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Pathogen contamination of agricultural water has been identified as a probable cause

of recalls and outbreaks. However, variability in pathogen presence and concentration

complicates the reliable identification of agricultural water at elevated risk of pathogen

presence. In this study, we collected data on the presence of Salmonella and genetic

markers for enterohemorrhagic E. coli (EHEC; PCR-based detection of stx and eaeA)

in southwestern US canal water, which is used as agricultural water for produce. We

developed and assessed the accuracy of models to predict the likelihood of pathogen

contamination of southwestern US canal water. Based on 169 samples from 60 surface

water canals (each sampled 1–3 times), 36% (60/169) and 21% (36/169) of samples

were positive for Salmonella presence and EHEC markers, respectively. Water quality

parameters (e.g., generic E. coli level, turbidity), surrounding land-use (e.g., natural cover,

cropland cover), weather conditions (e.g., temperature), and sampling site characteristics

(e.g., canal type) data were collected as predictor variables. Separate conditional forest

models were trained for Salmonella isolation and EHEC marker detection, and cross-

validated to assess predictive performance. For Salmonella, turbidity, day of year, generic

E. coli level, and % natural cover in a 500–1,000 ft (∼150–300m) buffer around the

sampling site were the top 4 predictors identified by the conditional forest model. For

EHEC markers, generic E. coli level, day of year, % natural cover in a 250–500 ft (∼75–

150m) buffer, and % natural cover in a 500–1,000 ft (∼150–300m) buffer were the top 4

predictors. Predictive performance measures (e.g., area under the curve [AUC]) indicated

predictive modeling shows potential as an alternative method for assessing the likelihood

of pathogen presence in agricultural water. Secondary conditional forest models with

generic E. coli level excluded as a predictor showed <0.01 difference in AUC as

compared to the AUC values for the original models (i.e., with generic E. coli level included
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as a predictor) for both Salmonella (AUC = 0.84) and EHEC markers (AUC = 0.92).

Our data suggests models that do not require the inclusion of microbiological data (e.g.,

indicator organism) show promise for real-time prediction of pathogen contamination of

agricultural water (e.g., in surface water canals).

Keywords: Salmonella, E. coli, agricultural water, Arizona, produce safety, predictive modeling

INTRODUCTION

Salmonella spp. and pathogenic Escherichia coli (such as
enterohemorrhagic E. coli; EHEC) are common etiological
agents of foodborne outbreaks and recalls linked to produce
commodities. From 2004 to 2012, Salmonella has caused 71
and 40 outbreaks linked to produce in the United States (US)
and European Union (EU), respectively (Callejon et al., 2015).
During the same time frame, pathogenic E. coli have caused
46 and 7 outbreaks linked to produce in the US and EU,
respectively (Callejon et al., 2015). Both livestock and wildlife
have been identified as possible sources of Salmonella and
EHEC in preharvest produce environments (Delaquis et al., 2007;
Hanning et al., 2009), with fecal matter from livestock operations
being a known source of foodborne pathogens in surface water
(Lu et al., 2004; Delaquis et al., 2007; Hanning et al., 2009).
As such, application of surface waters to in-field produce has
been identified as a potential route for pathogen contamination
of produce (Mootian et al., 2009; Park et al., 2012; Castro-
Ibanez et al., 2015; Liu et al., 2018). In fact, several outbreaks
are thought to have been caused by application of contaminated
water to preharvest produce (U. S. Centers for Disease Control
Prevention, 2006, 2018a,b; Greene et al., 2008), including a 2018
E. coli O157:H7 outbreak linked to romaine lettuce grown in
Arizona, which caused 210 illnesses and 5 deaths (U. S. Centers
for Disease Control Prevention, 2018b).

While enteric pathogens, such as EHEC and Salmonella, are
known surface water contaminants, they are present sporadically
and at low levels, complicating detection and limiting the
value of testing surface water for pathogens (Jamieson et al.,
2004; Pachepsky et al., 2011). Instead, monitoring programs
often test for indicator organisms, which are used to assess
the hygienic quality of water and the likelihood of fecal
contamination; indicator organisms include enterococci, fecal
coliforms, and generic E. coli (Jamieson et al., 2004; Pachepsky
et al., 2011). E. coli is used as an indicator for monitoring fecal
contamination in agricultural water by industry agreements and
by government regulations (Tam and Petersen, 2014; U. S. Food
Drug Administration, 2015; California Leafy Greens Marketing
Agreement, 2020; Freshcare, 2020); see Table 1 for details.

There are however several drawbacks to using generic E. coli as
an indicator of fecal contamination for surface water (Pachepsky
et al., 2016;Wall et al., 2019).While some studies have established
associations between generic E. coli levels and pathogen presence
(Holvoet et al., 2014; Lopez-Galvez et al., 2014; Stea et al., 2015;
Bradshaw et al., 2016; Truchado et al., 2018; Weller et al., 2020b),
several studies have not shown similar associations (Haley et al.,
2009; Shelton et al., 2011; Benjamin et al., 2013; Falardeau et al.,

2017). E. coli has also been shown to survive for extended periods
of time in the preharvest environment (Lu et al., 2004; Franz et al.,
2014; Allende et al., 2018); therefore, a high level of generic E. coli
does not necessarily indicate recent fecal contamination. High
levels of indicator organisms also do not necessarily indicate the
presence of pathogens, and alternatively, the absence or low levels
of indicator organisms do not necessarily indicate the absence
of pathogens (Haley et al., 2009; Shelton et al., 2011; Benjamin
et al., 2013; Stea et al., 2015; Falardeau et al., 2017). Lastly,
generic E. coli testing takes ∼24 h to complete and generic E.
coli levels in surface waters can vary substantially over short time
periods (Lothrop et al., 2018; Weller et al., 2020b); therefore, it is
impossible to know the generic E. coli level in irrigation water at
the time of its application.

