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Many precipitation-driven data products from land data assimilation systems support

assessments of droughts, floods, and other societally-relevant land-surface processes.

The accumulated precipitation used as input to these products has a significant impact

on water budgets; however, the effects of daily distribution of precipitation on these

products are not well known. A comparison of the Integrated Multi-satellite Retrievals

for GPM (IMERG) and Climate Hazards Group InfraRed Precipitation with Stations

version 2 (CHIRPS2) rainfall products over the continental United States (CONUS) was

performed to quantify the impacts of the daily distribution of precipitation on biases and

errors in soil moisture, runoff, and evapotranspiration (ET). Since the total accumulated

precipitation between the IMERG and CHIRPS product differed, a third precipitation

product, CHIRPS-to-IMERG (CHtoIM), was produced that used CHIRPS2 accumulated

precipitation totals and the daily precipitation frequency distribution of IMERG. This

new product supported a controlled analysis of the impact of precipitation frequency

distribution on simulated hydrological fields. The CHtoIM had higher occurrences of

precipitation in the 0–5mm day−1 range, with a lower occurrence of dry days, which

decreased soil moisture and surface runoff in the land-surface model. The surface soil

layer had a tendency to reach saturation more often in the CHIRPS2 simulations, where

the number of moderate to heavy precipitation days (>5mmday−1) was increased. Using

the blended CHtoIM product as input reduced errors in surface soil moisture by 5–15%

when compared to Soil Moisture Active/Passive (SMAP) data. Similarly, ET errors were

also slightly decreased (∼2%) when compared to SSEBop data. Moderate changes in

daily precipitation distributions had a quantifiable impact on soil moisture, runoff, and

ET. These changes usually improved the model when compared to other modeled and

observational datasets, but the magnitude of the improvements varied by region and

time of year.
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INTRODUCTION

Accurate precipitation data is critical for simulations of
land-surface processes and hydrometeorological phenomena.

Precipitation forcing products integrate ground, remotely-
sensed, radar, and other observations produce reasonably
accurate estimates of rainfall. While in some regions increases

in the accuracy and number of observations have allowed
these precipitation forcing datasets to more accurately represent
precipitation patterns (e.g., Fekete et al., 2004; Feidas, 2010;

Huffman et al., 2010), large differences between the products still
occur, especially when looking at precipitation rates on shorter
time scales or over certain regions (e.g., Feidas, 2010; Manz et al.,
2017; Iqbal and Athar, 2018). Quantification of these errors is
usually done by comparing in-situ measurements (e.g., Dezfuli
et al., 2017; Manz et al., 2017; Iqbal and Athar, 2018; Rivera et al.,
2018) but error quantification using statistical or ensemble-based
approaches has also been documented (e.g., Bellerby and Sun,
2005; Maggioni et al., 2014). Discrepancies between precipitation
products cause differences to occur in land-surface models,
especially in simulated hydrological fields.

An example of differences in prescribed rainfall data leading
to differences in other simulated fields can be seen in the
extensive global study by Fekete et al. (2004). This study
compared simulations of hydrologic variables by models forced
with six precipitation products. The precipitation products used
in the study were the Climate Research Unit (New et al.,
2000), Global Precipitation Climate Center (Rudolf et al., 1994),
Global Precipitation Climatology Project (Huffman et al., 1995),
National Centers for Environmental Prediction–Department of
Energy Atmospheric Model Intercomparison Project (AMIP-II)
Reanalysis (Kanamitsu et al., 2002), Tropical Rainfall Measuring
Mission (Huffman et al., 1997), and the Willmott–Matsuura
(Willmott and Matsuura, 2001) rainfall products. While the
largest differences in precipitation were over the wet tropics,
a notoriously difficult area to accurately estimate precipitation,
the largest impact to simulated runoff occurred in arid and
semi-arid areas. Errors in arid regions were also non-linear
and could either produce either large errors or no errors in
runoff depending on the time scale and magnitudes of the
precipitation rates being used. The potential for non-linear
sensitivity to errors in precipitation makes quantification of
errors in precipitation forcing products important when trying
to understand the potential hydrological field errors that can
occur in land-surface models, such as impacts on simulated soil
moisture (e.g., Gebregiorgis et al., 2012).

Another study over Greece (Feidas, 2010) found a strong
intra-annual cycle within six different remotely-sensed rainfall
products and that the magnitude of the errors had a seasonal
dependence. Most of the satellite products used in this study
were found to overestimate precipitation in the summer and
spring months while errors were at a minimum during the winter
months. Error sensitivity to time of year (e.g., Tian et al., 2007;
Dezfuli et al., 2017; Watters et al., 2018) and rainfall frequency
distributions (e.g., Tian et al., 2007; Tan et al., 2016) have been
reported by other studies and should be considered when trying
to quantify the errors in precipitation products.

