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Conventional, field-based streamflow monitoring in remote, inaccessible locations such

as Alaska poses logistical challenges. Safety concerns, financial considerations, and

a desire to expand water-observing networks make remote sensing an appealing

alternative means of collecting hydrologic data. In an ongoing effort to develop

non-contact methods for measuring river discharge, we evaluated the potential to

estimate surface flow velocities from satellite video of a large, sediment-laden river in

Alaska via particle image velocimetry (PIV). In this setting, naturally occurring sediment

boil vortices produced distinct water surface features that could be tracked from frame to

frame as they were advected by the flow, obviating the need to introduce artificial tracer

particles. In this study, we refined an end-to-end workflow that involved stabilization

and geo-referencing, image preprocessing, PIV analysis with an ensemble correlation

algorithm, and post-processing of PIV output to filter outliers and scale and geo-reference

velocity vectors. Applying these procedures to image sequences extracted from satellite

video allowed us to produce high resolution surface velocity fields; field measurements

of depth-averaged flow velocity were used to assess accuracy. Our results confirmed

the importance of preprocessing images to enhance contrast and indicated that lower

frame rates (e.g., 0.25 Hz) lead to more reliable velocity estimates because longer capture

intervals allow more time for water surface features to translate several pixels between

frames, given the relatively coarse spatial resolution of the satellite data. Although

agreement between PIV-derived velocity estimates and field measurements was weak

(R2 = 0.39) on a point-by-point basis, correspondence improved when the PIV output

was aggregated to the cross-sectional scale. For example, the correspondence between

cross-sectional maximum velocities inferred via remote sensing and measured in the

field was much stronger (R2 = 0.76), suggesting that satellite video could play a role in

measuring river discharge. Examining correlation matrices produced as an intermediate

output of the PIV algorithm yielded insight on the interactions between image frame rate

and sensor spatial resolution, which must be considered in tandem. Although further

research and technological development are needed, measuring surface flow velocities

from satellite video could become a viable tool for streamflow monitoring in certain

fluvial environments.
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1. INTRODUCTION

Regular, reliable monitoring of streamflow is crucial for a number
of management applications including water supply forecasting,
flood hazard assessment, habitat conservation, and provision of
recreational opportunities. However, obtaining basic information
on river discharge can be difficult and costly, particularly in
remote, inaccessible locations. For example, although the state
of Alaska features over 1,200,000 km of rivers and streams, the
U.S. Geological Survey (USGS) streamgage network consists of
only 111 continuous monitoring locations, a density of coverage
far less than in the contiguous U.S. (Conaway et al., 2019).
One reason so many Alaskan waterways remain ungaged is the
logistical challenge associated with making periodic streamflow
measurements and performing maintenance operations. For
example, because many gages are located in roadless areas, these
sites must be accessed by helicopter, which places hydrographers
at risk. The USGS is actively seeking to improve safety, increase
efficiency, and expand the streamgage network by developing
non-contact methods for measuring streamflow. Remotely
sensed data used for this purpose can be acquired from a range
of platforms including: (1) near-field, bridge-mounted sensors
(Legleiter et al., 2017; Fulton et al., 2020b); (2) small uncrewed
aircraft systems (sUAS, or drones; e.g., Kinzel and Legleiter,
2019; Bandini et al., 2021; Fulton et al., 2020a); (3) fixed-wing
aircraft and helicopters (Legleiter and Kinzel, 2020); and (4)
satellites, both existing (e.g., Bjerklie et al., 2018) and yet to be
launched (e.g., Altenau et al., 2019). Most current approaches
to estimating river discharge from space involve images that
represent a single point in time and have relatively coarse pixel
sizes on the order of 30 m or more and are based on various
hydraulic approximations (e.g., Gleason and Durand, 2020). In
this study we explore an alternative strategy focused on inferring
one component of discharge, flow velocity, from high spatial
resolution satellite video that captures dynamic water surface
features and thus enables particle image velocimetry (PIV).

PIV and related optical flow and particle-tracking algorithms
are increasingly applied to natural channels, where the technique
is often referred to as large-scale PIV to distinguish these
outdoor settings from laboratory investigations (e.g., Muste et al.,
2008; Tauro et al., 2016; Eltner et al., 2020; Pearce et al., 2020;
Strelnikova et al., 2020; Tosi et al., 2020). Many of these studies
make use of image data acquired from bridge- or bank-mounted
cameras or sUAS and in some cases the flow must be seeded
with artificial tracers to facilitate particle detection and tracking
under low flow conditions. This approach is not well-suited to
large rivers where introducing a sufficient quantity of tracers
would be impractical and restrictions on sUAS flying height
preclude imaging the entire channel width. Thermal imaging

Abbreviations: ADCP, Acoustic Doppler Current Profiler; CLAHE, Contrast

Limited Adaptive Histogram Equalization; FFT, Finite Fourier Transform; HALE,

High Altitude Long Endurance; IA, Interrogation Area; GNSS, Global Navigation

Satellite System; OP, Observed vs. Predicted; PIV, Particle Image Velocimetry;

RGB, Red, Green, Blue; RMSE, Root Mean Squared Error; ROI, Region Of

Interest; RPC, Rational Polynomial Coefficients; SIFT, Scale Invariant Feature

Transformation; sUAS, small Uncrewed Aircraft System; USGS, United States

Geological Survey; VMT, Velocity Mapping Toolbox; XS, Cross Section.

is a different type of remote sensing that does not require
seeding and has proven effective in small rivers (e.g., Kinzel
and Legleiter, 2019; Lin et al., 2019) but is subject to several
other constraints. For example, thermal features are expressed
at the water surface as subtle differences in temperature that
are most readily detected by highly sensitive, cooled mid-wave
infrared cameras, although Fujita (2017) reported a successful
application in which an uncooled, long-wave infrared camera was
used to acquire images at night. Even with such sophisticated
(and expensive) instrumentation, the method is contingent upon
the air-water temperature contrast and can be affected by the
exhaust emitted by some airborne platforms.

Although seeding the flow is not feasible for large Alaskan
rivers, the use case that is our primary concern, and we also
found thermal PIV to be problematic in this setting, our
previous research demonstrated the potential to infer surface flow
velocities from standard RGB (red, green, blue) video (Legleiter
and Kinzel, 2020). For rivers that drain glaciated terrain and
convey large quantities of sediment in suspension, turbulence
within the water column produces sediment boil vortices that are
manifested at the surface as differences in water color and can
thus be detected and tracked via PIV. In a recent study on the
Tanana River, we used video acquired from a helicopter hovering
above the channel to produce continuous, two-dimensional, high
spatial resolution surface velocity fields that agreed closely (R2

up to 0.99) with depth-averaged velocities measured directly in
the field. While, this approach is only applicable when and where
rivers have high concentrations of suspended sediment, it has
the important advantage of using a natural tracer, sediment,
rather than artificially seeded material. The purpose of the
investigation reported herein was to assess the potential to adapt
this framework to video acquired from a satellite platform.

Inferring surface flow velocities from space has a strong
precedent in the literature. For example, Kääb et al. (2019)
used near-simultaneous images, separated by approximately 90
s, from a constellation of optical cubesats to track river ice floes
and thus estimate water surface velocities with a high degree
of accuracy. In addition to the issues associated with cloud
cover that are inherent to any spaceborne imaging system, this
approach also is limited by the fact that near-simultaneous swath
overlaps within the constellation cover only a small fraction of
the Earth’s surface. This type of data can thus only be acquired
opportunistically for a small number of locations defined by the
cubsesat orbital trajectories. Furthermore, for the two northern
rivers evaluated by Kääb et al. (2019), velocity mapping was
sensitive to timing, as ice forming in the fall was easier to
track over longer time periods than ice breaking up in the
spring. Previously, Kääb and Leprince (2014) described a variety
of applications of motion detection from near-simultaneous
images but also highlighted the potential for errors introduced
by imaging geometry and target elevation. Although their review
mentioned tracking suspended sediment to estimate surface flow
velocities and presented some compelling illustrations of this
approach, the examples were selectively drawn from confluence
zones where sediment-laden and relatively clear rivers converge.
Even in these unique settings, only a few velocity vectors could be
inferred within the mixing zone itself.
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This study builds upon previous research by pursuing an
approach to spaceborne mapping of river velocities that differs
from prior work in several important respects. For example,
using video collected from satellites that have off-nadir pointing
capabilities and can thus be tasked to acquire data from user-
specified locations provides greater flexibility andmore extensive,
continuous coverage than relying upon near-simultaneous
images from a few areas where swaths fortuitously overlap.
Such tasking could facilitate both as needed situational response
to hydrologic events and routine operational monitoring via
recurring collections. In addition, PIV of satellite video can
yield higher spatial resolution surface velocity fields by tracking
sediment boil vortices that are present throughout the channel,
rather than discrete, isolated objects like the ice floes used by
Kääb et al. (2019), which might be unevenly distributed when
they are present at all. More specifically, Kääb et al. (2019)
produced a velocity field with a grid node spacing of 75 m by
tracking ice floes ranging from 3 to 300 m in size on the Amur
River in Siberia, whereas this study presents PIV output on a 30
m grid for the sediment-laden Tanana River in central Alaska.
Similarly, while large, bright, particle-like features such as ice
floes are relatively easy to detect and track, discerning the motion
of more subtle, continuous, and deforming features of the water
surface itself presents a much greater image processing challenge.