Two previous studies have proposed the use of machine
learning models for predicting pathogen presence in agricultural
water; Weller et al. (2020c) utilized machine learning models
to predict Salmonella presence and EHEC marker detection
in New York streams and Polat et al. (2020) utilized machine
learning models to predict Salmonella presence in Florida ponds.
While previous studies have explored the use of machine
learning models for predicting pathogen contamination in
specific produce growing areas, further model development is
essential to verify that machine learning represents a viable
approach in different locations and types of surface waters. We
thus collected data on surface water quality and used several
approaches, including machine learning, to model the presence
enteric pathogens in southwestern US canal water. Regression
was used as a preliminary assessment to determine which
variables were associated with pathogen presence. Conditional
forest models were used for prediction because they can utilize
large numbers of predictors and better able to handle complex
and messy data than regression models (Kuhn and Johnson,
2013). While modeling alone will not improve the safety of
produce, these models can indicate when corrective actions
(e.g., water treatments) should be applied to reduce the risk of
recalls and illnesses associated with produce (Savichtcheva et al.,
2007; Allende and Monaghan, 2015). The southwestern US was
selected for this study, because (i) it is a major produce growing
region, (ii) there has been a high-profile outbreak associated
with romaine lettuce contamination linked to irrigation water,
and (iii) there is limited information on microbial quality of
southwestern US canals (Lothrop et al., 2018; Weller et al.,
2020b). As such, the specific objectives of this study were to (i)
identify land use, water quality, weather, and other sampling site
specific variables associated with Salmonella presence and EHEC
marker detection (i.e., stx and eaeA detection) in southwestern
US canal water, (ii) determine the feasibility of predicting the
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TABLE 1 | Microbial quality requirements or regulations established in different countries or regions for agricultural water applied to pre-harvest produce.

Region Organization Requirement References

United Statesa US FDA 20 water samples over a 2–4-year period must be collected: (i)

geometric mean of <126 CFU generic E. coli/ 100ml and (ii) a

statistical threshold value (i.e., the 90th percentile) of <410 CFU

generic E. coli/ 100mL

21C.F.R. § 112.44,

2019

Europe European Union <100 CFU generic E. coli/100ml of waterc European Commission,

2017

British Columbia,

Canada

British Columbia

Ministry of Agriculture

<77 CFU generic E. coli/100ml of waterc Tam and Petersen,

2014

Australia Freshcare <100 CFU generic E. coli/ 100ml of waterc Freshcare, 2020

California and

Arizona (leafy

greens only)b

Leafy Greens Marketing

Agreement (LGMA)

Furrow irrigation or overhead irrigation applied >21 days prior to

harvest: 100ml of water should be collected at least monthly and the

rolling geometric mean of the generic E. coli levels in the 5 most recent

samples must be <126 CFU/100ml and no sample may have an E.

coli level >576 CFU/100ml.

Overhead irrigation applied <21 days prior to harvest: generic E. coli

should not be detected in the water.

California Leafy Greens

Marketing Agreement,

2020

aAs of January 2021, this policy is not being enforced and is currently under review (U. S. Food Drug Administration, 2015). This requirement is established under the Food Safety

Modernization Act (FSMA).
bThis is a voluntary agreement.
cNo sampling scheme for water collection is specified in this regulation.

likelihood of Salmonella presence and EHECmarker detection in
southwestern US canal water, and (iii) determine if only real-time
variables (i.e., no microbial testing) can be used to predict the
likelihood of Salmonella presence and EHEC marker detection.

MATERIALS AND METHODS

Experimental Design
A longitudinal study was conducted to assess agricultural water
quality in the southwestern US. Water was sampled from 60
canals that provide water for irrigation from January 30th to
November 19th, 2018; sampling was performed approx. twice
a week every 1–2 weeks except in July when no sampling was
performed (see Supplementary Figure 1 for the exact sampling
dates). Each canal was sampled 1–3 times for a total of 169
samplings; all samples from a given canal were collected at the
same site. Sampling sites were randomly selected from irrigation
districts where produce was grown and where permission was
given using ArcGIS. Ground truthing was then performed to
identify a location as close as possible to the randomly generated
GPS coordinates for each site. A site survey was conducted
to collect information on features present at a given site (see
Supplementary Table 1).

Sample Collection and Processing
At each sampling, two 10 L water samples (one per pathogen) and
1 L of water (for enumeration of E. coli and turbidity levels) were
collected. Dissolved oxygen, pH, conductivity, and temperature
of the canal water were measured using a Hach HQ40d meter
(Loveland, CO, United States). Water surface flow was measured
using the float method as described by Gore and Banning (2017).
After collection, all samples were put on ice until processing.
The 10 L samples were processed <18 h after collection and the

1 L sample for E. coli level and turbidity was processed <6 h
after collection.

Laboratory testing of all samples was performed as described
in Weller et al. (2020b). Briefly, generic E. coli enumeration was
performed on a 100ml aliquot of the 1 L sample using the Colilert
Quanti-Tray 2000 kit (IDEXX, Westbrook, ME, United States),
according to themanufacturer’s instructions.Water turbidity was
measured using the Hach 2100Q Portable Turbidimeter. The 10 L
water samples were processed using the modified Moore swab
(mMS) method (Sbodio et al., 2013). Each water sample was
gravity-filtered through a separate mMS, placed in a separate
Whirl-Pak bag (Nasco, Fort Atkinson, WI, United States), and
processed as described below for either Salmonella presence or
EHEC marker detection.

Salmonella Isolation
Briefly, 225ml of buffered peptone water with 20 mg/L
novobiocin (BPW+N) was added to the Whirl-Pak bag
with the mMS, followed by incubation at 35◦C for 24 h.
BPW+N inoculated with Salmonella Typhimurium (FSL F6-
0826; http://www.foodmicrobetracker.com) and uninoculated
BPW+N were included as positive and negative controls,
respectively. Following incubation, a 1ml aliquot of the
enrichment was transferred to a sterile tube and was shipped
overnight on ice to Cornell University for further processing.
Upon arrival, all enrichments were used within 2 h for a
Salmonella screen using the BAX real-time Salmonella assay
(Hygiena, Wilmington, DE, United States). BAX PCR-positive
samples were culture confirmed. 1 and 0.1ml of the BPW+N
enrichment were added to 9ml of tetrathionate broth (TT;
Oxoid) supplemented with 200µl of I2-KI and 100µl of Brilliant
Green and 9.9ml of Rappaport Vassiliadis broth (RV; Acros
Organic, Geel, Belgium), respectively. The TT and RV broth were
incubated in a shaking water bath at 42◦C for 24 h. Following
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FIGURE 1 | Variable importance values for the Salmonella conditional forest model with generic E. coli included as a predictor. Only the top 10 predictors are included

and are listed from most to least important.

incubation, 50 µl of each broth were streaked onto Salmonella
CHROMagar (DRG International, Springfield, NJ, United States)
and xylose lysine deoxycholate agar (XLD; Neogen, Lansing,
MI, United States) plates (i.e., 1 plate for TT on CHROMagar,
1 plate for TT on XLD, 1 plate for RV of CHROMagar, and
1 plate for RV on XLD). The CHROMagar and XLD plates
were then incubated at 37 and 35◦C, respectively, for 24 h. After
incubation, PCR of the invA gene was performed on presumptive
Salmonella colonies according to the protocol described by Kim
et al. (2007). If possible, 2 characteristic Salmonella colonies per
media type (mauve colonies on CHROMagar and black colonies
on XLD) were selected for PCR (4 colonies in total). If no
characteristic colonies were present, up to 12 non-characteristic
colonies were selected for PCR (blue colonies on CHROMagar
and red colonies on XLD). All isolates were stored as 15% glycerol
stocks at−80◦C.

