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This study analyses the impact of assuming perfect foresight of future agro-hydrological

events in hydroeconomic analysis of water infrastructure projects. The impact is

evaluated based on the estimated monetary benefits of a proposed water infrastructure

investment diverting Yellow River water to the Hai River basin in China, resulting in supply

augmentation and improved water quality. The impact of foresight is quantified as the

change in project benefits, evaluated with different assumed lengths of future foresight

compared to a perfect foresight benchmark. A hydroeconomic optimization model

formulated as a deterministic Linear Program, LP, is optimized to represent the perfect

foresight benchmark. Imperfect foresight is modeled by wrapping the hydroeoconomic

optimization model in a Model Predictive Control, MCP, framework. Using this LP-MPC

framework, different lengths of foresight can be modeled by continuous re-optimizations

with updated forecasts over a planning horizon. The framework is applied to the

water-scarce and polluted Hai River basin in China, which is suffering from groundwater

overdraft and is dominated by agricultural irrigation demands. The hydroeconomic

optimization model describes the nine largest reservoirs in conjunctive use with the major

groundwater aquifers. The water infrastructure project, allowing transfers of Yellow River

water to the plain area of the Hai River basin, is evaluated under long-term sustainable

groundwater abstraction constraints, and joint water allocation and water quality

management. The value of foresight in agricultural water allocations is represented,

using a model that links yield response to water allocations, accounting for delayed

yields in agricultural irrigation. Estimated benefits of the proposed project evaluated

with decreasing lengths of foresight and compared to the perfect foresight benchmark
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show that an assumption of perfect foresight underestimates the actual benefits of the

water infrastructure investment in the irrigation intensive Hai River basin. This study

demonstrates that it is important to evaluate the impact of assuming perfect foresight

in any hydroeconomic analysis, to avoid misleading conclusions regarding the costs and

benefits of planned projects.

Keywords: hydroeconomic optimization, model predictive control, water resources management, integrated

modeling, China, irrigation, groundwater overdraft, perfect foresight

INTRODUCTION

Water resources planning often deals with the question of “how
to best adapt to future conditions?” Such adaptation can include
investments in new water infrastructure or modified water

allocation schemes. Decision support models for water resources

management address questions about future decisions of “what
if?” and “what is best?,” but often assume perfect foresight of

future conditions (e.g. Medellin-Azuara et al., 2015; Burek et al.,
2018). The impact of assuming perfect foresight of future agro-
hydrological events in hydroeconomic modeling is the focus of
this study.

Hydroeconomic optimization models can identify optimal
water resources management strategies under one or several
objectives, subject to system constraints. In highly engineered
river basins with multiple surface water reservoirs and strong

interactions between the hydrological cycle and human
abstractions, the level of future foresight will influence the
performance of the water resources management and water
infrastructure investments. With an assumption of perfect
foresight, all decisions of storage and release will be based on an
anticipation of all future droughts and floods. In reality, water
managers are not able to predict exactly how the future will play
out, which might result in significant costs for the water users
in the system. Such unforeseen costs might also be reflected in
inaccurate estimates of water infrastructure investments benefits
in a dynamic system.

The effect of future uncertainties is a continuous subject of
research in reservoir operation. Methods based on Stochastic
Dynamic Programming, SDP, were developed to account for
the stochastic properties of reservoir inflow. These methods
are limited by the curse of dimensionality, which is inherent
in Dynamic Programming (Bellman, 1961). The method has
been used, in combination with the water value method (Stage
and Larsson, 1961), to optimize and simulate water resource
management in systems with a limited number of surface water
reservoirs. An example is the study by Davidsen et al. (2015),
which had to be aggregated into one synthetic reservoir, to
mitigate the curse of dimensionality. Faber and Stedinger (2001)
contributed to the representation of stochastic water availability
in SDP by integrating ensemble stream flow prediction forecast
in Sampling Stochastic Dynamic Programming, SSDP, instead of
applying the more widespread Markov Chain probabilities. With
the development of Stochastic Dual Dynamic Programming,
SDDP, (Pereira and Pinto, 1991), more complex systems
with multiple reservoirs could be represented in optimization

problems (e.g., Tilmant et al., 2008; Pereira-Cardenal et al.,
2016). The SDDP method is sensitive to initial reservoir
storage conditions as discussed by Rougé and Tilmant (2016)
and yields the highest accuracy around the optimal solution,
making it less suitable for adaptive management. Management
of complex water systems is often formulated as deterministic
perfect foresight model, but such models will underestimate
system costs if not modified to consider the stochasticity of
water availability. Khadem et al. (2018) is an example of a
study that used evolutionary algorithms to estimate carry-over
storage value functions in a complex water system model, in
order to represent inter-annual uncertainties of water availability.
Alemu et al. (2011) accounted for future uncertainties by
applying a continuous control strategy, similar to the concept
of Model Predictive Control, MPC, to a water resources
management problem. They used continuous re-optimization
with ensemble forecasts of hydrological inflow and energy
prices to demonstrate the value of foresight on a single
reservoir operation system for hydropower benefits over one
hydrological year.

