 covariates to
predict water table variability. This selection has been guided
by a previous Danish study by Koch et al. (2019b). As an
additional covariate, satellite-based radar data, which have shown
to be sensitive to shallow water table dynamics within the first

couple of meters below surface (Bechtold et al., 2018), could
potentially be employed as a meaningful input to the future
developments of the framework presented in this study. Other
high resolution satellite data on land surface temperature or
shortwave infrared (obtained from e.g., Landsat) could provide
relevant information to differentiate moisture conditions in areas
where land use is constant and the water table is close to
the surface.

Temporal Resolution
This study implements a simplified temporal dimension of the
groundwater table, by simulating two seasons, namely a typical
winter and summer condition. These temporal snapshots are
of course a prude simplification of a variable that is known
to possess a distinct temporal variability. However, previous
studies that apply ML to model the spatial variability of the
water table have focused on a single time step; i.e., Koch et al.
(2019b) model an extreme wintertime condition and Fienen
et al. (2013) and Bechtold et al. (2014) focus on mean annual
conditions. ML applications that focus on time series modeling
of the water table are typically limited to a few wells with
complete time series of daily or monthly observations spanning
over several years (Sun et al., 2016; Guzman et al., 2017;
Wunsch et al., 2021). Such modeling techniques, which are
often based on deep learning due to its strengths in sequence
modeling, have not yet been rolled out to model the full spatio-
temporal variability of groundwater dynamics due to geological
complexity and data scarcity. Full spatio-temporal modeling
schemes would require thorough testing on how a dynamic
ML model can be transferred from one location to another.
This is especially challenging for the groundwater system as the
temporal water table variability depends on the geology and the
three-dimensional connectivity of the subsurface, which is often
poorly described by available data sources at larger scales. This
limitation favors the knowledge-guided ML approach where a
physically-based groundwater model is utilized to integrate all
subsurface data in a meaningful way to inform a ML model
on the effect of subsurface connectivity and geology on water
table dynamics.

Machine Learning Model
Overall, the accuracy of the trained ML model, which was
quantified by means of a 4-fold cross validation test, was very
satisfying and in the range of what is generally considered
very acceptable in groundwater flow modeling (Henriksen et al.,
2003). This underpins the applicability of gradient boosting
decision tree models to adequately represent complex, non-
linear variables, such as water table depth. The applied resulting
spatial resolution of 10m provides an insightful screening tool
for water management purposes, such as the risk assessment of
groundwater floods on agricultural fields or urban areas, which
are both very relevant for Danish applications. Such flooding
is typically very local and driven by small-scale variations of
topography and geology, which emphasizes the need for high-
resolution predictions to reliably tackle the related challenges.
At the national scale, a spatial resolution of 10m resolution
would not be feasible with conventional numerical modeling

Frontiers in Water | www.frontiersin.org 10 September 2021 | Volume 3 | Article 701726

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Koch et al. High Resolution Water Table Model

FIGURE 7 | Results of the 4-fold cross validation test for summer model (top)

and winter model (bottom). The simulated data are sorted, and the

observations are plotted as point density. Only well observations are shown in

the plot. Uncertainty bands are included for two confidence intervals.

tools, which promotes the versatile applicability of ML for
the groundwater domain. We believe that the input to the
trained ML model supports the applicability of the models
at 10m resolution. The covariate importance attested high
importance to the topography related covariates, which have
a native resolution of 40 cm and thereby supports the 10m
resolution of the ML model. This may only holds for the
uppermost water table. The given covariates will likely not
support a 10m ML model of deeper aquifers, that are less
topography controlled.

Results from a physically-based groundwater model were
incorporated in the ML model as explanatory variable and it
was shown that the importance of the 100m groundwater model
was the second highest with respect to the well observations.
This is satisfying as it issues consistency between the two
modeling approaches and underpins that the physically-based
model can guide the ML model. It has to be noted that
the wells used for training the ML model were also used
to calibrate the groundwater model. However, we believe
that reusing of data does not have any implications and
in the end, a resemblance between the groundwater model
and the ML model is also desirable. The most important
explanatory variable is the vertical distance to the nearest
waterbody, which indicates that the shallow groundwater system
is decoupled from small scale topographical variability. The
applied knowledge-guided ML framework is novel for the
groundwater domain and may be applicable to other regions
where results from a physically-based groundwater model are
available. Adding simulation results from hydrological models
into ML models has also been successfully applied for the

surface water system, i.e., predicting streamflow (Konapala
et al., 2020). There certainly exists various levels of knowledge-
guide ML strategies and augmenting data with simulation
data maybe considered the initial step. More advanced setups
may incorporate first principles or partial differential equations
that eventually alleviate data scarcity constraints and increase
interpretability of ML models.