The Integrated Multi-satellite Retrievals for GPM (IMERG)
product is a remotely-sensed precipitation product that
integrates passive microwave and infrared satellite data with
surface station observations (Huffman et al., 2015, 2019a,b,
2020). The IMERG precipitation product has been used in
numerous verification studies, including studies over Africa
(Dezfuli et al., 2017), South America (Manz et al., 2017; Gadelha
et al., 2019), Spain (Tapiador et al., 2020), and the mid-Atlantic
region of the United States (Tan et al., 2016). These studies
demonstrated that IMERG was generally able to capture large
spatial and low temporal frequency patterns of rainfall. Tan et al.
(2016) found that the IMERG product overestimates drizzle
and other low rainfall conditions while underestimating higher
rainfall magnitude events for the mid-Atlantic region of the US.

The Climate Hazards Group InfraRed Precipitation with
Stations (CHIRPS) rainfall product also integrates remotely-
sensed data with station data to create a global precipitation
product (Funk et al., 2014, 2015). This rainfall product has
been used in for numerous studies in Africa (e.g., Shukla
et al., 2014; Maidment et al., 2017; McNally et al., 2017, 2019;
Dinku et al., 2018; Arsenault et al., 2020) and other regions
around the globe (e.g., Katsanos et al., 2016; Beck et al., 2017;
Paredes-Trejo et al., 2017). Errors in the CHIRPS dataset were
found to vary by region, season, and temporal scale, but this
is common with all remotely-sensed rainfall datasets. Most of
the previously mentioned studies only focused on the total
rainfall accumulation of these products and the effects that these
differences had on other simulated processes. The effects of
precipitation distribution biases (such as those mentioned in Tan
et al., 2016) on simulated hydrological processes are still not
thoroughly documented.

The objectives of this study were the following:

1) If the amount of precipitation is held constant but the
daily rainfall distribution is changed, would the modeled
hydrological variables in a land-surface model change?

2) Which hydrological variables are most affected by the change
in daily rainfall distribution and what is the magnitude of
the change?

We hypothesized that differences in the daily precipitation
distribution will result in quantifiable changes in surface soil
moisture, runoff, and evapotranspiration (ET).

In this study, the daily version of CHIRPS2 (CHIRPS2-Daily)
was used to prescribe the precipitation in one set of land-surface
model simulations. For the second set of simulations, we used
both the CHIRPS2 (publicly-available pentad rainfall product;
version 2) and IMERG-Final rainfall products to create a new
adjusted precipitation dataset, CHIRPS-to-IMERG (CHtoIM).
The CHIRPS and IMERG products were chosen because both
products have been well-studied in the broader meteorological
and hydrological community. Both products use independent
methods of estimating rainfall with satellite data and provided
high quality data to use in this study.We then compared the daily
precipitation distributions of the two experiments (CHIRPS2-
Daily and CHtoIM). Differences in the experiments due to
changes in daily precipitation distribution were quantified. The
quantification of these impacts can motivate future work and
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will be important as precipitation products continue to improve
and converge on accumulated precipitation on an annual and
monthly scale.

Finally, we compared the modeled outputs to two
observational datasets and quantified the errors in surface soil
moisture and ET for the domain. Quantification of these changes
led to a better understanding of the more generalized errors
that were seen when hydrological and land-surface models were
initialized with different remotely-sensed precipitation products.

METHODOLOGY

The study examined two sets of land-surface model simulations
whose only difference was the precipitation forcing. These two
forcings had equivalent precipitation accumulations at a 5-day
temporal scale but the precipitation distributions differed on
a daily scale. The first precipitation forcing used was a daily
product of CHIRPS2 (CHIRPS2-Daily). The second precipitation
dataset was created by using precipitation totals from the
CHIRPS2 pentad product and the daily distribution of the
IMERG-Final product. Comparisons of surface soil moisture,
runoff, and ET were made for the two experiments. Satellite-
derived products of soil moisture and ET were used to quantify
the errors in the simulated outputs of both experiments.

Land Information System and Domain
Configuration and Experiments
The NASA Land Information System (LIS) software framework
(Kumar et al., 2006) was used to run the land-surface simulations
used in this study. The LIS framework allows simple integration
of land-surface models with multiple meteorological forcings and
parameterizations. The domain for the study was configured for
continental United States (CONUS) with a grid spacing of 10 km.
The northwest and southeast corners of the domain were located
at 49.85◦N 124.95◦W and 25.05◦N 67.05◦W respectively. The
Noah 3.6 land-surface model (Chen and Dudhia, 2001) was used
to simulate the land-surface processes in the simulations. The
land-surface model uses parameterized values for soil properties
to simulate runoff and water percolation in the soil. The Noah
LSM uses four soil layers with depths of 10, 30, 60, and
100 cm. Soil texture information for the runs were developed
using the Food and Agriculture Organization (FAO) of the
United Nations definitions. All other soil properties used default
Noah 3.6 parameter values. Landcover data is MODIS-derived
(Friedl et al., 2010) using the International Geosphere Biosphere
Program (IGBP) 17-class category convection. All meteorological
fields except precipitation were taken from MERRA-2 [Bloom
et al., 2005; Bosilovich et al., 2015; Global Modeling Assimilation
Office (GMAO), 2015]. The simulations were spun-up for 30
years to ensure a stable soil moisture profile and were then run
for 4 years (January 2016–December 2019). This initial spin-up
was performed to ensure that the soil moisture profiles were at
an equilibrium and that the subsequent changes in hydrological
variables in the land-surface model were a direct response to
precipitation. Most of the variables that will be discussed in this
paper were chosen due to their quick response time to changes in
precipitation. With a quick response to changes in precipitation

rates, we can ensure that the changes in the 4 years of the study are
representative of changes that would be seen for any time period
of interest.