MPC is a well-known control strategy for optimization
problems. It has its origin in industrial operation control,
developed with the purpose of keeping desired output trajectories
despite system disturbances (Richalet et al., 1978). It can be
viewed as a system-wide control strategy of a dynamic system,
designed for adaptive management. MPC operates with a control
loop that continuously re-optimizes the system influenced
by future disturbances. These disturbances can be stochastic
variables, such as climate, hydrological inflow, demands etc.
The use of MPC has previously been demonstrated in energy
systems with hydropower benefits (Arnold and Andersson, 2011)
and in real-time control of surface water in channeled/piped
systems (Tian et al., 2017; Schou et al., 2018). Biglarbeigi
et al. (2018) quantified the impact of future hydrological inflow
and evapotranspiration uncertainties on multi-purpose reservoir
operation from future ensemble simulations.

This study demonstrates the impact of assuming perfect
foresight in hydroeconomic analysis by comparing a
deterministic benchmark model with perfect foresight to an
MPC-based model framework that simulates system operation
under imperfect foresight. Imperfect foresight is modeled with
an MPC framework wrapped around a deterministic Linear
Programming, LP, model that is continuously fed with updated
forecasts of climate and water availability and re-optimized over
a planning horizon. The deterministic hydroeconomic model
optimizes a multi-reservoir, dynamic system with conjunctive
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use of surface water and groundwater, that is challenged by
water pollution and water scarcity. The model framework is used
to quantify the differences in estimated benefits from a water
infrastructure project with and without the assumption of perfect
foresight. Re-optimization of the system performance over a
planning horizon with different lengths of foresight provides
quantitative estimates of the costs of adapting to unexpected
future agro-hydrological events. The model is applied to the
complex water management system of the Hai River basin in
China, where a water infrastructure project “Yellow-into-Jin”
is proposed to divert water from the Yellow River to the plain
area of the basin. Irrigation agriculture is a major water user
in the Hai River basin. The costs of uncertain future water
availability will be especially pronounced among the agricultural
users where unforeseen droughts can result in the loss of a full
growth season yield. In the model framework, the agricultural
scarcity costs are represented through the concept of delayed
yield, where the crop yield is dependent on all previous water
allocations during the entire growing season. By quantifying
optimal operation under perfect foresight using LP and under
imperfect foresight with the LP-MPC model, we are able to
compare the resulting economic benefits, hence the impact of
assuming perfect foresight. Additionally, comparing different
lengths of foresight enables us to estimate the direct case-specific
value of improved forecasts.

DATA AND METHODS

Study Area
The Hai River basin, outlined in Figure 1, is one of the seven
major Chinese river basins. It is located in a semi-arid continental
monsoon climate with a highly seasonal precipitation pattern,
resulting in 70–85% of the precipitation falling between June and
September. The river basin contributes to around 10% of China’s
agricultural output (White et al., 2015) and is a part of the North
China Plain, which is China’s most intensively used agricultural
area. A double-cropping system with irrigation-intensive winter
wheat and dominantly rainfed summer maize has been identified
as one of the major drivers for the groundwater depletion
that has been going on for decades. On average, ∼5.5 km3

groundwater has been overexploited every year from 2002 to
2013 in the Hai River basin, according to Shen et al. (2015).
Surface water resources are mostly generated in the mountainous
regions and the majority of the runoff is stored and regulated
by the nine largest reservoirs of the basin, each with a capacity
>1 km3. The intensively cultivated fields surround megacities
as Beijing and Tianjin, and the area is densely populated. To
alleviate the water scarcity in the region the South-to-North
Water Transfer Project (SNWTP) was constructed to transfer
water from the Yangtze River basin to the thirsty north (NSBD,
2001a,b). Themiddle and eastern routes of the SNWTP terminate
in Beijing and Tianjin and the transfer of water all the way
to Beijing has been functional since 2014 (NSBD, 2017). The
Yellow River basin also feeds the Hai River basin with inter-
basin transfers, both as abstractions along the lower reaches of
the Yellow River, which makes up the southern fringe of the Hai
River basin, as well as via an underground channel system, the

“Yellow-into-Jin” project, further upstream the Yellow River. In
addition to water scarcity, the Hai River basin also has the overall
worst surface water quality of the major river basin in China.
Chinese water quality standards classify surface water into six
classes ranging from class I to <IV (Ministry of Environmental
Protection, 2002), corresponding to good to very bad water
quality, respectively, based on a set of water quality parameters.
In the Hai River basin 36.8% of the monitored river network
in a state of bad or very bad water quality (Ministry of Water
Resources, 2016).

Hydroeconomic Model Input Data
The following sub-sections describe the data and methods used
to represent all water availability, water demands and water
associated costs in the hydroeconomic optimization model at
monthly time steps. This study builds on top of previously
published work by Martinsen et al. (2019a,b). For an elaboration
on the methods used to generate model input data of water
demands and water resources estimates the reader is referred
to Martinsen et al. (2019b). A detailed description of the
methods used to represent water quality data in the model
and the implementation of water quality constraints in the
hydroeconomic optimization model can be found in Martinsen
et al. (2019a). Table 1 provides an overview of all acronyms and
abbreviations used in the paper.