We envision that the developed water table map can
support the planning of climate resilient infrastructure
design, with special focus on flooding or the planning of
rewetting of lowlands to reduce greenhouse gas emissions
from drained peatland soils. In contrast to conventional PBMs,
the ML proposed herein cannot be used to run modeling
scenarios (e.g., climate change or water management), but
our results can be used as a national scale screening tool
to identify areas where a PBM can subsequently be applied
to test relevant scenarios at high spatial resolution. The
ML based results reflect the current climate conditions
and if the impact of climate change of the uppermost
water table requires investigation, a PBM should be
applied instead.

Uncertainty Analysis
The quantile regression technique was used to estimate
uncertainty bounds. Uncertainty was quantified corresponding
to the 68 and 95% confidence intervals of the simulated water
table depth. We found that uncertainty generally increases with
depth and that the average coefficient of variation is 0.58,
indicating that the standard deviation is more than half of
the water table depth, but depends on the geological setting
with higher uncertainty for the complex moraine clay soils.
One known drawback of quantile regression is that it requires
individual training of each selected quantile, which can result in
an invalid distribution, meaning that the estimated quantiles are
not monotonically increasing (Bondell et al., 2010). This problem
is often referred to as “crossing quantiles” and different strategies
to overcome this limitation were proposed by López López et al.
(2014). Typically, crossing qualtiles occur more frequently close
to the median. For the estiamted water level quantiles in this
study we found that by selecting the 95% confidence intervals
(q = 0.025 and 0.975) crossing quantiles were not occured,
whereas this was partly the case for the 68% (q = 0.16 and 0.84)
confidence intervals.

Following the discussion provided by Vaysse and Lagacherie
(2017), quantile regression addresses where a prediction point
is located in the covariate space and how well it is constrained
by the available observations. In this way, quantile regression
can properly discriminate water level conditions of contrasted
physical complexities, of which some are better represented by
the training dataset than others. For the shallow groundwater
system, uncertainties could originate from the actual water
level observations in the wells, the augmentation strategy
using a physically-based groundwater model to gap-fill missing
summer or winter observations, or the fact that the training
dataset is processed for a 30-year period and inter-annual
variability has been ignored. In contrast, a physically-based
groundwater model allows more transparency, as erroneous
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FIGURE 8 | Density scatter plot showing the simulated depth of the

groundwater for moraine clay and sand soil against the associated standard

deviation (std.) for the winter model. Results are shown for two of the nine soil

types (Figure 1).

water-level observations will be marked as outliers in the
model evaluation. However, a flexible data-driven model will
incorporate such outliers as it seeks an unbiased representation
of all observations, which emphasizes the need for a careful
selection and pre-processing of the training data. Ultimately,
uncertainty can be reduced by expanding the training dataset
with high quality additional water level observations. Additional
explanatory variables could be an alternative strategy to
reduce uncertainty.

CONCLUSIONS

The study features a knowledge-guided ML model of the
uppermost water level at 10m spatial resolution at national scale
for Denmark. We have applied the gradient bosting decision
tree implementation of CatBoost to model a typical summer and
winter condition. The associated uncertainties were estimated
using quantile regression techniques. Predicting water levels
at 430 million grids is unfeasible with conventional dynamic
physically-based groundwater flow models, which highlights the
benefits of using alternative ML modeling approaches instead, to
reach unprecedented spatial detail. We draw the following main
conclusions from our work:

• The applied high resolution ML model could predict water
table variability with high accuracy. The MAE of well

observations was around 115 and 50 cm taking also the
groundwater proxy observations (lakes, rivers, and coastline)
into consideration.

• A physically-based groundwater flow model was successfully
incorporated into the model building to (1) select wells that
are representative for the shallow groundwater system, (2)
augment training data by accounting for simulated water level
seasonality, and (3) extend the list of explanatory variables.
This forms a novel application of knowledge guided ML for
the shallow groundwater domain.

• The water table depth was simulated for two temporal
snapshots (typical summer and winter). Future ML research
in the groundwater domain must focus on modeling the full
spatio-temporal variability of water table depth.
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