EHEC Marker Detection
PCR-based detection of stx and eaeA from the mMS was
performed. 225ml of tryptic soy broth with 10 g/L casamino
acids and 8 mg/L of novobiocin (TSB+N) was added to the
Whirl-Pak bag with the mMS, followed by incubation at 41◦C
for 24 h. TSB+N inoculated with E. coli O157:H7 (FSL F6-0699;
http://www.foodmicrobetracker.com) and uninoculated TSB+N
were included as positive and negative controls, respectively.
Following incubation, a 1ml aliquot of the enrichment was
shipped overnight on ice to Cornell University for further
processing. All enrichments were used within 2 h of arrival to
perform a PCR screen using the BAX real-time Shiga-toxin
producing E. coli (STEC) assay (Hygiena) according to the
manufacturer’s instructions to determine if the eaeA and/or
stx1/2 genes were present in the sample. If both eaeA and stx1/2
were detected in a sample, the sample was classified as positive for

“EHEC markers.” However, such results could indicate either (i)
both genes were present in a single organism (indicating presence
of EHEC) or (ii) genes were present in separate organisms (e.g.,
eaeA indicates enteropathogenic E. coli presence, stx1/2 indicates
STEC presence).

Land Use Data Collection
Land use data around the sampling sites were extracted from
the 2016 National Land Cover Database (NLCD; https://www.
mrlc.gov/) and quantified using ESRI ArcGIS Pro 2.4.0. The
percentage of land under (i) developed open space, (ii) developed
(combines low-, medium-, and high-intensity developed cover),
(iii) barren, (iv) natural (combines forest and wetland), (v)
pasture/ hay, and (vi) crop cover at various intervals around
each sampling site were calculated (Yang et al., 2018). The
intervals considered were: <250 ft (< ∼75m), 250–500 ft (∼75–
150m), 500–1,000 ft (∼150–300m), 1,000–5,000 ft (∼300–
1,525m), and 500–10,000 ft (∼1,525–3,050m). These buffer
areas were selected, as they most closely represent the distances
included in the California and Arizona Leafy Green Marketing
Agreements Food Safety Practices (California Leafy Greens
Marketing Agreement, 2020) metrics; while it would have been
useful to characterize land use directly adjacent to the canals, an
accuratemap of the canal networks was not available for the study
area. The number of concentrated animal feeding operations (i.e.,
an animal feeding operation with >1,000 animal units confined
on a site for more than 45 days of the year; CAFOs) within 10,000
ft of each site was also calculated.

Weather Data Collection
Temperature, solar radiation, precipitation, wind speed, and
vapor pressure data were obtained from theUniversity of Arizona
(cals.arizona.edu/AZMET/). ESRI ArcGIS Pro 2.4.0 was used
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to identify the weather station closest to each of the sampling
sites. Weather data were cleaned in R version 4.0.0 (R Core
Team, 2021) and used to calculate weather at the time of sample
collection and for the (i) 0–12 h, (ii) 12–24 h, (iii) 1–2 days, and
(iv) 2–3 days prior to sample collection. Due to the small amount
of precipitation during the study, all precipitation variables were
converted to a binary factor to indicate if there was precipitation
(>0mm) or if there was no precipitation (=0 mm).

Regression Analysis
All data cleaning, visualization, and analyses were performed in
R (R Core Team, 2021). A description of all variables used in
analyses are provided in Supplementary Table 1. All analyses
were performed separately for Salmonella presence and EHEC
marker detection. Logistic regression was used as a preliminary
assessment to characterize associations between site specific (i.e.,
data on features present at each site, see Supplementary Table 1

for details), water quality, land-use, and weather variables and
Salmonella presence and EHEC marker detection. Conditional
forest analysis was used to determine if these variables could be
used to predict Salmonella presence or EHEC marker detection.

For logistic regression, normalization and scaling of all
numeric variables was performed using the “caret” package
(Kuhn, 2020). Univariable logistic regression was performed,
using the “lme4” package (Bates et al., 2015), to determine which
of the explanatory variables listed in Supplementary Table 1

were associated with Salmonella and EHECmarker presence. The
day of year (number of days since Jan 1st) and irrigation district
were included in each univariable model as random effects
to account for temporal and spatial autocorrelation. Following
univariable regression, continuous variables with P<0.1 were
included in a principal component analysis (PCA) for variable
reduction. PCA was performed using the prcomp function, such
that the number of components retained must explain ≥90%
of the variation in the data and each retained variable could
only have major loading on one principal component. PCA was
performed separately for Salmonella and EHECmarker presence.
One representative continuous variable from each principal
component, as well as all categorical variables significant at
P < 0.1 by univariable analysis (categorical variables cannot
be included in PCA) were included in the initial multivariable
logistic regression models (implanted using the “lme4” package;
Bates et al., 2015). Day of year and irrigation district were
included each multivariable model as random effects. Backwards
selection based on AIC (Akaike Information Criterion) was
performed; the final selected model was the simplest model with
an AIC value that was at least 2 less than the next simplest
model. Model fit was assessed using the protocol described
by Beauvais et al. (2018) to determine if model assumptions
were met. Variance inflation factors were also calculated to test
for multicollinearity.

Conditional Forest Analysis
Conditional forest analysis was used to determine if sampling
site, water quality, land-use, and weather variables could be used
to predict Salmonella presence and EHEC marker detection,
as it can handle missing data, skewed data, and is robust to

small sample sizes. Imputation could not be performed because
>10% of observations were missing for some variables, and so
imputation could introduce bias into the results. No additional
machine learning algorithms were tested, as a comprehensive
comparison of 23 learners for predicting enteric pathogen
presence in New York streams found that conditional forest
models performed well for the type of data used in the study
presented here (Weller et al., 2020c). The “mlr” (Bischl et al.,
2016) and “party” (Hothorn et al., 2006; Strobl et al., 2007,
2008) packages were used for model training and testing.
Oversampling was performed to account for imbalanced training
data. Repeated (5 iterations) 5-fold cross-validation was used to
tune hyperparameters (i.e., mtry, minbucket, and mincriterion)
to maximize AUC (area under the curve) and minimize
overfitting. For each forest, 20,001 trees were fit. Following
hyperparameter tuning, models were trained, and model testing
was performed. While a separate testing data set would have
been preferable to better evaluate the predictive performance of
these models, one was not available. Instead, cross-validation was
performed as part of model training to estimate performance
measures. Variable importance scores were calculated (Strobl
et al., 2007, 2008) and partial dependence plots were fit for the 4
top-ranked variables for each pathogen. While using conditional
importance scores would have been preferable to account for
correlation between variables, it could not be calculated due
to missing data (>10% of observations were missing for some
variables); as a result, the variable importance scores reported
here may be biased by this correlation. Even with this limitation,
we determined conditional forest was a good option in this case
due to its ability to handle a large number of predictors and small
sample sizes.