Water Demands
Water demands in the Hai River basin were described by
four sectors of urban domestic, industrial, ecological and
agricultural water demands. Agriculture was further subdivided
into wheat, maize, vegetables, and orchards. Monthly time
series of the non-agricultural water demands were estimated
based on statistical data from the Chinese Statistical Yearbook
(National Bureau of Statistics of China, 2015). Urban, industrial
and ecological water demands were distributed spatially by
scaling statistics on per capita water use with the 1 × 1 km
resolution Landscan2016 population density product (Bright
et al., 2017) and subsequently aggregated to the 16 model
sub-basins (see Figure 2). Agricultural water demands, Demagr,
were determined from the FAO 56 method (Allen et al., 1998)
based on the cultivated area, Ac, for each crop, c, regional
crop specific coefficients, Kc, and monthly precipitation and
reference evapotranspiration time series, P and ET0, for each
time step, t:

Demu=agr,t = Ac ·
(

ET0,t · Kc,t − Pt
)

Water Availability

Runoff Modeling
The mountainous sub-basins upstream each of the nine largest
reservoirs were assumed to be the major runoff generating
areas within the model region. Surface water availability for use
and storage within the Hai River basin was simulated with a
Budyko rainfall-runoff model (Zhang, 2008). Three hydrological
stations Goutaizi (41◦35’N, 117◦03’E), Pingshan (38◦15’N,
114◦12’E), and Kuangmenkou (36◦27’N, 113◦47’E) were chosen
for model parameter calibration. The three minor sub-basins
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FIGURE 1 | Map of the Hai River basin, the nine major surface water reservoirs and the inter-basin transfers from the Yellow River “Yellow-into-Jin” and the South to

North Water Transfer Project (SNWTP). Modified from Martinsen (2019).

upstream these stations were located distant from each other
in the mountainous region and their hydrographs seemed
relatively undisturbed by human abstractions. Daily in-situ
observed runoff at the three hydrological stations were split into
a calibration period from 1971 to 1991 and a validation period
from 2006 to 2011. Meteorological forcing data from the China

Meteorological Agency (2017) consisted of daily precipitation as
well as mean, maximum and minimum temperature data, which
was interpolated at a 0.5 degree resolution by Mo et al. (2015).
A proxy-basin validation was subsequently used to populate
all nine upstream sub-basins with the best suitable rainfall-
runoff model parameter sets for surface water runoff modeling
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using the meteorological forcing data. The meteorological
forcing data was used to generate historical sub-basin
time series of runoff, evapotranspiration and precipitation
for an 8-years period covering 2007–2014. A detailed
description of the rainfall-runoff calibration can be found in
Martinsen et al. (2019b).

Groundwater Recharge
Groundwater availability in the model region was based on
recharge rates for the major groundwater recharge areas in the
Hai River basin. Three major recharge areas were delineated
from the map “Maps Showing Geology, Oil and Gas Fields, and
Geologic Provinces of the Asia Pacific Region” completed by the
U.S. Geological Survey (Steinshouer et al., 1997). These include
the Taihang Yanshan Fold Belt and Bohaiwan Basin which can
be seen as hatched areas in Figure 2. Cao et al. (2013) have
conducted a study using numerical groundwater modeling to
estimate a recharge rate to the plain region of the Hai River
basin, defining recharge as the main calibration parameter. Based
hereon, and on other studies on groundwater recharge in the
region by Shu et al. (2012) and Kendy et al. (2003), an average
recharge rate of 120mm/years was applied to the Bohaiwan Basin
recharge area. The recharge rate to the smaller mountainous
recharge areas were estimated by scaling the aforementioned
recharge rate using precipitation to recharge ratios in the areas
missing information on recharge.

Economic Data Set
A spatially distributed data set of economic costs and benefits
associated with water allocations in the Hai River basin was
collected and can be seen in Table 2. Curtailment costs cover
the unit cost of not covering the full water demand. Water
curtailments in grain producing agriculture is formulated as
lost benefits from reduced yield. Curtailment costs for grain
producing water users are based on Gan et al. (2008), and
related to yield benefits by scaling the marginal value of irrigation
water to the water demand of the cultivated area of each
agricultural water user represented in the model setup. Yield
benefits are further elaborated on in section Delayed Yield
of Agricultural Grain Production. Groundwater pumping costs
were 0.1 and 0.8 yuan/m3 for the shallow and deep plain aquifer
units, respectively. For the mountainous groundwater aquifers
it was 0.4 yuan/m3 (Martinsen et al., 2019a). Sub-basin specific
treatment costs for water allocations with water qualities inferior
to user water quality demands are based on data fromH2OChina
(2000) and can be found in Martinsen et al. (2019a).

Concept and Model Framework
This section explains the conceptual modeling framework of
this study. In the subsequent sections each model component
is described in more detail. The conceptual model framework
developed in this study consists of three main components:
(1) A statistical forecasting model used to simulate synthetic
ensemble forecasts of climate and runoff data, (2) a deterministic
hydroeconomic optimization model, formulated as an LP,
optimizing water allocations in the Hai River basin, and (3)
an MPC routine, also described as the LP-MPC framework,

TABLE 1 | List of acronyms and abbreviations used in the paper.