We ran the model with CHIRPS2-Daily (referred to hereafter
as “ExpC2D”) and CHtoIM (described in next section; referred to
hereafter as “ExpCHtoIM”) to produce daily hydrologic outputs:
four layers of soil moisture (0–10, 10–40, 40–100, and 100–
200 cm), surface and subsurface runoff, and total ET. The outputs
of the two models were compared to assess their sensitivity to
different daily rainfall distributions. This was done by analyzing
the monthly averages of the two experiments over 4 years with
an “error reduction” metric performed on a grid point by grid
point basis.

Creation of CHIRPS-to-IMERG
Precipitation
Climate Hazards Group InfraRed Precipitation with Stations
version 2 pentad data was combined with the IMERG-Final
daily data to create CHtoIM, the precipitation forcing for
ExpCHtoIM. The CHIRPS2 pentad accumulated rainfall totals
were redistributed according to the IMERG rainfall ratios over
that same pentad. If the IMERG product had precipitation
occurring during the pentad and the CHIRPS2 product had no
detectable rainfall (<1mm per pentad) during the same pentad,
then no precipitation was distributed over that 5-day period in
the CHtoIM precipitation dataset. If CHIRPS2 had rain for a
particular pentad and IMERG-Final had no precipitation over
the same period, then the CHIRPS2 rainfall total was evenly
distributed over that 5-day period.

An example would be the following: a given CHIRPS2 pentad
had a rainfall total of 20mm. The IMERG-Final data had the
following daily rainfall for the same pentad: 8, 0, 2, 6, 0mm. These
IMERG-Final data were converted to ratios (0.5, 0, 0.125, 0.375,
0) and the CHIRPS2 pentad total rainfall was redistributed across
these ratios. The resulting CHtoIM precipitation for this pentad
would be 10, 0, 2.5, 7.5, 0mm. This ensures that the pentad
rainfall amounts between CHIRPS2 and CHtoIM are identical
while varying the daily rainfall distribution frequencies.

This pentad redistribution was repeated for the entire
timespan of the study (2016–2019). The rainfall redistribution
methodology generated CHtoIM accumulated precipitation
pentad totals that equaled CHIRPS2; however, the resulting
daily distribution of rainfall did not match the IMERG-Final
distribution exactly. Figure 1 shows a sample of accumulated
precipitation for both experiments. The pentad totals were
an exact match for these chosen grid points over the ∼60
pentads (Figure 1A), though the daily precipitation totals did
show some variability (Figure 1B). This verification shows that
the CHtoIM dataset was created correctly, where the rainfall
accumulation of CHIRPS2 was conserved while varying the daily
rainfall distribution.

Soil Moisture Active/Passive Data
The Soil Moisture Active/Passive (SMAP) satellite mission,
launched in January 2015, uses data retrieved from an L-
band radiometer to generate estimates of global soil moisture
(Entekhabi et al., 2010). The SMAP Level-3 9 km data product
(Entekhabi et al., 2016) was used in the analysis. All data that
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FIGURE 1 | Accumulated rainfall (mm) for a 30 km2 subdomain within both experiments. The accumulated rainfall for over 300 consecutive days is shown using a

pentad aggregate (A) and on a daily timestep (B).

were flagged as potentially having large errors, mainly due to
precipitation, snow-cover, and radio frequency interference, were
excluded from the subsequent analyses. Although the SMAP
dataset estimates for surface soil moisture are for a soil depth of
approximately 5 cm, data provided by the SMAP mission allows
a domain-wide comparison of soil moisture not be possible
with in-situ soil moisture stations. The SMAP product has been
calibrated and validated with surface observations (Colliander
et al., 2014, 2017; Chen et al., 2016a) and has been shown
to be fairly accurate across different soil types and different
times of year. Soil Moisture Active/Passive data has also been

utilized by other authors to assess Noah modeled surface soil
moisture errors despite the mismatch in surface soil layer depth

(e.g., Shellito et al., 2018), although the smaller drying rates

in SMAP relative to in-situ probes suggest that the actual
measurement depth of SMAP is shallower than 5 cm (Shellito
et al., 2016). A direct comparison of soil moisture content is
difficult due to the mismatch in surface soil layer depths between
the simulations and SMAP (roughly 5 cm from SMAP vs. 10 cm
for our simulations). However, the soil moisture trends between
SMAP and simulations has been shown to be accurate and will be
used in this study. An analysis of the Normalized Information
Contribution (NIC) metric (Kumar et al., 2009) was used to
compare the changes that occurred in the simulations using

SMAP data for validation. The NIC used the simulated daily
anomalies for every month and correlated those with the SMAP
daily anomalies. These correlations were then used to calculate
the amount of improvement or decline that occurred due to
changes in the daily rainfall distribution (Kumar et al., 2009).