The novel contribution of this work is the extension of PIV
techniques typically applied to remotely sensed data from various
near-field or airborne platforms to video acquired by satellites
in orbit far above the Earth. The primary objectives of this
investigation include the following:

1. Test the feasibility of inferring surface flow velocities in a large,
sediment-laden river under natural, unseeded flow conditions
by applying a PIV algorithm to remotely sensed data acquired
from space.

2. Outline a modular, spatially explicit workflow for producing
surface velocity fields from satellite video.

3. Examine the effects of image preprocessing and image frame
rate on PIV analyses.

4. Assess the accuracy of PIV-based velocity estimates via
comparison to field measurements of velocity.

5. Evaluate the potential to infer bulk flow characteristics, such
as cross-sectional mean and maximum velocities, from PIV-
derived velocity fields.

2. MATERIALS AND METHODS

The satellite video and in situ field observations upon which this
study was based are available in Legleiter and Kinzel (2021). The
parent landing of Legleiter and Kinzel (2021) page provides an
overview and links to separate child pages for three individual
data sets, all from our study site on the Tanana River in
central Alaska, USA: (1) field measurements of flow velocity;
(2) orthophotos used as a base for geo-referencing; and (3)
video acquired from a satellite, along with the image frames that
were extracted therefrom and used to perform the PIV analyses
described herein.

2.1. Study Area
Alaska is the largest state in the USA but remains relatively
sparsely gaged, in part because many Alaskan rivers are located
in remote, inaccessible terrain (Conaway et al., 2019). These
circumstances imply a compelling need for alternative remote
sensing techniques for measuring streamflow and this study
sought to advance the development of such non-contact methods
by focusing on a large, sediment-laden river typical of Alaska, the
Tanana. More specifically, we examined a reach near Nenana,
southwest of the city of Fairbanks in the central part of the
state (Figure 1). This site also features a USGS gaging station
(#15515500) at which the drainage area is 66,200 km2; the river’s
water surface slope is 0.00014. A discharge of 1,770 m3/s was
recorded at the time the satellite video was acquired on 14 July
2020, slightly higher than the median value of 1,710 m3/s for
this date based on 58 years of record. The field measurements of
flow velocity described below were obtained at a nearly identical
discharge of 1,781 m3/s on 24 July 2019. Although the field and
remotely sensed data were separated by nearly a year’s time,
our experience at this site suggests that no significant channel
changes occurred in the interim and we assumed that the field
observations were representative of the flow conditions captured
by the video.

Much of the Tanana’s watershed is glaciated, providing a
steady supply of outwash that results in consistently high
concentrations of suspended sediment (Wada et al., 2011). For
example, a suspended sediment concentration of 2,309 mg/L
was estimated on the day the satellite video was acquired
based on a power function relating concentration to discharge
(Legleiter andKinzel, 2020). Our previous research on the Tanana
demonstrated that this abundance of suspended material enables
surface flow velocities to be inferred via PIV under natural,
ambient flow conditions. The premise of this approach is that
turbulence within the water column produces sediment boil
vortices that are expressed at the water surface as variations in
color and brightness that can be tracked from frame to frame
through an image sequence as these distinct but deformable
features are advected downstream by the flow. Importantly,
the presence of these water surface features allowed velocities
to be estimated in a large river where seeding the flow with
artificial tracer particles would have been impractical (Legleiter
and Kinzel, 2020).

2.2. Remotely Sensed Data
The primary objective of this investigation was to assess
the potential for mapping continuous, two-dimensional, high
resolution surface flow velocity fields from space. We pursued
this goal using video acquired by a satellite orbiting 450 km above
Earth’s surface as part of the Planet Labs SkySat constellation
(Table 1). This imaging system consists of a telescope with a 3.6
m focal length and three 5.5 megapixel detectors comprising a
common focal plane. SkySats can acquire multispectral images,
but the video data consist of a single panchromatic band.
Although durations of up to 120 s are possible, a 60 s video
acquired at a frame rate of 30Hz was obtained for this study. Data
delivered by Planet Labs included anMP4 video file, a TIFF image
for each of the 1,800 individual frames, a frame index file, and
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FIGURE 1 | (A) Overview map showing location of the study area within the state of Alaska and the study reach at Nenana in relation to the city of Fairbanks and the

course of the Tanana River. (B) Example image frame extracted from the satellite video with velocity vectors measured in the field with an acoustic Doppler current

profiler (ADCP) overlain. Cross section numbers are indicated.

supporting metadata. A cross-sensor non-uniformity correction
was applied but the data were not radiometrically calibrated, nor
was any kind of atmospheric correction performed; the TIFF
images consisted of 16-bit digital numbers.

The video was acquired at an off-nadir view angle and had a
nominal mean ground sampling distance (i.e., pixel size) of 1 m.
The metadata included a rational polynomial coefficients (RPC)
model for geometric correction, but we used a simpler image-
to-image registration approach to spatially reference the video
to a projected coordinate system (UTM Zone 6, NAD83). An
orthophoto of the Tanana River acquired from a helicopter on
24 July 2019 and described in more detail by Legleiter and Kinzel
(2020) served as the base for geo-referencing.

Due to the passage of clouds during the video, we retained
only a 17 s subset during which the river was not obscured. To
evaluate the effects of image frame rate, we sub-sampled this
video clip to frame rates of 1, 0.5, and 0.25 Hz by retaining only
every 30th, 60th, and 120th frame, respectively, from the original
30 Hz time series. For the limited, cloud-free subset of the video,
this procedure resulted in sequences consisting of 17, 9, and 5
images, respectively.

2.3. Field Measurements
Although direct, in situ observations of flow velocity coincident
with the satellite video were not available, we used field data
acquired at a similar discharge (section 2.1) to assess the accuracy
of image-derived velocity estimates and thus guide the selection
of appropriate image preprocessing techniques and frame rates.
This field data set was acquired using a TDRI RiverRay acoustic
Doppler current profiler (ADCP) (Teledyne Marine, 2020)
equipped with a Hemisphere A101 differential Global Navigation
Satellite System (GNSS) receiver with a horizontal precision
of 0.6 m (Hemisphere GNSS, 2020). The ADCP was deployed
from a small, custom-fitted catamaran towed behind a boat
with an outboard motor while traversing the channel on a
series of transects oriented perpendicular to the primary flow
direction. The cloud-free subset of the video encompassed seven
of these cross sections, each consisting of a single pass across
the river. During data collection, the RiverRay was controlled
from within the boat using the TRDI WinRiver II software
package, which enabled real-time visualization of the velocity
field throughout the water column as the boat moved across
the river. The ADCP data were post-processed in WinRiver II
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TABLE 1 | Planet SkySat video product information and sensor specifications

(European Space Agency, 2020; Planet Labs, Inc., 2020).