Model framework

f Length of foresight

H Planning horizon

LP Linear programming

MPC Model predictive control

pf Perfect foresight

t Time step

Forecasting model

ET Evapotranspiration

Lcov Lower triangular Cholesky decomposition

P Precipitation

Q Runoff

r1 Lag-one autocorrelation coefficient

s Standard deviation

η Stochastic element

Hydroeconomic optimization model

α Groundwater overdraft scaling factor

Ac Cultivated area

By Yield benefit

c Crop

caq Cost of groundwater pumping

cc Cleaning cost of inferior water quality

ccc Curtailment cost

Def Deficit

Dem Demand

ETa Actual evapotranspiration

ETc Crop evapotranspiration

ET0 Reference evapotranspiration

FP Flow path

GRS Groundwater reservoir storage

gw Groundwater

I Inter-basin transfer

Kc Crop coefficient

Ky Yield response factor

mv Marginal value

q Water quality

Re Groundwater recharge

RS Reservoir storage

s Crop growing season

S Crop state

sw Surface water

u User

Yact Actual yield

Ymax Maximum yield

developed to continuously re-optimize the deterministic model
(component 2) with updated ensemble forecasts (component
1) in each time step, t, over a moving horizon within a fixed
planning horizon, H. The model framework was used to evaluate
the impact of having “imperfect foresight,” as more representative
of the reality, compared to assuming perfect foresight in the
deterministic LP model. A flowchart of describing the model
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FIGURE 2 | Conceptual illustration of the 16 sub-basins of the optimization model, the major groundwater recharge areas and the network of water sources (RR, I)

and sinks (RS, Env, D) used to formulate the model flow path decision variables.
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TABLE 2 | Economic input data of curtailment costs of monthly curtailments and yield benefits at the end of the growing season.

Sub-basin Curtailment costs (yuan/m3) Benefits of Ymax (million yuan)

Non-grain Urbanb Industryb Ecologicalc Summer maize Winter wheat Maize Spring

agriculturea (double cropping) (double cropping) wheat

1 13.6 2 2.4 1.5 5,107 2,394 2,252 0

2 7.4 2.7 5.6 1.5 0 0 489 90

3 12.3 2.7 5.6 1.5 0 0 2,234 410

4 12.3 2.7 5.6 1.5 65 31 109 0

5 24.7 2.6 4.2 1.5 0 0 4,057 384

6 24.7 2.3 3.1 1.5 0 0 11 18

7 39.2 2.3 3.1 1.5 0 0 528 232

8 39.2 2.5 3.9 1.5 0 0 148 159

9 14.95 2.1 2.8 1.5 3,547 1,889 1,750 0

10 39.2 2.6 4.8 1.5 0 0 690 495

11 7.4 5 9.9 1.5 77 49 379 0

12 13.6 4 6.3 1.5 2,803 1,361 2,415 0

13 14.2 3.2 4.7 1.5 16,838 7,906 9,107 0

14 12.3 3.5 5.9 1.5 950 430 1,364 0

15 7.4 4.9 7.9 1.5 433 213 546 0

16 24.7 2.3 3.1 1.5 0 0 225 91

Data sources: aGan et al. (2008), bH2O China (2000), cWorld Bank (WB) (2001).

components (rainfall-runoff model and statistical forecasting
model) and input data, as well as data coverage periods, for
generating the synthetic runoff time series can be seen in
Figure 3. Simulated runoff from the rainfall-runoff model was
used in the parameterization of the statistical forecasting model
to generate synthetic forecasts. A schematic illustration of the
setup used to evaluate the impact of “imperfect foresight”
vs. perfect foresight can be seen in Figure 4. The statistical
forecasting model was used to generate synthetic monthly
forecasts of runoff, Q, precipitation, P, and evapotranspiration,
ET. For the perfect foresight benchmark a single synthetic
data set of Q, P and ET was generated, covering the planning
horizon of 10 years. This time series represented a “true” perfect
foresight benchmark and was used as runoff and climate input
data in the deterministic LP hydroeconomic optimization model.
Imperfect foresight wasmodeled by the LP-MPC framework with
a moving horizon performing continuous re-optimization over
each time step of the planning period. Imperfect foresight was
represented by f months of foresight, informed by the “true”
perfect foresight time series, followed by a future ensemble
with 50 equally likely forecasts generated by the auto-regressive
statistical forecasting model. In order to quantify the impact of
different forecast qualities, the LP-MPC framework was run using
different lengths of foresight, f, varying from 1 to 12 months,
followed by the ensemble forecast in each moving time step.
Figure 5 shows a conceptual illustration of the moving horizon
imperfect foresight with continuous ensemble forecasting used
for the LP-MPC framework, compared to perfect foresight
time series. End-constraints of model surface water reservoir
and groundwater aquifer storages in the final time step of the

planning horizon were based on pre-optimized average yearly
storage policies of an ensemble of 50 synthetic time series over
a sufficiently long period, to represent a wide range of climate
conditions. The deterministic perfect foresight benchmark was
optimized using the same initial and end storage constraints
matching the LP-MPC model. Both the perfect foresight and LP-
MPC routine were run for a range of groundwater scenarios,
representing a transition from unlimited groundwater overdraft
to sustainable abstractions. The whole setup was run with and
without the proposed water infrastructure project implemented
in the hydroeconomic optimization model, to quantify the
difference in estimated project benefit between the perfect
foresight benchmark and the imperfect foresight scenarios. The
impact analysis (see Figure 4) of having imperfect foresight
was evaluated as the difference in project benefits estimated
with the LP-MPC model framework compared to the project
benefits with the perfect foresight benchmark. Each component
of the model framework is explained in more detail in the
following sections. First, the statistical forecasting model is
introduced in section Forecasts of Synthetic Runoff and Climate
Data. The deterministic LP hydroeconomic optimization model,
optimizing water allocations in the Hai River basin is introduced
in section Deterministic LP Hydroeconomic Optimization
Model. Then the implementation of agricultural crop states in the
deterministic model, representing delayed yield in the LP-MPC
framework, is explained in section Delayed Yield of Agricultural
Grain Production. Lastly, a more detailed description of the
LP-MPC re-optimization routine is presented algorithmically in
section Implementation of the Model Predictive Control Re-
Optimization Routine.
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FIGURE 3 | Flowchart describing the generation of synthetic forecasting data. Processes are shown in gray rectangles, decisions in diamond shapes and