We also evaluated if the inclusion of generic E. coli levels as
an input variable would substantially improve the performance
of the conditional forest models. To do so, separate conditional
forest models were re-run (one per pathogen) as described above
but excluding generic E. coli level as a predictor. Performance
measures were used to compare the models that included and
excluded E. coli levels.

All models presented here, were developed as a proof of
concept. As such, these models should not be used to guide
on-farm decision making, and instead should be used as a
starting point for the development of field-ready models (i.e.,
that can be used by stakeholders to predict pathogen presence
in agricultural water) as part of future studies (e.g., using larger
datasets, validated using an independent test dataset).

RESULTS

General Water Quality
In total, 169 samples were collected between January 30th and
November 19th, 2018 from 60 canals; each canal is referred to as
a “site.” The sites were within an ∼28,000 km2 area representing
9 irrigation districts. On average, the majority of land in the
10,000 ft surrounding the sites was classified as cropland or
natural cover (Supplementary Table 3). The mean generic E. coli
level in the water samples was 1.4 log10 MPN/100ml (standard
deviation = 0.7 log10 MPN/100ml) and the mean turbidity in
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the water samples was 32.7 NTU (standard deviation = 92.7
NTU); similar statistics for other variables can be found in
Supplementary Tables 2–4.

Pathogen Testing Results
The overall prevalence of Salmonella was 36% (60/169). Of the
60 sites, 20 were Salmonella negative on all samplings, however,
2 of those sites were only sampled once. Conversely, 9 sites were
positive on all samplings; (1, 5, and 3 of these sites were sampled
1, 2, and 3 times, respectively). The overall prevalence of EHEC
markers (i.e., both stx1/2 and eaeA) in the water samples was
21% (36/169). Thirty-three sites were negative for EHECmarkers
on all samplings, however, 3 of those sites were only sampled
once. Conversely, 2 sites were positive on all samplings for EHEC
markers (both sites were sampled 3 times).

Regression and Conditional Random
Modeling of Salmonella Contamination
Multivariable regression was used to determine which variables
were associated with Salmonella presence. The percent of
developed open space (e.g., large-lot single family homes, golf
courses, parks) in the 1,000–5,000 ft buffer area and precipitation
1–2 days before sample collection were the only variables retained
in the final model. The percent of developed open space in the
1,000–5,000 ft buffer area was negatively associated with the log-
odds of a sample being Salmonella-positive (P = 0.036, Table 2).
Rain 1–2 days before sample collection was positively associated
with the log-odds of a Salmonella positive sample (P = 0.015,
Table 2). Results of univariable regression and PCA are detailed
in Supplementary Table 5.

In addition to multivariable regression, we performed
conditional forest analysis to predict Salmonella presence. The
10 top-ranked predictors included (i) three predictors related
to natural cover, (ii) three weather-related predictors, (iii) two
water quality related predictors, (iv) one temporal predictor, and
(v) one sampling site predictor (Figure 1). Only “precipitation
1–2 days before sampling,” was also retained in the final
multivariable regression model and included in the 10 top-
ranked predictors by the forest (Figure 1). While not retained
in the multivariable regression analysis, several of the 10 top-
ranked predictors in the conditional forest were significant
according to univariable regression (Supplementary Table 5).
Given that conditional forest is better able to handle complex
(e.g., interactions between features) and messy (e.g., missing
data) data than regression, these differences are not unexpected
(see Weller et al. 2020c for more information). Partial
dependence plots were fit to visualize the relationship between
the 4 top-ranked predictors in the conditional forest model
(Figure 2), which were, in order, turbidity, day of year, generic
E. coli level, and percent natural cover in the 500–1,000 ft
buffer area.

The AUC (area under the curve) and kappa score for
the Salmonella conditional forest model were 0.84 and 0.51,
respectively (Table 3). When the probability threshold was set to
0.5 (i.e., to label a sample as positive, the predicted probability of
that sample being positive for Salmonellamust be 0.5 or greater),
the sensitivity, specificity, positive likelihood ratio, and negative
likelihood ratio were 0.69, 0.82, 3.83, and 0.38, respectively.

The sensitivity of 0.69 indicates there is a 0.31 false negative
rate, or 31% of the time the model will predict a sample as
being negative for Salmonella when it is truly positive. Since the
model predicts the probability of Salmonella being present in
a sample (i.e., a continuous outcome), a probability threshold
is needed to dichotomize the predicted pathogen status as
positive or negative (Table 2). If a binary outcome (as opposed
to the continuous outcome generated by the forest algorithm)
is needed when applying a predictive model, sensitivity and
specificity can be adjusted by changing the threshold value
(Table 4). For instance, if the threshold value was set at 0.4,
the sensitivity, specificity, positive likelihood ratio, and negative
likelihood ratio would be 0.78, 0.71, 2.70, and 0.31, respectively
(Table 4).

Regression and Conditional Random
Modeling of EHEC Marker Presence
Generic E. coli level, precipitation 12–24 h before sample
collection, if there was a point of discharge (i.e., there was ground
water well discharge into the canal) visible from the site, and if
there was a road crossing visible from the site were retained in
the final EHEC regression model (Table 2). Generic E. coli level
(P< 0.001) and precipitation 12–24 h before sample collection (P
= 0.007) were positively associated with the log-odds of EHEC
marker detection (P < 0.001). A point of discharge and a road
crossing visible from the site were negatively associated with the
log-odds of EHEC marker detection.