Simple Surface Energy Balance Data
The Operational Simple Surface Energy Balance (SSEBop) is the
final validation product used in this study. Operational Simple
Surface Energy Balance estimates ET using remotely-sensed
thermal data and weather fields assimilated into an ET model
(Senay et al., 2013, 2020). This combination of remotely-sensed
data and ET models allows for domain-wide validation of our
simulations without having to rely on point measurements (e.g.,
AmeriFlux eddy covariance sites). Verification of SSEBop with
in-situ measurements show that the SSEBop product performs
well (e.g., Senay et al., 2014; Chen et al., 2016b) although the
correlations with surface ET measurements can vary with land-
surface type (Chen et al., 2016b).

Regridding of the Datasets
Soil Moisture Active/Passive, SSEBop, and the land-surface
model outputs do not have the same data grid spacing and grid
point locations. To make the comparisons, the observational
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datasets (SMAP and SSEBop) were regridded to match the
grid spacing and locations of the experiment model outputs.
SSEBop was upscaled using a simple averaging algorithm while
the SMAP dataset was downscaled using a bilinear downscaling
methodology (e.g., Foley, 1987; Arnold et al., 2002). The
bilinear downscaling method used four neighboring points to
create the weights used in the interpolation of these data. In
order to drive the land-surface model, the rainfall data were
also downscaled with a bilinear algorithm. The precipitation
downscaling methodology used 25 neighboring points to create
the interpolation weights while ensuring that the amount of water
was always conserved.

While there was some loss of data due to upscaling
(via averaging) and downscaling (via bilinear interpolation),
regridding these datasets allowed for a more straightforward
calculation of errors and statistics for our simulations. The
goal of the paper is to quantify changes between ExpC2D
and ExpCHtoIM and not necessarily a comparison to observed
datasets, so these data loss issues were not as impactful to the
overall analysis.

RESULTS

Daily Precipitation Frequencies
Comparisons of daily precipitation distributions identified
substantial differences between the daily CHIRPS2 and IMERG-
Final products. CHIRPS2-Daily was found to have a skewed
daily rainfall distribution (Figure 2) that favored 0mm rainfall
days over low rainfall intensity days (<5mm day−1). Figure 2
also shows that the IMERG-Final precipitation product has
a higher occurrence of low rainfall days (<5mm day−1)
and a lower occurrence of dry days (0mm day−1) over
CONUS. Comparison of the IMERG-Final and CHIRPS2 daily
precipitation frequencies over CONUS (Figure 2) indicates that
the largest differences between the products are in the 0mm
to 5mm precipitation per day range. For the dry days (0mm
day−1), the discrepancy between the two products is large (with
frequencies of 76.5% for CHIRPS2 and 17.25% for IMERG). In
CHIRPS2, 11.23% of the days were within the >0mm per day
of rain but <5mm per day range while 71.03% of the days in the
IMERGdataset fell within this same range. It should be noted that
the subgroupings (dry days-−0mm day−1; low intensity—>0
to <5mm day−1; high intensity—>5mm day−1) were chosen
based on the differences in the daily precipitation frequency
and not an official designation provided by a meteorological or
hydrological organization.

We expected each of the rainfall products to have varying
degrees of accuracy over CONUS due to the multitude of
uncertainties that exist in satellite-derived rainfall products, some
of which were discussed in the introduction section of this
manuscript. However, we did not assess the relative accuracy of
these products because that is outside the scope of this study.

The CHtoIM precipitation product was intended to preserve
the total accumulated precipitation of CHIRPS2, but use a
daily precipitation distribution that emulates the IMERG-
Final daily rainfall distribution. Figure 2 shows that the

CHtoIM distribution more closely resembled the IMERG-
Final distribution than that of CHIRPS2-Daily. The CHtoIM
frequency of dry days (0mm day−1) was 50.6 and 39.1% for the
low intensity precipitation days (>0 and <5mm day−1). The
CHtoIM distribution reduced the dry day frequency by 25% and
increased the low rainfall days by 30%. As described previously,
the precipitation distribution for CHtoIM does not exactly match
its IMERG counterpart due to how dry days were handled in the
generation of the CHtoIM product.

This study did not assess the accuracy of the CHIRPS2-Daily
or IMERG-Final products for the time period of the simulated
experiment. It is assumed that there are biases in both products
over CONUS, some of which were discussed in the previous
section. However, the goal of this experiment was to assess
the impacts of daily rainfall frequencies on land-surface model
processes and the accuracy of CHIRPS2-Daily and IMERG-Final
did not impact the experiment methodology or results.

Surface and Rootzone Soil Moisture
The general signal seen in the simulations was a reduction in
surface soil moisture in ExpCHtoIM simulations (Figure 3). For
the majority of the grid points in the ExpCHtoIM simulation,
surface soil moisture was lower for all times of year when
compared to ExpC2D. These differences did have a seasonal
signal, with the largest changes occurring in the fall and winter
months, while the simulated surface soil moisture tended to
converge in the summer months. Analysis of the quartiles
shows that the spread of differences throughout the domain also
decreased in the summer months and the grid points had a
larger range of differences in the wintertime. ExpCHtoIM had
a wintertime reduction of soil moisture, with the soil moisture
difference in 25% of the domain grid points exceeding −0.7
kg m−2.