input/outputs as free text.
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FIGURE 4 | Conceptual illustration of the model framework for the impact analysis of imperfect foresight vs. perfect foresight. Model outputs from the statistical

forecast model are shaded in dark gray whereas the process of optimization with the deterministic LP hydroeconomic model is shaded in light gray.

Forecasts of Synthetic Runoff and Climate
Data
The first order periodic autoregressive Thomas-Fiering model
(Harms and Campbell, 1967) was used for two purposes: (1) To
simulate synthetic future time series of P, ET, and Q for each sub-
basin used to represent a wide range of hydrological conditions
in the LP optimization model, and (2) as a forecasting tool in the
LP-MPC framework.

An example of the calculation for runoff can be seen below:

Qt,m − Qm = r1,m
sm

sm−1

(

Qt,m−1 − Qm−1

)

+sm

√

1− r21,m Lcovηt,m

For a monthly hydrological time series, 36 parameters had
to be estimated: the standard deviation sm and the average

runoff Qm for each month, m, of the year, and the lag-
one autocorrelation coefficient r1,m between each month. The
data was log-transformed prior to applying the Thomas-Fiering
model to ensure non-negative runoff data. The correlation
between the time series in each sub-basin was modeled
with correlated random numbers. The stochastic element,
random numbers η with a zero mean and unit variance, was
correlated by multiplication with the lower triangular Cholesky
decomposition of the sub-basin time series’ covariance matrix,
Lcov (Loucks et al., 1981). The covariance was computed
from the seasonal standardized P, ET and Q time series in
each model sub-basin. Historical climate data and rainfall-
runoff simulations for 2007–2014, described in section Runoff
Modeling, were used to estimate the parameters of the
Thomas-Fiering model.

Deterministic LP Hydroeconomic
Optimization Model
The hydroeconomic optimization model is the core of the model
framework, optimizing water allocations for any given water
availability and climate input data. It was based on a model set
up for the same case study area and water management problem,
which is described in two recent publications (Martinsen
et al., 2019a,b). The model setup optimized water allocations
according to the model objective and a set of model constraints.
It was formulated as a Linear Programming optimization
problem, as:

min
(

f ′ · x
)

s.t. :A · x ≤ b

Aeq · x = beq

lb ≤ x ≤ ub

The model objective was subject to a set of equality, and
inequality constraints described by the Aeq and beq as well as the
A and b terms. These constraints defined the water availability
and water infrastructure of the system. The decision variables
of the model, x, were water demand deficits, agricultural crop
states, groundwater aquifer storages as well as surface water and
groundwater allocations. All water allocations were formulated
as flow paths, FP [m3], from a source of surface water, sw,
or groundwater, gw, to a water user demand, Dem [m3], in
each monthly time step. Water balances in the model were
flow path based, as in Cheng et al. (2009), in contrast to node
based water balances. A conceptual illustration of the source-sink
network used to formulate the flow path decision variables, the
delineation of the 16 model sub-basins along with the major
groundwater recharge areas can be seen in Figure 2. For each of
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FIGURE 5 | Conceptual illustration of the continuous imperfect forecasting used in the LP-MPC framework, compared to the deterministic perfect foresight.

the 16 sub-basins represented by the model, water demands were
aggregated in each of the water use sectors described in section
Water Demands.

In each monthly time step 1,737 decision variables were
optimized. The model objective was to minimize total water
associated costs:

total costs

= minimize
(

deficit costs+ cleaning costs+ pumping costs

+ lost benefits
)

= min(

nt
∑

t=1

nu
∑

u=1



Defu,t · ccc + FPsw<qu,t
· cc,u

+FPgw<qu,t
· cc,u +

naq
∑

aq=1

FPgwu,t,aq · caq





+

ns
∑

s

nug
∑

ug

(1− Send) · By)

There are three cost categories in the cost vector, f, of this
objective function: Curtailment costs, ccc, of water demand
deficits, Def, cleaning costs of inferior water qualities, cc
[yuan/m3], and groundwater pumping costs, caq [yuan/m3].
Cleaning costs were added to surface water and groundwater
flow paths that could not meet downstream water quality
requirements (FPsw<q and FPgw<q). Groundwater pumping costs
were aggregated into pumping from the shallow and deep aquifer
unit, respectively, with an increasing cost with lift to the surface.
These costs were minimized for all users, u, for all time steps,
t. Additional costs come from lost benefits from agricultural
yields of grain producers, ug, By [yuan], proportional to the
end-of-season crop state, Send [–], for each growing season, s.

Water demands, deficits and allocations for every user in every
time step were linked in the water demand equality constraints.