A conditional forest model was also fit to predict EHEC
marker detection. The top 10 ranked predictors included
(i) six land cover predictors (five related to natural cover),
(ii) one weather predictor, (iii) two water quality predictors,
and (iv) one temporal predictor (Figure 3). While generic E.
coli level and precipitation 12–24 h before sample collection
were included in the 10 top-ranked predictors in the forest
model, the presence of a point of discharge and road crossing
adjacent to the sampling sites were not among the 10 top-
ranked predictors in the forest (Figure 3). For the EHEC
forest, partial dependence plots were fit for the 4 predictors,
which were (i) generic E. coli level, (ii) day of year, (iii)
percent of natural cover in the 250–500 ft buffer area, and
(iv) percent of natural cover in the 500–1,000 ft buffer area
(Figure 4).

The AUC and kappa score for the EHEC forest were 0.92
and 0.66, respectively (Table 3). The sensitivity, specificity,
positive likelihood ratio, and negative likelihood ratio were
0.78, 0.88, 6.27, and 0.25, respectively for the EHEC marker
model at a threshold value of 0.5 (Table 4). As with the
Salmonella forest, changing the threshold value could improve
performance measures that rely on dichotomizing the predicted
probability of EHEC marker detection (e.g., sensitivity;
Table 4).

Performance of Models That Do Not
Include Generic E. coli Levels as a
Predictor
To determine if including generic E. coli levels in the conditional
forest models substantially improved predictive performance,
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TABLE 2 | Results of mixed effects regression modelsa that characterize the relationship between pathogen detection (Salmonella presence and EHEC marker detection)

and environmental variables (e.g., land use, weather, sampling site characteristics, and water quality factors).

Outcome Variableb Log odds 95% CIc

Salmonella presence Intercept −0.9 (−3.2, 0.8)

% Developed (open) Cover, 1,000–5,000 ft Buffer −0.5 (−1.0, −0.1)

Precipitation, 1–2 days (Yes)d 3.5 (1.0, 7.0)

EHEC marker Intercept 0.3 (−2.3, 1.1)

E. coli level (log10 MPN/ 100ml) 1.7 (1.0, 2.6)

Point of Discharge Present (Yes)e −1.8 (−4.0, −0.1)

Road Crossing Present (Yes)f −1.8 (−3.5, −0.3)

Precipitation, 12–24 h (Yes)d 3.7 (1.2, 6.7)

aThe day of year and irrigation district were included in the models as random effects.
bFor the Salmonella presence model, the residual variance and standard deviation for the day of year are 0.7302 and 0.8545, respectively, and the residual variance and standard

deviation for the irrigation district are 2.9023 and 1.7036, respectively. For the EHEC maker model, the residual variance and standard deviation for the day of year are 0.8895 and

0.9431, respectively, and the residual variance and standard deviation for the irrigation district are 0.1269 and 0.3562, respectively.
c95% CI, 95% confidence interval.
d Indicates if there was precipitation in the time frame specified before sample collection. Baseline is no precipitation.
e Indicates if a point of discharge (i.e., ground water well discharge into the canals) is present adjacent to the sampling site. Baseline is no point of discharge.
f Indicates if a road crossing is present adjacent to the sampling site. Baseline is no road crossing.

FIGURE 2 | Partial dependence plots for the 4 top-ranked predictors according to variable importance in the Salmonella conditional forest model with generic E. coli

included as a predictor; The plots indicate how the predicted probability of a water sample being positive for Salmonella presence changes as the x-axis variable

(predictor) changes. The tick marks along the x-axis indicate values of the predictor variable in samples used to fit the conditional forest model.

we re-ran the forest models without generic E. coli level
as a predictor (see Supplementary Figures 2–5 for variable
importance and partial dependence plots). There were no
substantial differences in performance between the models with
and without generic E. coli included as a predictor (Table 3).
For instance, the AUC values were 0.84 and 0.83 for the
Salmonella forests that included and excluded generic E. coli
levels, respectively. Similarly, the AUC values were 0.92 and 0.91
for the EHEC forests that included and excluded generic E. coli
levels, respectively.

DISCUSSION

The current study assessed Salmonella presence and EHEC

marker detection in southwestern US canals used for agricultural

water. Regression was used to identify associations between

environmental conditions and Salmonella presence and EHEC
marker detection. The data were also utilized to determine if

forest-based models were a feasible approach for predicting
Salmonella presence and EHEC marker detection in canals.
While these models were developed as a proof of concept,
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TABLE 3 | Performance measures for the conditional random forest models displaying the relationship of the pathogen detection outcomes (Salmonella presence and

EHEC marker detection) with the land use, weather, sampling site characteristics, and water quality predictors with generic E. coli level included and excluded as a

predictor.

Outcome E. colia AUCb Kappac Sensitivityd Specificityd LR+
d,e LR-d,f DORg (95% CIh)

Salmonella Yes 0.84 0.51 0.69 0.82 3.83 0.38 10.06 (7.38, 13.70)

No 0.83 0.49 0.69 0.80 3.44 0.39 8.82 (6.52, 11.94)

EHEC marker Yes 0.92 0.66 0.78 0.88 6.27 0.25 25.19 (18.27, 34.72)

No 0.91 0.63 0.78 0.85 5.25 0.26 20.54 (15.07, 27.98)

a Indicates if E. coli level (log10MPN/100ml water) was included (Yes) or not (No) as a variable in the forest.
bAUC, area under the receiver operating characteristic curve.
cKappa score (a measure of agreement between the observed outcome and the predicted outcome; a value of 1 is indicative of perfect agreement and a value of 0 is indicative of an

agreement no greater than that of chance).
dMeasure is biased by the decision threshold used.
eLR+, positive likelihood ratio (the likelihood of a predicted pathogen presence when a pathogen is present compared to the likelihood of a predicted pathogen presence when a

pathogen is absent).
fLR–, negative likelihood ratio (the likelihood of a predicted pathogen absence when a pathogen is present compared to the likelihood of a predicted pathogen absence when a pathogen

is absent).
gDOR, diagnostic odds ratio (the ratio of the odds of a predicted pathogen presence if the pathogen is present to the odds of a predicted pathogen presence if the pathogen is absent).
h95% CI, 95% confidence interval.

TABLE 4 | Differences in performance measures for the conditional forest models displaying the relationship of the pathogen detection outcomes (Salmonella presence

and EHEC marker detection) with the land use, weather, sampling site characteristics, and water quality predictors with generic E. coli level included and excluded as a

predictora.