Attribute Description

Product components and format Video file - MP4

Individual video frames - TIFF images

Frame index - CSV file

Metadata - JSON format

Image configuration 1-band panchromatic image in digital

numbers

Sensor type Cassegrain telescope with a focal length

of 3.6 m, with three 5.5 megapixel imaging

detectors making up the focal plane

Spectral bands Pan: 450–900 nm

Video duration 30–120 s

Bit depth 16-bit unsigned integer

Radiometric corrections Cross-sensor non-uniformity correction

Geometric corrections Idealized sensor model and Rational

Polynomial Coefficients (RPC)

Orbit SkySat 3-15: sun-synchronous, 500 km at

launch*

Ground sample distance (pixel size) SkySat 3-15: 0.81 m at nadir

Swath width SkySat 3-15: 5.9 km at nadir

*In early 2020 the orbits of Skysat 3-15 were lowered to 450 km, which improved the

spatial resolution.

and then imported into the USGS Velocity Mapping Toolbox
(VMT) (Parsons et al., 2013). We used VMT to post-process
the original, individual ADCP measurement points into a set of
seven cross sections (XS) arranged from upstream to downstream
along the channel (Figure 1B). Each of these transects was
obtained by fitting a line to the original boat track, projecting the
individual ADCP measurements onto this line, and smoothing
the data both horizontally and vertically to provide a mean
cross section consisting of depth-averaged flow velocities at
1 m distance increments from the left bank; depth-averaged
velocities were obtained by averaging over the entire depth of
flow at each point. We then used an export tool within VMT
to produce text files consisting of projected spatial coordinates
and depth-averaged velocities for all of the points along each of
the smoothed mean cross sections generated via VMT. Although
we visually inspected ADCP- and PIV-based velocity vectors, our
quantitative accuracy assessment of the PIV output was based on
velocity magnitudes.

In addition to the ADCP data, we also used measurements
from an RQ-30 radar gage manufactured by Sommer
Messtechnik that was mounted on a bridge over the Tanana
River located at the downstream end of our study area and
is described in greater detail by Fulton et al. (2020a,b). As
discussed by these authors, velocity radars use the Doppler
effect to translate radar frequencies into surface flow velocities.
Observations from the radar gage thus provided an independent,
non-contact measurement of surface velocity for assessing the
accuracy of PIV-based estimates derived from the satellite video,
whereas the ADCP data consisted of depth-averaged velocities.
Another advantage of the radar gage is that this sensor operates

continuously to monitor streamflow, which allowed us to query
the record and identify a measurement made within 15 min of
when the satellite video was acquired. However, a complicating
factor in comparing this radar gage observation to the PIV-
based velocity estimates was the difference in spatial resolution
between the radar gage footprint (an ellipse with a long axis of
approximately 5.15 m) and the 1 m pixel size of the satellite
image frames. In addition, the exact location of the radar beam
on the water surface was not known precisely. We accounted for
these issues by extracting the three PIV output vectors closest
to the presumed location of the radar gage measurement and
averaging the magnitudes of these three PIV vectors.

2.4. Velocity Index Calculations
Whereas the field measurements obtained with an ADCP and
processed with VMT were depth-averaged flow velocities, the
velocities inferred from the satellite video were assumed to
represent the water surface. To enable comparison of ADCP-
and PIV-derived velocities for accuracy assessment, the remotely
sensed surface flow velocities thus had to be converted to depth-
averaged velocities (e.g., Le Coz et al., 2010). This conversion is
typically achieved by defining a velocity index α as the ratio of
the depth-averaged velocity Ud to the surface velocity Us (e.g.,
Smart and Biggs, 2020):

α =
Ud

Us
(1)

In this study, we used the Qrev software package developed
by the USGS (Mueller, 2013, 2016a,b) to obtain site-specific,
calibrated α values for each of the seven transects across
the Tanana River shown in Figure 1B. The “extrap” module
within Qrev aggregated all of the vertical velocity profiles (i.e.,
ensembles) recorded by the ADCP during each traverse of
the channel, standardized the profiles, and averaged them to
produce a single, normalized velocity profile representative of the
cross section. However, these profiles did not extend up to the
water surface due to the blanking distance between the ADCP
transducer and the first cells measured on the vertical profiles;
gaps also occurred between the lowest cells measured and the
streambed. The extrap tool provided a means of extrapolating
from the central, measured portion of the water column up to
the surface and down to the bottom. More specifically, assuming
that the vertical velocity profile was described by a power law of
the form

U(z) = azm, (2)

where U(z) is the flow velocity at a height z above the streambed,
a is a coefficient, and m is an exponent, extrap identified the
exponent that yielded the optimal fit to the ADCP data. As shown
by Legleiter et al. (2017), integrating Equation (2) over the entire
depth of flow and dividing by the depth d yields an expression
for the depth-averaged velocity Ud. Dividing this result by the
velocity at the water surface Us, obtained by evaluating Equation
(2) for z = d, leads to the following relation for the velocity index:

α =
Ud

Us
=

adm+1

d(m+1)

adm
=

1

m+ 1
(3)
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The Qrev output is summarized in Figure 2, which depicts
the normalized velocity profile and power law fits for each of the
seven Tanana River cross sections. Also shown for each transect
are the optimal value of the power law exponent m and the
corresponding velocity index α, calculated via Equation (3). α

values varied over a narrow range from 0.85 to 0.91, with a mean
of 0.88, consistent with the widely used default value of 0.85 that
corresponds to a power law withm = 1/6, which is equivalent to
Manning’s equation (Smart and Biggs, 2020). These cross section-
specific α values were used to convert PIV-derived surface flow
velocities to depth-averaged velocities comparable to the field
measurements recorded by the ADCP and processed in VMT.

2.5. Particle Image Velocimetry (PIV)
Workflow
To perform PIV analyses for this study, we built upon a
modular workflow established through previous research on
the Tanana River based on image sequences acquired from a
helicopter hovering above the channel (Legleiter and Kinzel,
2020). Although some of these procedures were applicable to
the satellite data as well, certain components were not relevant
and other new features were added as we continued to refine
the approach. The analysis was conducted primarily within
MATLAB, with the widely used PIVlab add-in developed by
Thielicke and Stamhuis (2014; 2019) serving as the core PIV

algorithm, but also involved image preprocessing tools from
the open source FIJI software suite (FIJI-ImageJ, 2020). The
workflow applied in this study is depicted graphically in Figure 3

and summarized below.

1. The process of inferring surface flow velocities from space
begins with the acquisition of a video or sequence of still
images from a satellite platform in orbit above the river of
interest. These data must encompass the same area of the
river for a period of at least a few seconds so that the features
detected on the water surface have sufficient time to translate a
measurable distance. The first user input to be specified is the
frame rate to retain for PIV analysis.

2. Once the remotely sensed data have been collected and sub-
sampled to obtain the desired frame rate, the individual image
frames must be stabilized relative to one another and then
geo-referenced to an established coordinate system. Aligning
the images is essential so that any detected motion of surface
features can be attributed to advection by the flow rather than
motion of the imaging platform. In this study, we performed
image stabilization using the TrakEM2 plugin to the FIJI
image processing software package (Cardona et al., 2012). The
first image in the resulting, stabilized sequence is then geo-
referenced to a suitable base by selecting image-to-image tie
points. These tie points are used to parameterize an affine
transformation from image (column, row) to spatial (easting,

FIGURE 2 | Velocity profiles measured with an ADCP and fit using the Qrev software program. The power law exponent m and the corresponding velocity index α

used to convert PIV-derived surface flow velocities to depth-averaged velocities is indicated for each cross section. The gray dots represent individual ADCP data

points along the normalized profile, the red curve is the best-fit power law, and the red squares and horizontal lines are the median and interquartile range (IQR) of

normalized velocities within a series of vertical bins. See Mueller (2016a,b) for further details on Qrev.
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FIGURE 3 | Flowchart illustrating the data requirements, user inputs, processing steps, and intermediate and final outputs involved in estimating surface flow

velocities from satellite video using PIV.

northing) coordinates. The resulting transformation is applied
to each frame to project the entire, aligned sequence into the
same real world coordinate system.

3. The resulting stack of stabilized, geo-referenced images is
then output as a series of individual image files stored
in a directory. Preparing these images for PIV involves
filtering and contrast adjustment; we performed these tasks by
calling a FIJI macro programatically from within MATLAB.
The macro uses FIJI functions for finite Fourier transform
(FFT) bandpass filtering and histogram equalization contrast
enhancement. The images output from this preprocessing
routine are imported back into MATLAB.

4. Next, the spatial footprint of each frame is defined by outlining
the boundary of the non-zero pixels in the image. The
resulting polygon highlights the area of actual image data
and thus can be irregular in shape and orientation, whereas a
simple rectangular bounding box might include large areas of
no data for an image that was rotated during the stabilization
and/or geo-referencing phases of the workflow.