Defu,t = Demu,t −

∑

FPswu,t −

∑

FPgwu,t

Surface water availability in each sub-basin was constrained
by direct allocation of monthly runoff, Q, allocation of water
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stored in the sub-basin surface water reservoirs, RS [m3], as
well as the capacity of inter-basin transfers, I. The storage was
found from allocations into the reservoir, FPup,RS, which also
included carry-over storage from t-1, subtracted downstream
allocations, FPdown,RS :

Qt + It =

∑

FPswt

FPup,RS
∑

j=1

FPsw,j,t =

FPup,RS
∑

j=1

FPsw,j,t−1 −

FPdown,RS
∑

l=1

FPsw,l,t

The upstream surface water allocations in each time step to the
reservoir storages were limited by their total storage capacity,
RSvol [m

3].

FPup,RS
∑

j=1

FPsw,j,t ≤ RSvol

Various groundwater overdraft scenarios could be modeled by
using the constraining method. In this method, groundwater

availability was constrained by the groundwater recharge,
Regw [m3/month], and the groundwater overdraft, GRSoverdraft
[m3]. The groundwater overdraft was the difference between
the initial groundwater aquifer storage, GRS0 [m3], and the
groundwater storage in the last time step of the planning horizon,
GRSend [m3], in an optimization run with unconstrained
groundwater end-storage.

GRSt = GRSt−1 −

∑

FPgw,t + Regw,t

GRSend = GRS0 − α · GRSoverdraft

Setting the α [–] parameter between 0 and 1, represented
long-term groundwater sustainability and unlimited overdraft,
respectively. This assumes an initially recharged aquifer. The
constraint is also applicable to simulate recharge of an already
over pumped groundwater aquifer, by reversing the sign of α.

The optimization problem was solved deterministically
with the built-in linear programming solver linprog in
MATLAB R2018a (MathWorks, 2018), using the dual-simplex
optimization algorithm.

FIGURE 6 | Flowchart and visual illustration of the MPC routine. The visual illustration illustrates a 1-month (1f) foresight horizon.
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Delayed Yield of Agricultural Grain
Production
To represent the true value of foresight for agricultural water
allocations, the concept of delayed yield was introduced to the
model setup. In reality, foresight of a near-future drought will
increase the value of irrigation while a barren field will have no
value of irrigation. The value of irrigation is so to speak only
as valuable as the final crop produced. To account for the value
of foresight in irrigation, agricultural water allocations are not
valued at the monthly time step but based on the yield in the
final time step of the growing season. The concept was only
applied to the agricultural grain producers since other crops, such
as orchards with permanent root systems, will have carry-over
effects from previous growing seasons (Doorenbos and Kassam,
1979).

The agricultural grain producers were formalized using the
yield response to water allocations, a concept that was developed
by Doorenbos and Kassam (1979) in the FAO 33 Irrigation and
Drainage Paper. The ratio between actual yield, Yact [kg/m

2],
and maximum yield, Ymax [kg/m2], was in this study defined
as the crop state, S, as done by Schneider (2013). According to
Doorenbos and Kassam (1979) the relationship between water
deficits and the yield reduction can be determined by a yield

response factor, Ky, in a crop water production function:

S =
Yact

Ymax
= 1− Ky

(

1−
ETa

ETc

)

The fraction of actual evapotranspiration, ETa [mm/month],
over crop evapotranspiration, ETc [mm/month], express the
crop water stress. Determining the exact ETa is difficult, and
requires soil-water balance modeling (Steduto et al., 2012). As
an approximation, we can express crop yield as a function of
water allocation in a water production function (e.g., Kipkorir
et al., 2002). Expressing yield as a response to water allocation
relative to water demand was demonstrated by Ghahraman and
Sepaskhah (2004). In this way, yield is a function of all water
allocations plus natural precipitation, P [mm/month], over the
crop water demand ETc, based on the FAO 56 Irrigation and
Drainage paper (Allen et al., 1998), scaled to the cultivated
area, Ac [m2]. The resulting model formalization of the grain
producers’ crop state was:

Su,t ≤ 1− Ky ·

(

1−

∑

FPsw,u,t +
∑

FPgw,u,t + Ac,u · Pt

Ac,u · ETc,t

)

FIGURE 7 | Pareto optimal solutions ranging from sustainable groundwater abstractions to unlimited overdraft.
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The Minimum Approach (Allen, 1994) was implemented by an
additional constraint linking each crop state in time, carrying
over the largest yield reduction during the growing season to the
end. In the beginning of each growing season, the yield always
starts at its maximum potential. The initial crop state, S0, was
therefore set to 1 in the beginning of each growth season:

Su,t

{

= Su,t−1 , if Ac,u · ETc,t = 0
≤ Su,t−1 , otherwise

0 ≤ St ≤ 1

S0 = 1

The cost of lost yield, cy [yuan], of each of the agricultural user’s
grain production was monetarized by:

cy,u =
(

1− Su,end
)

· BYmax ,u

The benefit of a maximum yield, BYmax,u is found from
the marginal value of irrigation, mvirr,u [yuan/m3], based on
Gan et al. (2008), and the total crop water demand of an
average hydrological year, Demavg,u [m

3/month], found from an
ensemble of 50 synthetic time series of a 50 years period:

BYmax,u = Demavg,u=grain ·mvirr,u

Ky-values were all set equal to 1, assuming that yield reduction
was directly proportional to the water deficit throughout the
growing season. This rough assumption was necessary due to
insufficient local data availability, and is not a requirement in the
proposed modeling framework.