Outcome E. colib Threshold Sensitivity Specificity LR+
c LR–d

Salmonella presence Yes 0.5 0.69 0.82 3.83 0.38

0.4 0.78 0.71 2.70 0.31

0.3 0.86 0.58 2.07 0.23

No 0.5 0.69 0.80 3.44 0.39

0.4 0.78 0.72 2.82 0.30

0.3 0.87 0.61 2.23 0.21

stx/ eaeA co-detection Yes 0.5 0.78 0.88 6.27 0.25

0.4 0.83 0.82 4.72 0.20

0.3 0.93 0.73 3.40 0.10

No 0.5 0.78 0.85 5.25 0.26

0.4 0.88 0.75 3.50 0.16

0.3 0.95 0.65 2.67 0.08

aThreshold value indicates the predicted probability a sample must be greater than to be labeled as a positive sample.
b Indicates if E. coli level (log10MPN/100ml water) was included (Yes) or excluded (No) in the model as a possible predictor.
cLR+, positive likelihood ratio (the likelihood of a predicted pathogen presence when a pathogen is present compared to the likelihood of a predicted pathogen presence when a

pathogen is absent).
dLR–, negative likelihood ratio (the likelihood of a predicted pathogen absence when a pathogen is present compared to the likelihood of a predicted pathogen absence when a pathogen

is absent).

they provide a conceptual framework on which future work
(development of models that can be integrated into on-farm
decision-making) can build. Our results can also be used to
identify factors important for predicting pathogen presence in
southwestern US canal water to guide future data collection to be
used to provide maximum value for the refinement of predictive
models that can be deployed for industry use.

Salmonella and EHEC Marker Prevalence
Salmonella has been isolated from flowing surface water sources
in both this and previous studies (Duffy et al., 2005; Haley et al.,
2009;Wilkes et al., 2009, 2011; Benjamin et al., 2013; Strawn et al.,
2013a,b; Cooley et al., 2014; Stea et al., 2015; Bradshaw et al.,

2016; Falardeau et al., 2017; Tian et al., 2017; Partyka et al., 2018;
Truchado et al., 2018; Weller et al., 2020a,b). While Salmonella
prevalence varied widely between these studies, the Salmonella
prevalence reported here (36%) falls within the range reported
by these previous studies, which was between 3% (6/223) (British
Columbia, Canada; Falardeau et al., 2017) and 76% (80/105)
(Georgia, USA; Bradshaw et al., 2016).

While several studies have attempted to assess the prevalence
of EHEC or different EHEC subgroups (e.g., E. coli O157)
in surface water, the specific methodologies used can have
a considerable impact on prevalence estimates. Some studies
reported the percent of culture-confirmed EHEC or STEC
positive samples (Wilkes et al., 2009, 2011; Benjamin et al.,
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FIGURE 3 | Variable importance values for the EHEC marker conditional forest model with generic E. coli included as a predictor. Only the top 10 predictors are

included and are listed from most to least important.

FIGURE 4 | Partial dependence plots for the 4 top-ranked predictors according to variable importance in the EHEC marker conditional forest model with generic

E. coli included as a predictor; the plots indicate how the predicted probability of a water sample being positive for EHEC marker detection changes as the x-axis

variable (predictor) changes. The tick marks along the x-axis indicate values of the predictor variable in samples used to fit the conditional forest model.

2013; Strawn et al., 2013a; Cooley et al., 2014; Tanaro et al.,
2014; Nadya et al., 2016; Falardeau et al., 2017; Tian et al.,
2017; Partyka et al., 2018; Truchado et al., 2018; Haymaker
et al., 2019), others solely relied on PCR screens for either O157
markers (Stea et al., 2015) or EHEC markers (Shelton et al.,
2011; Bradshaw et al., 2016; Weller et al., 2020a,b), such as the
study reported here. Regardless, most of these previous studies

that assessed EHEC in running surface waters have reported
lower prevalence than found here (21%). For example, the EHEC
prevalence ranged from <1% (5/818) (Ontario, Canada; Wilkes
et al., 2009) to 19% (63/330) (British Columbia, Canada; Nadya
et al., 2016); both studies utilized culture confirmed EHEC
results. While the higher EHEC prevalence in the current study
could be due to a truly higher prevalence, the use of a PCR
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screen for stx and eaeA in a single sample without culture
confirmation may overestimate the prevalence of EHEC, as this
method may (i) detect stx and eaeA in different organisms
and (ii) may detect genetic material from dead organisms. The
lower prevalence of EHEC in previous studies that used culture
confirmation is also likely explained by the lack of reliable EHEC
culture-conformation methods which can underestimate its true
prevalence (Muniesa et al., 2006; Bettelheim, 2007; Baker et al.,
2019).

The Complexity of Relationships Observed
Was Dependent on the Analytical Approach
Two modeling approaches were utilized, including (i)
multivariable regression to identify associations between
environmental variables and Salmonella presence and EHEC
marker detection, and (ii) conditional forest to develop models
to predict Salmonella presence and EHEC marker detection.
For both Salmonella presence and EHEC marker detection,
there were several differences in the variables retained in the
regression models and the variables ranked as important by the
forests, even though there are some overlaps between important
variables between the modeling strategies. This highlights
the fact that different modeling strategies are able to detect
different relationships in the data (Kuhn and Johnson, 2013). For
instance, regression relies on the assumption that there is a linear
relationship between independent variables and the log-odds of
the dependent variable being detected, and therefore, non-linear
relationships cannot be detected. In addition, logistic regression
cannot handle a large number of independent variables
simultaneously (requiring variable selection before model
development), missing data, or correlated variables, and can only
account for a limited number of interactions. In comparison,
conditional forest utilizes tree-based modeling which does
not require the same linear assumption to be met, implicitly
accounts for hierarchical relationships and interactions in the
data, and can handle missing data, large numbers of independent
variables, and correlation. For example, some variables were
important by univariable regression but could not be included
in final multivariable regression models because they loaded
on more than 1 principal component (e.g., percent of natural
cover around the sampling site for the Salmonella model). PCA
is one strategy used for variable selection in regression analysis,
as regression analysis is unable to handle overly complex models
(see Kuhn and Johnson, 2013 for additional variable reduction
strategies). On the other hand, variable selection is incorporated
into the conditional forest algorithm and as such is better able
to capture the complex relationships inherent to environmental
data (Weller et al., 2020b). However, regression-based analysis
does have its advantages, especially for hypothesis testing of
the relationships between specific, independent variables and
the outcome. Regression models are more interpretable than
forests, making it easier to understand the relationships in a
regression as opposed to forest models (Kuhn and Johnson,
2013).