5. The footprints from all of the images in the stack are then
overlain and displayed so that the user can determine the
area of common coverage throughout the entire sequence and
then digitize a region of interest (ROI) accordingly. This ROI
also can serve as a water-only mask or be intersected with an
existing water mask to highlight the channel proper. This step
ensures that only portions of the river captured by all of the
images in the sequence are included in the ROI used for PIV.

6. To focus the analysis on this area, all of the images in the
stack are cropped to a common bounding box based on
the digitized ROI. In addition, a raster mask corresponding
to the digitized ROI is applied to each image to obtain a
series of co-registered water-only images suitable for PIV.
Performing these cropping and masking operations prior to

PIV reduces storage requirements and computing time in
subsequent stages of the workflow.

7. The PIV analysis itself is conducted by calling an ensemble
correlation algorithm, included in the latest version (2.37,
published 4 December 2020) of PIVlab, programatically from
within MATLAB. The ensemble correlation method is well-
suited to PIV applications where the seeding density (the
number of tracer particles per unit area in an image sequence)
is low and/or trackable features are not evenly distributed, as
is the case in river flows. Whereas standard PIV algorithms
operate sequentially on successive frame pairs, ensemble
correlation involves averaging correlation matrices over the
entire image sequence before identifying the correlation peak.
This approach results in more robust velocity estimates,
particularly for sequences consisting of a large number of
images (Strelnikova et al., 2020). Key user inputs to the PIV
algorithm include the size of the interrogation area (IA), which
specifies the area (in pixels) within which features are tracked
by computing correlations between successive images. The
step size parameter controls the spacing of the PIV output
vectors and was set to half the IA. Although PIVlab allows for
multiple passes, we found that accuracy did not improve with
additional passes and so used only a single pass in this study.

8. The PIV workflow employed in this study diverged from that
implemented in our previous research (Legleiter and Kinzel,
2020) at this stage. Whereas the prior version did not post-
process the PIV output, the workflow now includes filtering
and interpolation steps to refine the original vectors. Filters
include a minimum velocity threshold set to the product
of one pixel and the frame rate, discarding outliers beyond
three standard deviations from the mean velocity magnitude,
and a normalized median check based on that implemented
in PIVlab. Similarly, we incorporated a linear interpolation
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routine from PIVlab to fill gaps in the PIV output grid that
were created by applying the various filters. In addition, the
updated workflow extracts the correlation matrix for each
IA produced by the ensemble correlation algorithm so that
this information also can be used to assess the quality of the
PIV output.

9. Once the PIV analysis is complete, the vectors are converted
from units of pixels/frame to m/s. This step involves using the
spatial referencing information for the image stack to establish
the image scale (i.e., the number of pixels per meter) and then
multiplying by the user-specified frame rate in units of Hz.
The geo-referencing information also is used to transform the
PIV-derived velocity vectors to the same real world coordinate
system as the images.

10. Finally, the vectors inferred via PIV are overlain on the first
image in the sequence to enable visualization of the flow
field and the accuracy of the PIV output is evaluated via
comparison with field measurements of flow velocity.

2.6. Accuracy Assessment
We evaluated the accuracy of remotely sensed flow velocities
by comparing the PIV output to direct field measurements of
depth-averaged flow velocity obtained with an ADCP and post-
processed with VMT as described above. We extracted surface
flow velocity estimates from the PIV output grids derived from
various image sequences for each of the seven cross sections.
The PIV output was then interpolated to provide a remotely
sensed velocity estimate for each point on each of the mean
cross sections produced by VMT. Finally, the PIV-derived surface
velocities were multiplied by velocity indices specific to each of
the cross sections to convert them to depth-averaged velocities
comparable to the ADCP measurements.

Having paired velocities inferred via PIV with those measured
by the ADCP thusly, we quantified the accuracy of the remotely
sensed flow velocities in terms of several metrics. We used the
root mean squared error (RMSE) as an index of the precision
of PIV estimates and the mean bias as an index of absolute
accuracy. Bias was calculated as the difference between the
ADCP-measured and PIV-derived velocity magnitudes, such that
a positive value of the mean bias implied under-prediction of
the ADCP-measured velocity by the PIV algorithm on average.
Conversely, a negative value of the mean bias indicated that
velocities inferred from the satellite video tended to be greater
than those observed in the field. We also normalized the RMSE
and mean bias by the mean of the ADCP measurements upon
which the comparison was based to express each metric as a
percentage of the reach-averaged mean velocity.

Observed (ADCP) vs. predicted (PIV) (OP) regressions were
performed and the OP regression R2-value used to summarize
correspondence between flow velocities recorded in the field
by the ADCP and those inferred from the video via PIV.
The slope and intercept terms of the OP regressions provided
further information on the performance of the PIV algorithm.
A slope of 1 and an intercept of 0 would indicate perfect
agreement, but any deviation from these values would imply
that the PIV-derived velocities were not scaled correctly (i.e., a
slope coefficient less than or greater than 1) and/or were biased

(i.e., a non-zero intercept) relative to the ADCP measurements
(Pineiro et al., 2008). In addition, we visually inspected maps
of the velocity estimation error to identify spatial variations in
predictive capability.

2.7. Evaluating the Effects of Image
Preprocessing and Frame Rate
We used satellite video from the Tanana River to examine the
influence of various image preprocessing approaches and frame
rates on surface flow velocity estimates inferred via PIV. First,
the 0.25 Hz image sequence was used as the base frame rate for
evaluating the effects of three different preprocessing strategies:
(1) using the raw image data directly; (2) applying the contrast
limited adaptive histogram equalization (CLAHE) technique
implemented in PIVlab; and (3) using a FIJI macro to apply a
FFT bandpass filter and histogram equalization contrast stretch.
We made this assessment by performing PIV for each of these
image types, which we refer to as raw, CLAHE, and FIJI. The
resulting PIV output was then compared in terms of the error
metrics listed in section 2.6, OP regressions based on ADCP field
measurements of flow velocity, and visual inspection of velocity
fields inferred from the various image types.

Similarly, to examine the influence of image frame rate on
the accuracy of PIV-based velocity estimates, we used the FIJI
technique as the base case image preprocessing approach and
performed PIV for image sequences extracted from the original
video at frame rates of 1, 0.5, and 0.25 Hz. These capture intervals
correspond to an image every second, every other second, and
every fourth second, respectively. We compared the PIV output
generated for each of these three frame rates by computing error
metrics, performing OP regressions, and mapping the remotely
sensed surface flow velocity fields.

3. RESULTS

3.1. Image Stabilization and
Geo-Referencing
Two important preparatory steps in the workflow outlined above
were stabilization and geo-referencing of the image sequence
prior to PIV analysis. Both of these processes involved some
degree of error that could have affected the level of agreement
between the remotely sensed flow velocities and the direct field
measurements made with the ADCP. To account for motion
of the satellite platform during video acquisition, we used the
TrakEM2 FIJI plugin to bring the extracted frames into alignment
with one another. A frame from the middle of the stack was
designated as the reference and all of the other images were
registered to this base using a scale-invariant feature transform
(SIFT) algorithm that identified distinct features such as bridges
and buildings that remained stationary throughout the video.We
set the maximum alignment error parameter in TrakEM2 to five
pixels and used an affine transformation specific to each frame
to align all of the frames extracted from the 17 s subset of the
original video that was free of cloud cover. In addition to the
stabilized image sequence, output from TrakEM2 also included
a report of the minimum, mean, and maximum displacement
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errors associated with the stabilization: 0.225, 0.310, and 0.394
pixels, respectively. Because these errors were all less than the size
of a single image pixel, which is the smallest feature translation
between successive frames that could be detected by the PIV
algorithm, stabilization error was not a significant source of
uncertainty in the inferred velocity fields.

Once the image sequence was internally stabilized, we next
geo-referenced the first image in the stack to enable comparison
of the PIV-derived velocities with ADCP field measurements.
This phase of the workflow was performed in the Global Mapper
software package (Global Mapper - All-in-one GIS Software,
2020) using a 2019 orthophoto as a base (Legleiter and Kinzel,
2020). We identified 11 distinct, stationary features, such as
buildings, visible in both the satellite image and orthophoto and
used these tie points to parameterize an affine transformation
between the row, column image coordinates and the easting
and northing coordinates of the projected real world coordinate
system. Applying this transformation to the satellite image
resulted in a geo-referenced image with a ground sampling
distance (i.e., pixel size) of 0.927 m. The transformation matrix
also was used to predict the locations of the tie points from
their image coordinates. Comparing these predictions to the
actual locations of the tie points on the orthophoto lead to
a geo-referencing RMSE of 1.48 m. This error was uniform
throughout the image sequence because all of the individual
frames had been stabilized relative to one another and the same
transformationmatrix was applied to each frame to geo-reference
the entire stack. The geo-referencing error did not influence
the PIV-derived velocity vectors because within our workflow
these velocity estimates were based on relative displacements
of water surface features between successive frames in the
stabilized sequence.