Comparison of the rootzone soil moisture results (Figure 4)
shows a similar trend between the two runs. Root zone soil
moisture in ExpCHtoIM grid points was lower throughout the
4 years of the study. Quartile analysis showed that the magnitude
of the difference has a seasonal signal, similar to what was seen
in the surface soil moisture comparison (Figure 3). The median
rootzone soil moisture difference peaked at about −0.31 kg
m−2 during the winter months and was <-0.04 kg m−2 at its
summer minimum.

Soil Moisture Spatial Patterns
The simulations showed that there was a noticeable spatial
pattern in the soil moisture differences produced by the models
(Figure 5). The largest differences in surface soil moisture were
concentrated in the northeast, Midwest, and Rocky Mountain
areas of the CONUS domain. A subset of monthly averages was
normalized by the 4-year standard deviation of soil moisture.
This allowed for a comparison of soil moisture differences that
accounts for the natural variability that occurs across the domain
due to spatial differences in soil type and annual rainfall. Figure 5
shows that the largest differences in soil moisture occurred in the
Midwest and Rocky Mountain regions during the wintertime.
This signal is driven by differences in accumulated snow that
evolved in the simulations. The spatial signal was present in the
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FIGURE 2 | Frequency distribution plots of daily rainfall for the CHIRPS, IMERG, and CHtoIM precipitation products. The frequency distributions were calculated using

all days from January 2016 to December 2019 (top) and using only the days that had rainfall within the same time period (bottom). Each bin in the figure represents

1mm day−1.

summer months, but at a lower magnitude, which agreed with
the domain-wide analysis (Figure 3). Though the domain-wide
analysis showed a consistent decrease in the ExpCHtoIM surface
soil moisture fields, soil moisture did increase in localized areas of
the domain. Most of these increases in surface soil moisture were
located in the southwestern and south-central (Texas). Dry day
differences (discussed further in section Seasonal Differences in
Precipitation Frequencies) in the pentad products were the likely
cause of the increase in soil moisture in these areas.

Surface Runoff
Differences in the surface soil moisture and root-zone soil
moisture should lead to differences in runoff amounts within
the land-surface model. Thus, simulated fields of surface and
subsurface runoff for the two experiments were compared.
Figure 6 presents a domain-wide comparison of the surface
runoff field. A seasonal signal can be seen in the runoff data where
ExpCHtoIM had lower surface runoff for most of the winter
months. The spring months showed an increase in surface runoff
for <50% of the grid points within the domain and the summer
months produced a smaller decrease to small increase in surface
runoff in ExpCHtoIM.

Comparison of subsurface runoff indicates that ExpC2D has a
higher domain-wide subsurface runoff for the entire time period
(Figure 7), though the magnitude of the domain median and the
first to third quartiles (Figure 7) show that these differences are

small compared to the surface runoff (Figure 6). The seasonal
signal is present in both time series, with the subsurface runoff
difference at its maximum from February to May.

Evapotranspiration
The final hydrological field analyzed was ET. Figure 8 shows
that ET between the two runs was fairly similar. The median
ET for ExpCHtoIM was slightly lower than ExpC2D for half
of the year (during the wintertime). The differences in ET
were at their maximum during the winter and late summer
months. Figure 9 presents monthly ET differences normalized
by the 4-year standard deviation of ET. As shown on this figure,
ExpCHtoIM ET was higher throughout most of the domain, in
contrast to soil moisture and runoff. Areas where ExpCHtoIMET
was lower corresponded to grid points with snow on the surface.

Comparison to SMAP and SSEBoP
Simulated surface soil moisture comparisons to SMAPwere done
usingmonthly anomalies. A 4-year monthly surface soil moisture
average was calculated by pixel for ExpC2D, ExpCHtoIM, and
SMAP and subtracted from the daily surface soil moisture of
the corresponding dataset to create a set of daily anomalies.
The NIC (Kumar et al., 2009) was calculated to quantify
how much the correlation to SMAP increased or decreased in
ExpCHtoIM relative to ExpC2D. Positive NIC-values indicate
that ExpCHtoIM is better correlated to SMAP than ExpC2D
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FIGURE 3 | Domain median monthly surface soil moisture and difference between the ExpC2D and ExpCHtoIM simulations from January 2016 to December 2019.

The domain grid point median is represented by the solid line and the shaded region represents the 50% of the domain grid points (from the end of the first quartile to

the end of the third quartile). Units of kg s−2 are equivalent to mm assuming that the density of water in the soil is 1,000 kg m−3.

FIGURE 4 | Domain median daily rootzone soil moisture difference between ExpC2D and ExpCHtoIM simulations from January 2016 to December 2019. Format of

the figure follows that of Figure 3. Units of kg s−2 are equivalent to mm assuming that the density of water in the soil is 1,000 kg m−3.
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FIGURE 5 | Normalized differences in surface soil moisture between ExpC2D and ExpCHtoIM simulations. Difference values for each grid point were normalized by

the 4-year standard deviation in surface soil moisture for the respective grid point. These months represent January (a), April (b), July (c), October (d) of 2016 in the

simulation. Positive values indicate increases soil moisture in the CHtoIM runs when compared to the CHIRPS runs.

FIGURE 6 | Domain median surface runoff (mm month−1 ) and difference between ExpC2D and ExpCHtoIM simulations from January 2016 to December 2019.