FIGURE 8 | The effect of foresight on total cost estimates from a model setup with (a) monthly yield losses in agriculture, (b) delayed yield for agricultural water

allocations and groundwater overdraft, and (c) delayed yield for agricultural water allocations and sustainable groundwater allocations. All series of results are

normalized to their respective “1f” scenario.
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Implementation of the Model Predictive
Control Re-optimization Routine
By continuously re-adapting to unforeseen future disturbances,
the concept of MPC is used in this study to represent the
continuous adaption in water management to newly updated
hydrological forecasts. Such continuous forecasts affecting
water availability and irrigation water demands will be more
representative of the reality faced by water managers than
perfect foresight. In the LP-MPC framework presented in section
Concept and Model Framework, different lengths of future
foresight, f, of the climate-dependent variables P, ET, and Q were
simulated. At time t, a foresight horizon, f, was represented by a
synthetic “true” time series, Qtrue(t..t+f−1), followed by a synthetic
ensemble simulated with the Thomas-Fiering model, Qens(t+f..H),
running all the way to the end of the planning horizon, H.
The ensemble represented future knowledge, extending beyond
the foresight horizon, only relying on historical climatology.
The foresight horizon represented forecasting of time steps,
resembling the “truth.” The full ensemble was optimized over H,
with fixed end-constraints on reservoir and groundwater aquifer
storages. An average ensemble optimum of the agricultural
crop states, surface water reservoir, and groundwater aquifer
storages over the full ensemble was found. A one-time step
ahead re-optimization of the “true” time series in t, with fixed
one-time-step-ahead end-constraints for crop states, reservoir,
and groundwater aquifer storages, found from the average
ensemble optimum, was implemented. This step represented
the actual water management, facing the true reservoir inflow
and meteorological conditions during that month, and the
reservoir operations based on the available future foresight.
The water management decision of time step t was saved
in a decision matrix, representing optimal water management

decisions over the planning horizonwith imperfect foresight. The
MPC optimizer proceeded to t+1, using the implemented crop
states and reservoir and groundwater aquifer storages as initial
conditions. Continuous re-optimization continued until H, the
end of the planning horizon. Figure 6 illustrates the concept of
the MPC routine for a single imperfect foresight scenario with
foresight f, alongside an algorithmic flow chart of the process.

The whole model framework was parallelized in
MATLAB2018a. Hydrological variations over an 80-years
planning horizon were represented by averages over eight
parallelized LP perfect foresight “truths” with 10-years planning
horizons and their respective LP-MPC imperfect foresight
scenarios. Imperfect foresight scenarios were run with foresight,
f, of 1, 2, 3, 6, and 12 months and a forecast ensemble size of 50
members. Computation time for the whole parallelized LP-MPC
setup was ∼360 CPU hours using a 12-core Intel Xeon E5-2650
v4 processor with 256 GB memory.

RESULTS

Cost Estimates With and Without Perfect
Foresight
A wide range of forecast and management scenarios were
run with the LP-MPC model set-up. The perfect foresight
benchmark, pf, and imperfect foresight scenarios with forecast
horizons of 1 month, 1f, and 3 months, 3f, were run for all
groundwater scenarios, ranging from sustainable groundwater
abstractions to a scenario with unlimited groundwater overdraft.
The resulting Pareto optimal fronts from managing the Hai
River basin water resources in the most cost-efficient way while
gradually constraining the allowed groundwater overdraft can
be seen in Figure 7. The Pareto fronts illustrate simulations of

FIGURE 9 | Left upper and lower figure shows the major flow path of the Yellow river inter-basin transfers without (w/o) and with (w) the water infrastructure project,

respectively. Right bar plot shows the optimal sub-basin allocations for the Yellow River inter-basin transfers without and with the project, and for the 1f, 3f, and pf

foresight scenarios.
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water management with perfect foresight, pf, foresight limited
to the present time step, 1f, as well as management with two
additional months of foresight, 3f. Assuming perfect foresight
will underestimate the true costs of managing water resources.
An additional cost of 1.5 billion yuan/year is seen in the
sustainable groundwater scenario when water allocations are
managed according to the 1f foresight scenario in contrast
to having perfect foresight. The “1f” costs might be more
representative for the costs actually occurring in a managed
reservoir system, where release decisions are taken according to
a set of heuristic rules. Having foresight for additional months
reduces costs compared to the “1f” management, highlighting
the value of foresight in water resources management. What can
also be seen from Figure 7 is the diminishing difference in cost
between foresight scenarios, when the system is managed under
groundwater overdraft. The buffering capacity of the large plain
area groundwater aquifer limits the value of foresight. This also
reflects the value of the groundwater resources in covering water
deficits costs during drought events.

The model framework includes both conjunctive use of
groundwater and surface water runoff as well as yield response
to water allocations for the agricultural grain producers. The
effect on the value of foresight from the different model
components can be analyzed from Figure 8. A model setup
run with monthly water demands and curtailment costs, in
contrast to the concept of delayed yield, does not show a
significant decrease in costs with increased foresight (Figure 8
group a). This is despite constraining groundwater allocations
to a sustainable level. Adding delayed yield to the model
framework, while constraining groundwater allocations to a
sustainable scenario, increases impact of foresight on the cost
estimates (Figure 8 group c). The impact of foresight on
cost estimates becomes less pronounced when groundwater
overdraft is allowed (Figure 8 group b). When evaluating
the effect of foresight in an agriculture-dominated river
basin, such as the Hai River basin, a refined understanding
of the relationship between yield and water allocations is
important. The model of agricultural operations used here
does not consider sunk costs, i.e., costs that are incurred
in one time step of the growing season, but cannot be
recovered in subsequent time steps of the same growing
season (e.g., costs for fertilizers, seeds, machinery etc.). The
value of foresight would have been even more significant if
time dependent sunk cost functions were implemented for
agricultural operations.