The absolute geo-referencing error could have introduced
some degree of uncertainty into the comparison of PIV-derived
and ADCP-measured velocities used for accuracy assessment.
However, the PIV- and ADCP-based velocities were linked to
one another at a spatial resolution set by the spacing of the PIV
output vectors, which is set by the step size parameter , and the
lateral distance increment used to generate smoothed mean cross
sections from the ADCP data via VMT. In this study, the step size
was held constant at 32 pixels, corresponding to a spatial distance
of 29.6 m, and the cross sections output from VMT had a 1 m

spacing between points. A typical geo-referencing error of 1.48
m was thus only 5% of the spacing between PIV output vectors,
implying that incorrectly pairing an ADCP measurement with a
PIV-based estimate was very unlikely.

3.2. Effects of Image Preprocessing
To isolate the effects of image preprocessing on PIV-derived
velocity estimates, we held the frame rate fixed at 0.25 Hz
and used raw, CLAHE-, and FIJI-preprocessed images as input
to the ensemble correlation PIV algorithm. An example of
each input image type is shown in Figure 4. Distinct water
surfaces were difficult, if not impossible, to discern in the raw
image (Figure 4A) and the CLAHE technique did not yield
any significant improvement (Figure 4B). More distinct tonal
patterns became evident when an FFT bandpass filter and
histogram equalization-based contrast adjustment were applied
using the FIJI macro; such highlighting of water surface features
facilitated tracking their displacement from frame to frame.
Comparing the PIV output derived from each image type to
ADCP field measurements quantified the improvement provided
by the FIJI approach (Table 2). The OP regression R2 increased
from 0.18 and 0.11 for the raw and CLAHE-preprocessed
images, respectively, to 0.39 for the images prepared for PIV via
FIJI; the normalized RMSE and bias also were reduced for the
image sequences preprocessed with FIJI.

3.3. Effects of Image Frame Rate
In this study, we examined the effect of image frame rate on
remotely sensed surface flow velocities by applying the FIJI-
based image preprocessing approach outlined above to sequences
extracted from the original satellite video at frame rates of 1, 0.5,
and 0.25 Hz. These capture intervals correspond to 1, 2, and 4 s of
elapsed time between frames, with the lower frame rates allowing
for greater displacement of surface features between successive
images. For the highest frame rate, a water surface feature would
translate by a distance barely exceeding the pixel size, making its
motion difficult to detect by a correlation-based PIV algorithm.
Halving the frame rate would improve the situation by giving
such a feature 2 s to move a greater distance during the time
interval between successive frames in an image sequence. A
further two-fold reduction in the frame rate would allow a full

FIGURE 4 | Example frames for each image type: (A) Raw, (B) CLAHE preprocessed, and (C) FIJI preprocessed.
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4 s for the pattern to advect by a distance of several pixels, which
could facilitate recognition of the offset.

To evaluate the influence of frame rate on PIV-derived velocity
estimates, we used the 1, 0.5, and 0.25 Hz image sequences
to produce maps of surface flow velocity, assess accuracy via
comparison with ADCP field measurements, and examine spatial
patterns of error. The velocity fields inferred from the three
image sequences are illustrated in Figure 5, with vectors overlain
on a raster representation of the flow field in which the color

represents the surface velocity magnitude and darker blues
indicate higher velocity. For the highest frame rate, depicted in
Figure 5A, the vectors were consistently oriented in the proper,
downstream direction, with a few exceptions along the north
bank in the middle of the reach, but the relatively uniform,
mid-blue tone suggested a homogeneous flow field that lacked
a high velocity core or slower flow along the banks. For the
0.5 Hz image sequence (Figure 5B), erratic vectors were less
common and velocities varied to a greater degree across the

TABLE 2 | Error metrics for various combinations of image preprocessing type and frame rate.

Image Frame rate RMSE Mean bias Norm. Norm. OP int. OP slope OP R2

type (Hz) (m/s) (m/s) RMSE bias (m/s)

Raw 0.25 0.63 0.40 0.36 0.10 0.70 0.37 0.18

CLAHE 0.25 0.71 0.44 0.40 0.10 0.76 0.31 0.11

FIJI 0.25 0.50 0.30 0.29 0.03 0.46 0.56 0.39

FIJI 1 0.74 0.40 0.42 0.06 1.35 0.00 0.00

FIJI 0.5 0.57 0.22 0.33 −0.07 1.18 0.20 0.07

FIJI 0.25 0.50 0.30 0.29 0.03 0.46 0.56 0.39

RMSE, root mean square error; Norm., normalized; OP, observed vs. predicted, int., intercept.

FIGURE 5 | Maps of PIV-derived surface flow velocities for different frame rates: (A) 1 Hz, (B) 0.5 Hz, and (C) 0.25 Hz. The locations of the ADCP velocity

measurements used for accuracy assessment are shown in red.
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channel, including areas of higher velocity toward the north bank
where the Tanana exits a large meander bend and begins to
flow to the west just upstream of the satellite image footprint.
For the lowest frame rate we considered, the inferred flow
field represented in Figure 5C exhibited greater heterogeneity,
with more pronounced differences in velocity both across and
along the channel. However, the PIV output based on the
0.25 Hz sequence also featured some clearly erroneous vectors,
including a few oriented upstream, even after applying the filters
incorporated into our refined workflow.

The results of this analysis are summarized quantitatively
in Table 2, which lists several error metrics by frame rate, and
Figure 6, which consists of OP regression scatter plots for the 1,
0.5, and 0.25 Hz image sequences. Whereas agreement between
PIV-derived velocity estimates and field measurements from the
ADCP was very weak for the 1 and 0.5 Hz frame rates, with
OP R2-values near 0, the OP R2 improved to a still modest
0.39 for the lowest frame rate we considered, 0.25 Hz. The
normalized RMSE, which can be interpreted as a measure of
precision expressed as a percentage of the reach-averaged mean
flow velocity measured in the field, was reduced from 42 and
33% for the 1 and 0.5 Hz sequences, respectively, to 29% for the
0.25 Hz data set. Similarly, the normalized mean bias, an index of
absolute accuracy relative to the field observations, decreased by
a factor of two for the 0.25 Hz sequence, to 3%. However, even
for the lowest frame rate that yielded the strongest agreement
with the ADCP measurements, the dimensional version of the
RMSE was 0.5 m/s, indicating that PIV of the satellite video
failed to provide precise estimates of surface flow velocity on a
point-by-point basis at high spatial resolution.

The maps presented in Figure 7 summarize the spatial pattern
of these velocity estimation errors for each frame rate. Defined as
the difference between the depth-averaged velocity magnitudes
observed in the field and inferred from remotely sensed data,
errors were positive (red tones) where PIV under-estimated the
velocity relative to the field data and negative (blue tones) where
PIV yielded a velocity estimate greater than that measured in
the field. Closer agreement is represented by neutral, near-white
colors, which were most extensive for the lowest frame rate

we considered. Velocity errors tended to be large and negative,
implying over-estimates, near the banks, particularly for the 1
and 0.5 Hz image sequences. In the along-channel direction, the
largest errors occurred at the fourth cross section downstream,
in the middle of our study area, but to a lesser degree for the
lowest frame rate. Overall, this analysis confirmed that although
PIV-based velocity estimates were not very reliable on a point-by-
point basis for any of the image sequences we extracted from the
satellite video, that with the lowest frame rate, 0.25 Hz, yielded
the strongest agreement with the field data.