Format of the figure follows that of Figure 3.
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FIGURE 7 | Domain median subsurface runoff (mm month−1) and difference ExpC2D and ExpCHtoIM simulations from January 2016 to December 2019. Format of

the figure follows that of Figure 3.

FIGURE 8 | Domain median evapotranspiration (mm month−1 ) and difference between ExpC2D and ExpCHtoIM simulations from January 2016 to December 2019.

Format of the figure follows that of Figure 3.
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FIGURE 9 | Normalized monthly differences in monthly evapotranspiration between ExpC2D and ExpCHtoIM simulations. Difference values for each grid point were

normalized by the 4-year standard deviation in evapotranspiration for the respective grid point. Format of the figure follows that of Figure 5.

(i.e., RSMAP_ExpC2D < RSMAP_ExpCHtoIM) and negative NIC-
values indicate worse correlation. An NIC = 1 indicates that
ExpCHtoIM has a perfect correlation with SMAP and NIC = 0
indicates that the correlations did not change (i.e., RSMAP_ExpC2D

= RSMAP_ExpCHtoIM). If a grid point had less than 100 daily
SMAP-values during the 4-year period (roughly 90% of potential
points for the 4-year monthly average), then the NIC was
not calculated. Figure 10 presents the domain-wide NIC values
for January, April, July, and October. Normalized Information
Contribution was highest across the domain in January and
April. While NIC was negative in portions of the domain NIC
was positive in the majority of grid points, indicating that
ExpCHtoIM is better correlated to SMAP than ExpC2D across
most of the domain. The NIC-values in July and October were
lower across the domain compared to January and April, but
the number of pixels with negative NIC was also lower during
these months.

Evapotranspiration accuracy was evaluated by assessing the
fractional error reduction of modeled ET relative to SSEBoP.
Fractional error reduction was defined as the absolute error of
ExpC2D when compared to the reference product (SSEBoP)
minus the absolute error of ExpCHtoIM when compared to
the same validation product. Positive fractional error reduction
values signify that implementing the CHtoIM precipitation
reduced the absolute error in the simulations. Since the patterns
of the hydrological fields were seasonal, monthly errors were
aggregated for the 4-year run and presented in Figure 11 as box-
and-whisker plots. This plot shows the median (red line), average

(green box), and the 20, 25, 75, and 80th percentile of the error
reduction distributions.

Figure 11 shows the final comparison that used the SSEBop
dataset to evaluate the error reduction of modeled ET. The
summer and fall months (May–October) had little change in
ET error reduction while December, January, and February
showed the largest increases in error reduction. The average
error reduction ranged from approximately −0.5 to 0.7% and
the monthly averages were generally greater than their respective
medians for all months. Other than December, January, and
February, all other months showed a positive error reduction in
at least 50% of the grid points.

DISCUSSION

Seasonal Differences in Precipitation
Frequencies
Many of the comparisons showed a strong seasonal signal in
the differences between ExpC2D and ExpCHtoIM. A closer
examination revealed a difference in the daily precipitation
distribution frequencies that was also seasonal. The wintertime
months for our simulations had only a small reduction in
dry day frequencies (0mm day−1). The CHIRPS2-Daily and
CHtoIM frequencies were 74 and 64%. The summertime dry day
frequencies for both precipitation datasets were 76 and 42%. This
difference in dry day reduction was not likely due to a seasonal
change in dry day frequencies in the IMERG-Final dataset (21%
in winter, 16% in summer). The likely cause of this seasonal
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FIGURE 10 | Normalized Information Contribution (NIC) metric for surface soil moisture between ExpC2D and ExpCHtoIM simulations. Positive values indicate

increased correlation to SMAP soil moisture anomaly. These months represent January (a), April (b), July (c), October (d) NIC-values for the entire length of the

simulation.

FIGURE 11 | Box and whisker plots of the error reduction ratios of evapotranspiration for ExpCHtoIM when the SSEBop product is used as a benchmark. The

distributions aggregate all grid points within the domain for all years in the simulation. Positive values indicate a reduction in absolute error in ExpCHtoIM when

compared to ExpC2D. Negative values indicate increases in evapotranspiration absolute error. The mean of the distribution (square), median (red line), 25th and 75th

percentiles (box boundaries), and the 80th and 20th percentiles (edge of whiskers) are all shown in the figure.
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signal was an increase of “rain”/”no rain” pentad mismatches
between the CHIRPS2-Daily and IMERG products during the
wintertime months.

As the methodology previously discussed, if the CHIRPS2
pentad had no rain but the IMERG-Final pentad did, then the
resulting CHtoIM pentad would not have rain. Conversely, if the
CHIRPS2 pentad had rain but the IMERG-Final pentad did not,
then the pentad total was redistributed evenly across the 5 days.
This methodology was chosen to conserve total precipitation
(Figure 1). Seasonal precipitation frequencies show evidence that
this dry day mismatch between CHIRPS2 and IMERG occurs at
the greatest frequency in the wintertime. The CHtoIM design
methodology was simplistic and could be more rigorous, but the
resulting changes in precipitation frequency distribution was still
suitable to complete the objectives of this study.