Only precipitation 1–2 days before sampling was included
among the 10 top-ranked predictors in the Salmonella forest

and retained in the final regression model. Several other studies
also found an increased likelihood of Salmonella detection
following rain events (Haley et al., 2009; Wilkes et al., 2009;
Liang et al., 2013; Stea et al., 2015; Weller et al., 2020a). For
instance, in a survey of surface water in Georgia, USA, Haley
et al. (2009) found significant (P < 0.005) positive correlations
between Salmonella levels, and rainfall 1 and 2 days before
sample collection. This relationship may be driven by increases
in run-off during rain events, which can transfer Salmonella
from terrestrial sources to waterways. Unlike rain, developed
open space was included in the final Salmonella regression model
but was not highly ranked in the Salmonella forest. According
to the regression model, as the percent of developed open
space increased, the log-odds of detecting Salmonella decreased.
Developed open space may act as a proxy for built-landscape
features that prevent run-off and microbial contaminants from
entering canals, such as vegetative buffers (e.g., in parks) or
improved drainage systems. Consistent with these findings, a
survey of Central California waterways found a significantly
lower prevalence (P < 0.05) of Salmonella in human-impact
areas (47%) compared to animal-impacted areas (74%) (Tian
et al., 2017). However, several studies have found a positive
association between Salmonella presence and variables linked to
human presence human presence (Johnson et al., 2003; Weller
et al., 2020a). Johnson et al. (2003) speculated this inconsistency
between studies could be due to the quality of wastewater removal
infrastructure in the sampling area.

For the EHEC models, generic E. coli levels and precipitation
before sampling were included in both the regression and forest
models. The relationship between precipitation and an increased
log-odds of EHEC detection was likely also driven by an increase
in run-off during rain events, similar to the relationship between
Salmonella and precipitation discussed above. The relationship
between EHEC detection and precipitation is also consistent with
past studies (Stea et al., 2015; Nadya et al., 2016). Conversely,
there is considerable variability between previous studies in the
existence, direction, and strength of the relationship between
EHEC detection and generic E. coli levels. For example, some
studies, like the study presented here, found evidence of a
relationship (Holvoet et al., 2014; Stea et al., 2015; Bradshaw et al.,
2016; Falardeau et al., 2017; Truchado et al., 2018; Weller et al.,
2020b), while others did not (Shelton et al., 2011; Benjamin et al.,
2013; Falardeau et al., 2017; Partyka et al., 2018; Weller et al.,
2020a).

While there were overall differences in the variables identified
as being associated with Salmonella presence or EHEC marker
detection by regression analysis and those identified as a
top ranked predictor by conditional forest analysis, both
modeling strategies used together can provide a more complete
understanding of the processes that drive pathogen presence.
For instance, the variables associated with pathogen presence via
regression provide easy to interpret information on associations
between a subset of factors and likelihood of pathogen
contamination. On the other hand, the top ranked variables in
the Salmonella presence or EHEC marker detection conditional
forests may provide insight into what variables are important
for inclusion in models that predict pathogen presence in
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agricultural water. This can be used to determine what additional
information should be collected to improve the performance of
these predictive models so they can be implemented by industry.
However, the complex interactions between variables included in
the conditional forest models can make it difficult to assess how
a change in one variable alone (e.g., occurrence of rainfall) will
impact the outcome (i.e., pathogen presence).

Machine-Learning-Based Models Have
Potential for Prediction of Pathogen
Contamination Likelihood, Including Real
Time Prediction That Does Not Require
Microbiological Data
Generic E. coli is traditionally used as a fecal indicator in
agricultural water to indicate potentially unhygienic conditions.
However, the high cost, slow turnaround time, uneven
distribution of generic E. coli in surface waters, and inconsistent
relationships between pathogen presence and generic E. coli
level limit its value and feasibility of routine use (Pachepsky
et al., 2016; Wall et al., 2019). Our data here provide further
support that conditional forest models are able to predict the
presence of Salmonella and EHEC markers, as supported by
AUC values of 0.84 for the Salmonella model and 0.92 for
the EHEC marker model (AUC values of 0.8–0.9 are generally
indicative of excellent predictive performance;Mandrekar, 2010).
Previous studies by Polat et al. (2020) and Weller et al.
(2020c) also previously reported that machine learning models
show potential as a strategy for identifying contaminated
agricultural water in Florida ponds and New York streams,
respectively. However, these AUC values from the current
study were calculated using cross-validation, as opposed to
an independent test dataset, and may be overfit. Regardless,
overfitting concerns are mitigated by the fact that the models
developed here were developed as a proof of concept and
conceptual framework, and not intended for actual use on-
farms. If predictive models are going to be developed as
an alternative or supplement to indicator-based monitoring,
sufficient data is needed, ideally spanning several years and
regions, to allow for separate, independent training and test data.
Furthermore, additional information is needed to determine if
predictive models should be developed for individual waterways,
specific regions, or if a standard model can be used across
multiple regions.

Importantly, the removal of generic E. coli level as a
predictor in the Salmonella presence and EHEC marker
detection conditional forests did not substantially decrease
predictive performance of either model. This provides
evidence that it is possible to eliminate the use of generic
E. coli water testing (or other microbial water testing
strategies) and replace it with real-time predictive models
with limited impact on the accuracy of identifying when
water may be contaminated with pathogens and thus at an
increased potential risk. These real-time models would be
advantageous, as produce growers could estimate the likelihood
of pathogen presence in their water sources at the time of
water application.

Presenting Predictive Modeling Outcomes
as Continuous Risk Measures and
Dichotomized Outcomes Have Distinct
Advantages
The output of the conditional forest models is the predicted
probability that a sample will be positive for Salmonella presence
or EHEC marker detection. One method for using this predicted
probability for making decisions on how to utilize the water
would be to dichotomize the outcome (i.e., pathogen is present
or absent) based on if the predicted probability is greater
than or less than some set threshold value. If this strategy
is used, specificity, sensitivity, positive likelihood ratio, and
negative likelihood ratio can be calculated. While the specificity
is adequate for our Salmonella model, the sensitivity is low
(0.69). This is particularly concerning as this means the model
often calls Salmonella-positive samples as negative, and thus
may lead to instances where corrective actions (e.g., water
treatment) were not performed when they should have been.
However, by lowering the threshold value, the sensitivity of
the model can be increased, minimizing this risk. A similar
phenomenon was observed for the EHEC forest. If predictive
models are to be used by produce growers to guide on-farm
decision making (e.g., if corrective actions are needed before
using water to irrigate crops), optimization of this threshold value
is needed. A future quantitative microbial risk assessment would
be helpful to identify the risk of illness associated with different
threshold values (Uyttendaele et al., 2015; Rock et al., 2019). This
information could then be used to optimize what threshold value
should be used to balance the predicted number of illnesses vs.
the costs associated with different corrective actions (e.g., water
treatment). While dichotomizing the outcome of the model, as
described above, creates an easier to interpretmodel, it does cause
a loss of information. As an alternative, the predicted probability
of a sample being positive could instead be directly used for
decision making; however, this would also require quantitative
risk assessment to determine how predicted probabilities should
be used.