3.4. Comparison of Bulk Flow
Characteristics Inferred via PIV and
Measured in the Field
Although the accuracy assessment summarized in the preceding
section indicated that flow velocities inferred from satellite video
did not correspond closely with ADCP-based field measurements
when considered on a point-by-point basis, we also evaluated
whether larger-scale bulk flow characteristics could be estimated
reliably from a spaceborne platform. As one component of
this analysis, we compared velocities derived from the video
to measurements from a radar gage mounted on a bridge at
the downstream end of our study area. Importantly, this radar
sensor provided a true surface flow velocity that was more
directly comparable to the PIV output than the ADCP data,
which consisted of velocities that were vertically averaged over
the full depth of the water column (except for blanking distances
immediately below the surface and near the bed that cannot be
measured by an ADCP; Mueller, 2013). Because the radar gage
was mounted on a bridge and oriented at an oblique but nearly
vertical angle, the instrument observed an area of the river very
close to the bridge itself. This proximity to the bridge forced
us to use PIV output derived from the 0.5 Hz image sequence
because the vectors produced from the 0.25Hz sequence included
obvious edge effects associated with the bridge. In addition,
because the location of the radar gage footprint was not known
exactly, we averaged the three PIV-based velocity estimates
closest to the approximate location of the radar measurement.

FIGURE 6 | Observed (ADCP) vs. predicted (PIV) regressions for the entire study area (i.e., aggregated over all seven cross sections) for different frame rates: (A) 1 Hz,

(B) 0.5 Hz, and (C) 0.25 Hz.
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FIGURE 7 | Differences between depth-averaged velocities measured by an ADCP and surface velocity estimates inferred via PIV for different frame rates: (A) 1 Hz,

(B) 0.5 Hz, and (C) 0.25 Hz.

The radar gage recorded a surface flow velocity of 1.58 m/s at the
time (within 15 min) the satellite video was acquired, whereas
the mean of the three surface velocity estimates extracted from
the PIV output was 1.72 m/s. The velocity inferred from the
spaceborne sensor thus agreed with the bridge-mounted radar
gage to within 8.65%. This result implied that video acquired
from space could yield surface flow velocities consistent with
those obtained by another type of non-contact but near-field
streamflow measurement instrument.

We also assessed the degree to which satellite video might
yield reliable velocity information on a cross-sectional basis. A
comparison of velocities measured in the field with an ADCP
and processed with VMT and inferred from satellite video via
PIV is summarized in Figure 8, which shows, in general, a strong
agreement between the PIV-based velocity estimates and the
post-processed field observations, particularly for XS 1, 6, and
7. For XS 2 and 5, PIV underestimated the depth-averaged
flow velocity across much of the channel whereas overestimates
occurred near the banks on XS 4 and in the middle of XS 3.

To quantify this comparison, we performed an observed
(ADCP) vs. predicted (PIV) (OP) regression for each cross
section. The resulting scatter plots, best-fit OP regression lines,

and one-to-one lines of perfect agreement for the seven transects
are compiled in Figure 9. OP R2-values varied from 0.34 to 0.64
and tended to be greater where the field observations spanned
a greater range of velocity. A high R2 did not necessarily imply
reliable velocity estimates, however, and considering the intercept
and slope of the OP regression lines also was important. For
example, whereas XS 7 had a relatively high R2 of 0.56 and an
intercept near 0 and slope near 1, indicating unbiased velocity
estimates, XS 4 had an identical R2-value but an intercept greater
than 1 and a slope of only 0.441, implying that PIV tended to
overestimate the flow velocities that were observed in the field
and post-processed in VMT. A similar scenario occurred at XS
2, where the R2 of 0.6 was primarily due to the homogeneity
of the PIV-based estimates, which lead to an OP regression
slope of only 0.233, well below the ideal value of 1 for a
line of perfect agreement. Overall, however, the OP regression
results for the individual VMT-generated mean cross sections
were superior to those based on the reach-aggregated ADCP
measurement points (Figure 6), suggesting that satellite video
could yield reasonably accurate velocity estimates at the cross-
sectional scale. We also evaluated the potential to infer two
key summaries of cross-sectional hydraulics from satellite video
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FIGURE 8 | ADCP field measurements of depth-averaged flow velocity and PIV-based estimates of surface flow velocity derived from the 0.25 Hz image sequence for

seven cross sections along the Tanana River.

FIGURE 9 | Observed (ADCP) vs. predicted (PIV) regressions for seven cross sections along the Tanana River. PIV-based velocity estimates were derived from the

0.25 Hz image sequence .

by computing the mean and maximum of both the PIV-based
velocity estimates and the VMT-processed ADCP measurements
for each of the seven cross sections and comparing these values
via OP regressions. Figure 10 indicates that whereas the cross-
sectional average velocities estimated via PIV did not correspond
closely with those calculated from the field data (R2 = 0.42), the
remotely sensed data yielded much stronger agreement with the

maximum velocities observed at each cross section, with an OP
regression R2 of 0.76.

The distributions of the cross-sectional average andmaximum
velocity values derived from the field observations and satellite
video across the seven transects are summarized in Figure 11.
PIV yielded a broader range of mean velocities than the
ADCP measurements, with median values (red lines in the
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FIGURE 10 | Observed (ADCP) vs. predicted (PIV) regressions for cross-sectional (A) average and (B) maximum surface flow velocities for seven cross sections along

the Tanana River.

FIGURE 11 | Box plots comparing ADCP- and PIV-based cross-sectional (A) average and (B) maximum surface flow velocities for seven cross sections along the

Tanana River.

box plots) that were less than the field observations after
applying the cross section-specific velocity indices to convert
surface flow velocities to depth-averaged velocities (Figure 11A).
Similarly, the range of cross-sectional maximum velocities was
much wider for the remotely sensed estimates and had a lower
median value than the ADCP data. For neither the cross-
sectional average nor maximum velocities did the interquartile
range (blue box) for the PIV estimates encompass that of the
ADCP data.

We also compared the cross-sectional mean and maximum
velocities from the ADCP and the satellite video by computing
mean errors, normalizing them by the reach-averaged cross-
sectional mean and maximum velocities, and performing
statistical hypothesis tests. For the cross-sectional mean velocity,
the mean error averaged over the seven cross sections was 0.29
m/s, or 16.7% of the mean of the cross-sectional averaged
velocities. The standard deviation of these errors provided a
metric of precision and was 0.18 m/s, or 10.2% of the mean
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of the cross-sectional average velocities. A two-sample t-test
comparing the ADCP- and PIV-based velocities resulted in a
p-value of 0.005 and we rejected the null hypothesis that
the means of the cross-sectional average velocities measured by
the ADCP and inferred via PIV were equal. The results for
the cross-sectional maximum velocities were similar. The mean
error averaged over the seven cross sections was 0.40 m/s,
equivalent to 16.5% of the mean of the cross-sectional maximum
velocities. The standard deviation of these errors was 0.29 m/s,
11.8% of the mean of the cross-sectional maximum velocities.
A two-sample t-test yielded a p-value of 0.01 and we thus
rejected the null hypothesis that the means of the cross-sectional
maximum velocities measured by the ADCP and inferred via
PIV were equal. These results implied that video acquired from
space could provide reasonably precise but biased (i.e., under-
estimated relative to ADCP measurements) information on bulk
flow characteristics in a large, sediment-laden river.

4. DISCUSSION

4.1. The Role of Image Preprocessing and
Image Frame Rate in PIV
The results summarized in section 3.2 highlighted the importance
of effective image preprocessing, consistent with our past
experience with many other data sets. Preparing images for input
to PIV by enhancing water surface features proved essential both
in this study, based on satellite video, and in our previous work
using image sequences acquired from a bridge (Legleiter et al.,
2017) or a helicopter (Legleiter and Kinzel, 2020). For example,
we found that enhancing raw images with an FFT bandpass
filter and histogram equalization contrast stretch facilitated
tracking of water surface features via PIV and thus lead to
more accurate velocity estimates. Although many alternative
approaches to image preprocessing are available, we incorporated
FIJI into our workflow because this freely available, open source
software package provides a wide range of image processing tools
and is conducive to scripting, batch processing, and external,
programmatic access from other programs such as MATLAB.
Regardless of the details of implementation, this study provided
further evidence of the importance of preprocessing image
sequences so as to allow PIV algorithms to more readily detect
the advection of water surface features.