Comparison of Hydrological Variables
(From LSM Experiments)
The differences in precipitation distributions between the two
products produced differences in the LIS modeled hydrological
fields. It was expected that decreasing the number of dry days
(0mm day−1) while increasing the amount of low rainfall
days (>0 and <5mm day−1) in ExpCHtoIM would decrease
the amount of surface soil moisture and surface runoff, while
increasing the amount of ET. Soil moisture changes due to the
distribution of daily precipitation should be the starting point
for all of the changes seen in other simulated hydrological fields.
By increasing the amount of low rainfall days (>0 and <5mm
day−1) and decreasing the dry days (0mm day−1) as well as the
moderate to high intensity days (>5mm day−1), ExpCHtoIM
was expected to saturate the surface soil layer less quickly,
which would result in less water runoff. Throughout most of
the domain, ET increased in ExpCHtoIM due to higher water
availability for bare soil evaporation.

Domain-Wide Changes in Soil Moisture,
Runoff, and Evapotranspiration
The creation of a precipitation dataset with a less skewed
distribution of daily precipitation (Figure 2) did have an impact
on all of the hydrological variables that were analyzed. In general,
ExpCHtoIM had decreases in soil moisture and runoff while
ET increased. There were spatial and seasonal signals in the
hydrological outputs that were driven by the differences in the
rainfall distribution. These signals varied by time of year and
location within the domain. The presence of snow also impacted
soil moisture, runoff, and ET. Discussion of these snow-covered
areas will be included in the subsequent subsection.

Both the surface and rootzone soil moisture decreased in
ExpCHtoIM (Figures 3, 4), which was expected. The more even
distribution of rainfall caused, on average, a decrease in soil
moisture that was primarily at the surface. The surface soil
moisture had the largest decrease in soil moisture values when
compared to other subsurface layers. The rootzone soil moisture
values for the two simulations were more similar and had a larger
overlap than the surface soil moisture values (Figure 4).

It was expected that the surface soil layer in ExpC2D would
reach saturation more often and at a quicker rate since the
surface soil moisture values were larger in general. Analysis of
the surface runoff values in the simulations (Figure 6) showed
that this was the case. The surface runoff values in ExpC2D had a
tendency to be greater than the values in ExpCHtoIM. This again
demonstrated that the more skewed distribution of daily rainfall
did increase the frequency of surface soil saturation in the model.
The subsurface runoff showed a smaller difference between the
two runs although the subsurface runoff was, on average, slightly
lower in ExpC2D (Figure 7). The effects of the daily precipitation
distributions were mainly limited to the surface soil layer in the
land-surface model and seemed to be limited by the saturation
point of the surface soil type in the domain.

The ET analysis in Figure 8 showed a slightly higher domain-
averaged wintertime ET in ExpC2D, however, the spatial maps
(Figure 9) did show small increases of ET in ExpCHtoIM across
most of the domain with an area of large ET reduction. Snow-
covered regions in the simulation coincided with the areas where
the reduction in ET occurred. With snow on the ground, the
model dynamics between soil moisture, runoff, and ET differ
from the dynamics that occur in areas without snow-cover. This
trend occurs throughout the year in high-altitude regions and
was most noticeable in the winter months, as expected.

Snow-Covered Areas of the Domain
The more consistent daily rainfall distribution that ExpCHtoIM
allowed for more water to be available for bare soil evaporation
and decreased the occurrence of saturated soils at the surface,
which increased ET and decreased soil moisture and runoff when
compared to ExpC2D. The only time this basic relationship
between the experiments did not hold true was when either the
daily rainfall distribution differences for a given tile were small
or reversed (i.e., CHtoIM had a decrease in low intensity rainfall
days when compared to CHIRPS2-Daily) or when the ground
was snow-covered.

Snow-covered areas in ExpCHtoIM showed a decrease in soil
moisture, runoff, and ET, which does not satisfy a basic water
balance if precipitation was being held constant. A more in-
depth analysis showed that snow accumulation between the two
experiments was different and the water imbalance was due to
this difference in accumulation. This was one of the reasons why
the decreases in the values of the hydrological fields were largest
during the winter, as seen in the domainmedian and first quantile
values (Figures 3, 4, 6, and 8). While the snow-pack dynamics in
the simulations is important, this study did not perform an in-
depth analysis on these snow-covered areas other than to confirm
that the water balance was correct even when the trends seen in
these areas did not match what was seen in other areas of the
simulation domain.

Decreases in Modeled Error When
Compared to SMAP and SSEBop
The daily anomalies of surface soil moisture over the 4-year
simulation period were used to calculate the NIC metric. Both
ExpC2D and ExpCHtoIM had high correlations with the surface
soil moisture anomalies derived from the SMAP dataset. When
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the NIC was calculated (Figure 10), it was clear that the surface
soil moisture reduction of ExpCHtoIM improved the anomaly
correlation across most of the domain; however, there were still
seasonal patterns present that mimicked the patterns seen in
previous analyses. For January and April (Figures 10a,b) there
were large areas of the domain that had a decrease in the
ExpCHtoIM anomaly correlation when compared to ExpC2D.
There were also large areas of the domain that did not have
enough data points to perform a calculation. The summer
months did see a more uniform improvement in the surface
soil moisture anomaly correlation for ExpCHtoIM but the
magnitudes of the NIC metric were less than what was calculated
in the wintertime.