Evaluation of Infrastructure Investments
Hydroeconomic optimization models can be used to support
evaluation of water infrastructure investments. In a classical
cost-benefit approach, one would compare total costs of system
operation in the with and without project scenario and hold those
up against the investment costs (Griffin, 2006). Often, costs of
system operation in the with and without project scenarios are
determined under the assumption of perfect foresight, which can
potentially lead to unrealistic cost estimates.

The water infrastructure of the Hai River basin is highly
engineered, and water is transferred to the water scarce basin

FIGURE 10 | Project benefits with 1f, 3f, and perfect foresight (pf) scenarios,

all representing results in the sustainable groundwater abstraction scenario.

from neighboring river basins. One of these inter-basin water
transfers is the “Yellow-into-Jin” (引黄入晋), transferring water
from the Yellow River basin to the northeastern region of the
Hai River basin. An illustration of the Yellow River inter-basin
transfers to the water users in the sub-basin upstream Guanting
reservoir is seen in Figure 9. Water managers have publicly
discussed whether to allow the “Yellow-into-Jin” inter-basin
transfers to flow down to the plain area and Beijing via the
Guanting reservoir (Renmin, 2015).

Figure 9 shows the additional flow paths represented in the
model to allow “Yellow-into-Jin” inter-basin transfers to flow
to the downstream plain area provinces of Beijing and Tianjin
through the Guanting reservoir. The inter-basin transfer has
a design capacity of 1.2 billion m3/years (Baike, 2017), and
the bars in Figure 9 indicate the resulting allocation of the
inter-basin transfer with and without the project investment.
Allowing the inter-basin transfer to flow through Guanting
reservoir results in downstream use of the water source
in the optimization model results, indicating that the water
infrastructure project can aid more cost-efficient water resources
management.

The estimated benefits of the project are shown in Figure 10

as the differences in yearly cost with and without the
water infrastructure investment. Project benefits are only
shown for sustainable groundwater abstractions, since project
benefits are diminishing when managed under groundwater
overdraft. From the figure it can be seen that a project
evaluation assuming perfect foresight will underestimate the
project benefits. The project is mainly for the purpose of
supply augmentation, and additional water resources will be
especially beneficial in a system with short foresight horizons,
compared to a system managed under perfect foresight of
all future hydrological events. Under sustainable groundwater
abstractions, the difference in project benefits between perfect
foresight and a 1f scenarios system management can be up
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to 46.7 million yuan/year. This might alter the decisions
of the feasibility of the project, when evaluated in a cost-
benefit context.

DISCUSSION AND CONCLUSION

This study evaluated the impact of perfect foresight assumptions
on project benefits in hydroeconomic analyses, illustrated by a
case study of a water infrastructure project in China. Using a
combined LP-MPC framework, the effect of different lengths of
foresight could be compared to a perfect foresight benchmark.
The model framework was used to evaluate the benefits of a
water infrastructure project in the water-scarce Hai River basin,
considering both the cost of delivering water qualities fit for
purpose as well as the concept of delayed yield among agricultural
users. The water infrastructure project benefits were increased
when evaluated under management with limited knowledge of
future agro-hydrological events. An increase in project benefits
of around 46.7 million yuan/year was found, compared to
benefits under perfect foresight. The project benefits evaluated
under an imperfect foresight scenario will vary depending on
the type of project, as well as the design of the LP-MPC
framework. Evaluating the expansion of a reservoir with limited
storage capacity will most likely result in even more foresight-
sensitive project benefit estimates. Contrary, for different kinds
of projects not involving a storage capacity expansion, project
benefits could also be overestimated under an assumption of
perfect foresight. An example could be a project involving a
fixed expansion of agricultural areas with irrigation demands.
In such a case, agricultural benefits would be overestimated, if
estimated with perfect knowledge of all future agro-hydrological
events. Running the LP-MPC model framework with longer
planning horizons would result in less impact on cost and benefit
estimates from end-storage constraints. A planning horizon of
10 years chosen for this study will show less difference between
foresight scenarios than a longer planning horizon, where end-
storage constraints would be located in a further future for most
of the planning period time steps. Infinite forecast horizons,

extending beyond the planning horizon, or probabilistic end-
storage constraints could be a way to overcome this limitation
in the proposed model framework. However, the study still
illustrates that a perfect foresight assumption results in inaccurate
project benefit estimates for the type of hydroeconomic analysis
done for the Hai River basin. Adding delayed yield to the
model framework substantially increased the effect of foresight
on total cost estimates. In a region dominated by irrigation water
demands, like the Hai River basin, the yield response to water
allocations becomes increasingly important in project evaluation
when moving away from the perfect foresight assumption. While
the perfect foresight assumption is demonstrated to lead to
inaccurate project benefit estimates other political factors like
groundwater management and modeling concept, like delayed
yield, also play an important role in hydroeconomic analysis.
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