Selecting an appropriate frame rate is another critical step
in any effort to infer surface flow velocities from remotely
sensed data. In essence, PIV algorithms compare pairs of images
acquired sequentially over time to infer the displacement of
either discrete particles, as in the laboratory settings where
the technique was first developed (Raffel et al., 2007), or
distinct features on the surface of larger-scale flows in natural
channels, where various image-based velocimetry techniques are
increasingly applied (e.g., Muste et al., 2008; Bandini et al., 2021;
Eltner et al., 2020). For a given flow velocity, the time interval
between images dictates the amount of displacement that can
occur between frames and, along with the image pixel size, thus
imposes a fundamental constraint on the range of velocities that
can be inferred. For example, in a river with a surface flow

velocity of 1 m/s and an image sequence consisting of 1 m
pixels, any frame rate higher than 1 Hz would not allow sufficient
time between frames for surface features to advect by a distance
greater than 1 pixel, which is the minimum offset from the first
to the second image that could be detected by a correlation-
based algorithm. Although most PIV implementations allow
for sub-pixel peak-finding, such functionality is intended to
refine velocity estimates and does not influence the correlation
calculation upon which the inference is based. In general, the
lowest velocity detectable via PIV, denoted by vmin, is the product
of the pixel size p in m and the frame rate f in Hz: vmin = p × f .
For the satellite video used in this study, which was acquired at
a high temporal resolution, with a native frame rate of 30 Hz,
but relatively coarse spatial resolution, with a ground sampling
distance of 0.927 m after geo-referencing, our results suggest
that the image pixel size was a key limitation on the range of
velocities that could be inferred via PIV, as well as the accuracy
and precision of those estimates.

To gain insight regarding the impact of image frame rate on
PIV-based velocity estimates, we extracted correlation matrices
generated as an intermediate output by the PIVlab algorithm for
each node of the PIV output grid. Conceptually, the correlation
matrix summarizes the similarity or overlap between the textural
patterns present in two sequential images when the first is
offset relative to the second by various lags. The location of
the correlation peak indicates the number of rows and columns
by which the first image must be translated to produce the
strongest match with the second and is assumed to represent
the magnitude and direction by which features are advected by
the flow during the time period between frames. Although the
corresponding velocity estimate is based on the peak, inspecting
the full correlationmatrix can provide an indication of the quality
of this estimate (Raffel et al., 2007; Le Coz et al., 2010). For
example, the height of the peak relative to the other offsets
represented within the correlation matrix can be interpreted as
an index of signal to noise. Raffel et al. (2007) suggested that
this metric, defined as the ratio of the height of the correlation
peak to the mean correlation value for the entire matrix, could be
used to assess the validity of velocity estimates but also cautioned
that mismatched images or stationary background features can
produce high correlations. An advantage of this approach is
that normalizing correlation values, which depend on image
brightness, allows for comparison of correlation matrices from
various image data sets.

In this study, we extracted correlation matrices from the
PIV output grids generated from the 1, 0.5, and 0.25 Hz
image sequences for a common, fixed location to help inform
our analysis of the effects of image frame rate (Figure 12).
In addition, as a point of comparison, we also included the
correlation matrix from the same position in the Tanana River
derived from video acquired via helicopter in July 2019 that lead
to very strong agreement between PIV-based velocity estimates
and the same ADCP field measurements used in this study
(Legleiter and Kinzel, 2020). Importantly, although the helicopter
data had a frame rate of 1 Hz, equivalent to the highest frame rate
retained from the satellite video, these images had a pixel size
of approximately 15 cm, one-sixth that of the satellite images.
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For the 1 Hz satellite sequence, a single, moderately high peak
occurred near the center of the matrix (Figure 12A), indicating
a very small displacement of the textural pattern from one
frame to the next and suggesting that water surface features
did not have sufficient time to advect a measurable distance
(i.e., multiple pixels) between frames. For the 0.5 Hz satellite
sequence (Figure 12B), the peak is offset from the origin of
the matrix to a greater degree and in a direction (to the left)
consistent with the known flow direction (to the west) of the
Tanana River. Further reducing the frame rate to 0.25 Hz resulted
in a more diffuse, lower correlation peak, as well as several other
offsets with correlations nearly as high, that was farther from
the center of the matrix, suggesting that although the pattern
match between frames was weak, it was maximized at a more
realistic position (Figure 12C). Finally, the correlation matrix
for the 2019 helicopter data, in contrast, was dominated by
a much stronger, clearly defined peak well-separated from the
origin (Figure 12D), implying a more reliable velocity estimate.
We attribute this improvement to the smaller pixel size of the
airborne, rather than spaceborne, data.

Further information on the reliability of PIV-derived velocity
estimates can be obtained by mapping the peak correlation
values, one for each node in the PIV output grid, spatially
throughout the region of interest (Figure 13). In general, the
peak correlation is inversely proportional to the displacement.
In the trivial, limiting case of an image pair containing only
stationary features, a single correlation spike with a value of
1 would occur at a pixel offset of 0. In the context of a

river, smaller displacements and thus higher correlations would
be expected in lower-velocity areas along the margins of the
channel, as observed along the south bank of the Tanana for
all three frame rates extracted from the satellite video as well
as the 2019 helicopter data. Closer inspection of the correlation
maps in Figure 13, for which the satellite data were subset
to match the smaller spatial footprint of the helicopter-based
image sequence, also indicated that correlations were higher
throughout the channel proper for satellite image sequences with
greater frame rates. Because in this context stronger correlations
correspond to smaller, even negligible, displacements of surface
features from frame to frame, themore extensive warm, saturated
tones in the correlation map produced from the 1 Hz sequence
(Figure 13A) than in the maps for the 0.5 or 0.25 Hz sequences
(Figures 13B,C) indicate smaller translations for the higher
frame rate, implying less reliable velocity estimates. For the
helicopter data with six-fold finer pixels, this effect was evenmore
evident, as the map of peak correlation values in Figure 13D

consists primarily of very low, even negative correlations due
to the greater displacements, in units of pixels, from frame to
frame, even though the images were separated by only 1 s. These
results imply that whereas a frame rate of 1 Hz was excessive
for the relatively coarse pixels of the satellite data, the same
capture interval was appropriate for the smaller ground sampling
distance of the images acquired from the helicopter. The effects
of image frame rate are thus closely intertwined with those
of image pixel size—an imaging system’s temporal and spatial
resolution must be considered in tandem. This analysis suggests

FIGURE 12 | Correlation matrices for the same location in the channel for satellite video resampled to three different frame rates, (A) 1 Hz, (B) 0.5 Hz, and (C) 0.25

Hz, and (D) video acquired from a helicopter in 2019 at a frame rate of 1 Hz and with a pixel size of 0.15 m, in contrast to the 0.93 m pixels of the satellite video. To

enable comparison, each correlation matrix is normalized by its mean value.

FIGURE 13 | Maps of peak correlation values for satellite video resampled to three different frame rates, (A) 1 Hz, (B) 0.5 Hz, and (C) 0.25 Hz, and (D) video acquired

from a helicopter in 2019 at a frame rate of 1 Hz and with a pixel size of 0.15 m, in contrast to the 0.93 m pixels of the satellite video.
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that, given the limited spatial resolution achievable via satellite
video, relatively low frame rates might lead to more reliable
velocity estimates.

4.2. Potential Applications, Persistent
Limitations, and Directions for Future
Research
In practice, many streamflow monitoring applications, most
notably discharge measurement, rely upon data from individual
channel cross sections, not continuous, two-dimensional flow
fields such as those that can be produced from remotely
sensed data via PIV. For this reason, we assessed the degree
to which satellite video could provide velocity information of
acceptable accuracy on a cross-sectional basis. Moreover, if
the objective is to measure river discharge, further aggregation
of PIV-derived velocity fields could be sufficient; a discharge
calculation can be as simple as the product of the channel’s
cross-sectional area and the mean flow velocity for the cross
section. Similarly, the probability concept described by Fulton
et al. (2020a,b) provides a means of estimating discharge based
on the maximum surface velocity for a cross section, as well
as an independent source of information on cross-sectional
area. In either case, the error in the calculated discharge is
directly proportional to the error in the mean or maximum
velocity for the cross section, implying that if reliable estimates
of these bulk flow characteristics could be derived from satellite
video, this approach could become a viable tool for non-contact
streamflow measurement.