Error reductions in ET were calculated using the SSEBop
product (Figure 11). The SSEBop data was upscaled spatially
to match our domain grid spacing and domain. Comparisons
showed that most areas in the domain underestimated ET when
compared to the SSEBop product. These underestimates were
more prevalent in the southeastern areas of the domain and
highest in the late summer to fall months. Throughout the year,
there were areas of overestimated ET in the two experiments,
mainly located in the northern areas of the Midwest and the
Rocky Mountain areas.

ExpCHtoIM produced a slight increase in ET across amajority
of the domain compared to ExpC2D (Figure 9). The spread of
the error reductions showed a trend of improving ET, especially
in the summer months (Figure 11). Again, this improvement
was not consistent across the domain because there were areas
that overestimated ET in ExpC2D that resulted in an increase in
error when applying the CHtoIM precipitation (ExpCHtoIM).
Across all months, a majority of the grid points saw little to
moderate improvement in the simulated ET errors where 80%
of the grid points saw less than a 2% improvement across all
months. The averages of the error reduction distributions were
above the median for all months signifying that the distribution
was less skewed toward the lower end of the distribution
(little to no change) than the more moderate values of
error reduction.

CONCLUSIONS

The objective of this study was to quantify the impact of
precipitation distribution patterns on land-surface simulations
of hydrological variables. A precipitation dataset, CHtoIM,
was created by using the accumulated precipitation totals
from CHIRPS2 pentads and mapped those values to the
IMERG-Final daily precipitation frequencies. This allowed for
a controlled comparison of land-surface simulations, where the
total accumulation of precipitation was the same for every pentad
but the distribution frequency changed. The creation of the
CHtoIM precipitation forcing did not result in an exact match
to the IMERG-Final distribution, but the CHtoIM dataset did
reduce the number of dry days and increase the frequency of low
rainfall days relative to CHIRPS2-Daily, more closely matching
the IMERG-Final distribution. Two simulations were run for a
CONUS domain from January 2016 to December 2019 that used

CHIRPS2-Daily (EXPC2D) and CHtoIM (ExpCHtoIM) as the
precipitation forcing.

The more skewed distribution of precipitation in CHIRPS2-
Daily led to more frequent saturation of the surface soil layer.
ExpC2D fairly consistently had wetter surface soil moisture
values when compared to ExpCHtoIM. Even though the low
rainfall intensity days (0–5mm day−1) were reduced, the
increased frequency of high rainfall intensity days (>5mm
day−1) caused the surface soil moisture in ExpC2D to be higher
on average when compared to ExpCHtoIM. ExpC2D also had
more moisture percolating into the soil sublayers and increased
surface runoff. The increase in surface runoff reinforced the
conclusion that the surface soil layer was reaching saturation
more often in ExpC2D.

When the frequency of dry days and higher rainfall intensity
days was reduced and the low intensity rainfall days (0–5mm
day−1) was increased, ET was increased, likely due to increases
in bare soil evaporation. Evapotranspiration was the least
sensitive hydrological variable to changes in rainfall frequency;
however, sensitivity could potentially be increased if the land-
surface model used a coupled vegetation model, since the
transpiration component would be more responsive to changes
in soil moisture.

Comparisons were made to SMAP surface soil moisture to
see if anomaly correlation improved when the daily rainfall
frequency changed. The NIC metric was used to calculate the
increase or decrease in surface soil anomaly correlation when
comparing ExpCHtoIM to ExpC2D. ExpCHtoIM increased
anomaly correlation across most of the domain, with the largest
changes in NIC occurring in the wintertime. During the summer,
there was a more uniform increase in NIC across the domain;
however, the magnitude of the NIC metric was smaller than
what was calculated for the wintertime months. Another analysis
compared the simulations to the SSEBop ET dataset using
an absolute error metric. The average improvement in ET
ranged from approximately 0.5–1.5% during the winter and the
magnitude of the error reduction also had a seasonal signal.

The results of the study show that the change to daily
rainfall frequency does have a noticeable effect of modeled
hydrological fields in land-surface models. The surface soil
moisture and surface runoff were the most responsive to changes
in daily rainfall distribution. The monthly surface soil moisture
anomaly correlation to SMAP were improved by roughly 0.25
across most of the CONUS domain. The simulated ET was the
least sensitive to changes in daily rainfall distribution. Most
of the domain (roughly 80%) saw less than a 2% difference
in ET; however, there were certain areas that did see a more
notable response. As satellite-derived precipitation products
become more sophisticated and converge to similar monthly
and annual rainfall accumulation values, the daily distribution
of rainfall will have a notable impact on simulated land-surface
model processes.

Modification of the daily precipitation frequency seems to
be a viable solution to either create more initial conditions for
ensemble runs or create moderate improvements in land-surface
model simulations. While changes in simulated hydrological
fields were confirmed by this study, these changes do not
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guarantee universal improvement in simulation accuracy because
the total amount of precipitation over the domain will be a major
factor in guaranteeing accuracy when comparing to observational
products and datasets.
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