Natural Cover and the Day of Year Are
Important for Prediction of Salmonella

Presence and EHEC Marker Detection
As previously discussed, there were some differences in variables
associated with pathogen presence by multivariable regression
and the top ranked variables for predicting pathogen presence
by conditional forest. However, a specific discussion of the top
ranked variables is important for informing what information
should be collected for future refinement of models used to
predict pathogen presence in agricultural water. Natural cover
variables and the day of year were included in the ten top-
ranked predictors in the Salmonella and EHEC forests. For
both Salmonella and EHEC, there was a positive monotonic
relationship between the percent of natural cover around the
sampling site and pathogen presence. Since natural cover may
function as habitat for wildlife, this may indicate wildlife is
acting as a pathogen source in southwestern US canals; this is
supported by the limited number of past studies that examined
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the prevalence of enteric pathogens in southwestern wildlife (e.g.,
Jay et al., 2007; Jay-Russell et al., 2014). For example, an Arizona
study found 32% (N= 103 total samples) of coyote fecal samples
were positive for Salmonella, while none were STEC-positive and
4.9% were enteropathogenic E. coli-positive (Jay-Russell et al.,
2014). On the other hand, in a study investigating E. coliO157:H7
in feral swine in the central California coast, 14.9% (13/87) of
samples were positive for E. coli O157:H7 (Jay et al., 2007).
Since, in the current study, the relationship between natural
cover and Salmonella presence and EHEC marker detection is
weak, additional research is needed to fully characterize the role
wildlife plays as a source of enteric pathogen contamination for
southwestern canals. Given the need for additional research, and
the important ecosystem services provided by natural cover (e.g.,
water filtration) and wildlife (e.g., pest control, pollination), the
authors want to emphasize we are not advocating the removal
of natural cover or wildlife from growing areas (Aarons and
Gourley, 2012; Allende et al., 2018; Navarro-Gonzalez et al.,
2020).

Temporal trends in Salmonella presence and EHEC marker
detection were accounted for by including the day of year each
sample was collected on as a predictor in the forests. The day
of year was used instead of season, as seasons are arbitrary
periods of time; the end of a season is more similar to the
beginning of the subsequent season than the beginning of the
season itself. As such, using the day of year as a continuous
variable reduces bias in the final model by not forcing the data
into arbitrary categories. For both models, the probability of
a sample being pathogen-positive remained low until approx.
September, after which the probability of a positive increased.
This likely indicates some event occurs during early fall that
leads to an increased likelihood of pathogen contamination of
southwestern US canals. For instance, it is possible the canals are
cleaned at this time of year, which causes the sediments at the
bottom to re-distribute and re-contaminate the water. However,
the current study only spanned 1 year so additional research
is needed to determine if this relationship holds across time.
Despite this limitation, our finding of intra-annual trends in
microbial water quality is consistent with past studies that looked
at Salmonella (Wilkes et al., 2009; Liang et al., 2013; Cooley
et al., 2014; Stea et al., 2015; Tian et al., 2017; Weller et al.,
2020b) and EHEC (Shelton et al., 2011; Stea et al., 2015; Nadya
et al., 2016; Tian et al., 2017). For instance, Cooley et al. (2014)
found a higher Salmonella prevalence in the spring and summer
compared to the fall and winter in Central California surface
water samples. Furthermore, consistent with our current study,
Stea et al. (2015) found a higher prevalence of STEC in the later
summer and fall compared to all other seasons in Nova Scotia,
Canada. Overall, the data collected to date appear to indicate
that enteric pathogen contamination of surface water often shows
some type of seasonality, although the specific trends appear to
differ across locations and studies.

LIMITATIONS

While a large area (∼28,000 km2) of the produce growing
region in the southwestern US is represented here, stratification

for certain land-use or sample site factors was not performed
during sample site selection. As such, this could have biased
the results (i.e., some potentially important factors could have
been missed due to underrepresentation of certain variables).
Additionally, since this is a proof of concept, only a small
number of samples were collected (N = 169) and each site
was only visited few times (1–3 times), which could result in
combinations of factors associated with an altered likelihood of
pathogen presence being missed (e.g., if the greatest likelihood
of Salmonella contamination is after a rain event next to a
dairy farm but no samples were collected after a rainfall from a
site next to a dairy farm, this signal would have been missed).
Therefore, further studies, with larger sampling efforts and
spanning multiple years and geographical locations or growing
regions, are needed to yield models appropriate for industry use
and to answer key questions such as if a single model can be
used from water source to water source, if a single model can
be used from climate to climate (or region to region), and if a
single model can be used over several years. In addition, there
are other factors that may be important for pathogen presence in
canals such as difference in elevation between surrounding land
and the canal, livestock density surrounding the canals (instead
of just CAFO presence), land use along canal flow paths, and
relative humidity; future model building efforts should consider
collecting these data to include in their models. Furthermore,
there were several factors with missing data (e.g., flow rate could
not be measured at all sites due to safety concerns). This could
lead to information bias (i.e., bias caused by a lack of correct or
complete information) in logistic regression, but we expect this
to be non-differential (i.e., the bias direction is independent of
the model outcome), indicating it should not have impacted the
results of the study.

CONCLUSIONS

Machine learning-based predictive models, such as conditional
forest models show promise for predicting Salmonella presence
and EHEC marker detection in southwestern US canals
used as sources for agricultural water. The use of machine
learning models, in addition to regression analysis, provides
a more complete assessment of the relationships between
spatial and temporal factors and foodborne pathogen presence
in agricultural water due to the complexity in the system.
Furthermore, the use of predictive modeling, and real-time
predictive models (using no microbiological data), may provide
an alternative or supplement to traditional generic E. coli testing
for fine-tuning when and where food safety hazards may be
present in agricultural water and corrective action is needed.
The forests developed in the current study specifically indicate
that use around the sampling site and day of the year are
important predictors for both Salmonella presence and EHEC
marker detection in southwestern US canal water. Despite the
promising results in this and previous studies, these studies were
proof of concept. Therefore, before predictive models can be
deployed on farms and integrated into on-farm risk management
plans additional research is needed to determine if models can
predict pathogen presence accurately for regions, water types
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(e.g., canal, stream, pond), and years, other than the region(s),
water type(s), and year(s) where the training data were collected.
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