In this study, we observed stronger agreement between
PIV-based estimates and field observations for cross-sectional
maximum velocities than for cross-sectional mean velocities.
This result was consistent with our analysis of the effects of
image frame rate: higher velocities were more reliably inferred
from the 0.25 Hz image sequence because greater displacement
of surface features between frames occurred in areas of faster
flow. Using the maximum rather than the mean cross-sectional
velocity is advantageous in this context because this approach
focuses on the high velocity core of the channel and avoids
lower velocity zones near the banks where small frame-to-frame
displacements might not be detectable at the spatial resolution of
the satellite video, even at a low frame rate. Improving the ground
sampling distance that can be achieved from space thus emerges
as a key technical requirement for remote sensing of river
discharge. Two additional limitations are the need to: (1) convert
surface velocities inferred via PIV to depth-averaged velocities
for calculating discharge, typically by assuming or calibrating a
velocity index (Mueller, 2013); and (2) obtain an independent
source of information on channel cross-sectional area, either
surveyed in the field or obtained via non-contact methods.
The latter issue is particularly challenging because standard
approaches to mapping river bathymetry from remotely sensed
data, such as spectrally based depth retrieval and bathymetric
lidar (e.g., Legleiter and Harrison, 2019), are not well-suited to
the large, turbid rivers where flow velocities can be inferred by
tracking sediment boil vortices. A crucial objective for future
research is thus to develop new, complementary technologies

for observing both velocity and depth and design multi-sensor
payloads accordingly.

Although this study demonstrated the potential for remote
sensing of surface flow velocities from space to contribute to non-
contact streamgaging programs, our work also called attention
to several important limitations of this approach, beyond
the general environmental and imaging system considerations
described by Legleiter and Kinzel (2020). First, the ∼1 m pixel
size of currently available satellite video is relatively large in
comparison to image data acquired from an airborne platform
such as a helicopter or, to an even greater degree, sUAS.
Because coarser pixels dictate that more time must pass between
successive images for frame-to-frame feature displacements to be
detectable, lower frame rate image sequences must be provided
as input to PIV algorithms. A potentially important question
raised by the use of lower frame rates is the persistence of the
sediment boil vortices that were tracked by the PIV algorithm,
which allowed us to avoid seeding the flow with artificial tracers.
For example, if the water surface features associated with these
vortices are very short-lived, capturing an image only once every
four seconds might be inadequate to detect their movement. Our
initial results implied that frame rates as low as 0.25 Hz might
be sufficient, but further research on the dynamics of sediment
boil vortices, building upon earlier work by Fujita and Komura
(1994), Fujita and Hino (2003), Chickadel et al. (2009), and
Talke et al. (2013) is needed. Another consequence of using a
lower frame rate (e.g., 0.25 Hz) is a reduction in the number of
images retained for a given video duration. The resulting limited
sample size could lead to less accurate velocity estimates because
the performance of ensemble correlation PIV improves with the
number of images (Strelnikova et al., 2020). In this study, the
original 60 s video had to be truncated due to cloud cover and we
were left with only a handful of images for analysis: five for the
0.25 Hz sequence. If imaging conditions were more favorable, a
longer dwell time might yield more reliable velocity estimates for
a given frame rate. Future research could examine the sensitivity
of PIV output to image sequence duration for different frame
rates, similar to the analysis we performed for helicopter data
(Legleiter and Kinzel, 2020). Another constraint imposed by the
relatively coarse pixels of satellite video and the resulting inability
to resolve small frame-to-frame feature displacements is the need
to filter out low velocity estimates that fail to satisfy the vmin =

p × f criterion. Applying this threshold could bias calculations
of cross-sectional mean velocities and exclude low velocity zones
that might be of primary interest for applications such as habitat
assessment and contaminant transport characterization.

Because the relatively coarse pixel sizes of satellite video
dictate the use of frame rates two orders of magnitude smaller
than the 30 Hz at which the video are acquired, one instead
might consider using still images acquired in rapid succession.
For example, the Planet Labs SkySat constellation can acquire
panchromatic video with 1 m pixels or multispectral images
with 0.5 m pixels, which would allow lower velocities to be
resolved for a given capture interval. In addition, the spectral
information provided by the still images could facilitate feature
detection and tracking. Planet Labs already offers a rapid revisit
product that provides coverage up to nine times per day, but
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the ability of the current configuration to acquire multiple
images over much shorter time periods has not been tested.
In principle, a stereo acquisition could take advantage of the
off-nadir pointing capability of a single SkySat to provide four
images acquired on the same pass and separated in time by a few
seconds. Such an approach would build upon the work of Kääb
et al. (2019) in northern rivers by providing higher spatial and
temporal resolution and greater flexibility in site selection and
image acquisition. Although spaceborne platforms are subject
to cloud cover that helicopters, fixed-wing aircraft, and sUAS
can fly beneath, satellites offer some distinct advantages, such
as safety, efficiency, ease of tasking, and potentially cost, that
could make them more conducive to operational streamflow
monitoring. Similarly, high-altitude, long-endurance (HALE)
UAS capable of observing a particular location of interest for
extended periods of time represent another intriguing prospect.
Further technological development and additional research
effort, including coordinated acquisition of remotely sensed
data and field measurements across a broader range of river
environments, are needed to explore these possibilities.

5. CONCLUSION

Large rivers in remote, inaccessible locations, including much
of the state of Alaska, pose significant challenges for field-
based streamgaging operations. In an ongoing effort to improve
safety, reduce cost, and expand coverage, this study explored
the possibility of estimating surface flow velocities from satellite
video, building upon previous work based on near-simultaneous
(∼ 90 s capture interval) acquisition of satellite still images (Kääb
et al., 2019) and video acquired from a helicopter (Legleiter
and Kinzel, 2020). Current spaceborne imaging systems can
collect 60 s of panchromatic video at 30 Hz with a pixel size of
approximately 1 m and their orbital perspective ensures a broad
field of view encompassing both banks, which is critical for image
stabilization and geo-referencing. This type of data could thus
play a central role in non-contact streamgaging programs and
provide spatially distributed velocity information to support a
number of other riverine applications. As in the helicopter-based
study, which focused on the same sediment-laden river in central
Alaska, we exploited naturally occurring sediment boil vortices
to perform PIV analyses, avoiding the need to seed the flow with
artificial tracers. Although the coarse pixel size of the satellite
video relative to airborne images dictated the use of low frame
rates and precluded detection of velocities less than ∼1 m/s, this
study demonstrated the potential to infer surface flow velocities
from space. Salient outcomes of this investigation include the
following principal conclusions:

1. The individual frames extracted from the satellite video were
successfully stabilized relative to one another, with sub-pixel
maximum displacement errors.

2. Similarly, the first frame of the stabilized image stack was
accurately geo-referenced to an orthophoto base, with a typical
error of 1.48 m that did not influence velocity estimates based
on feature displacements from frame to frame and allowed us

to confidently associate these PIV-derived estimates with field
measurements to assess their accuracy.

3. Preprocessing images to enhance the detection and tracking of
water surface features is an essential prerequisite to effective
PIV and was achieved in this study by applying an FFT
bandpass filter and histogram equalization contrast stretch
implemented within open source image processing software.

4. The strongest agreement between PIV-derived surface flow
velocities and field measurements of depth-averaged velocity
occurred for the lowest frame rate we considered, 0.25 Hz,
but remained weak (R2 = 0.39). Only at such a low frame
rate did water surface features have sufficient time to advect a
distance equivalent to several pixels between successive image
frames. The normalized mean bias and normalized RMSE of
the velocities inferred from the 0.25 image sequence were
3% and 29%, respectively, of the reach-averaged velocity
measured in the field.

5. The surface flow velocity inferred from satellite video matched
an independent measurement from a bridge-mounted radar
gage to within 8.65%.

6. Aggregating the PIV-derived velocities to the cross-sectional
scale improved agreement with seven mean cross sections
produced by post-processing the field data, with R2-values
as high as 0.64, although biases were observed for some of
the transects.

7. Two key summary metrics of cross-sectional hydraulics, the
mean and maximum velocity, were estimated reliably from
satellite video, with an R2 of 0.76 for the cross-sectional
maximum velocity. However, comparing the distributions of
these two channel attributes via statistical hypothesis tests
indicated that the mean values of the cross-sectional mean
and maximum velocities derived via PIV and computed
from the field data were significantly different from
one another. Multiplying the original PIV-derived surface
flow velocities by a cross section-specific velocity index
tended to yield underestimates of the depth-averaged
flow velocity.

8. Examining the correlation matrices produced as an
intermediate output by PIV algorithms can yield insight
on the interactions between image frame rate and spatial
resolution, which must be considered in tandem. This analysis
helped to explain the superior performance of the lower, 0.25
Hz frame rate image sequence as a consequence of the ∼1 m
pixel size of the satellite data.
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