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Agriculture is the major user of water resources, accounting for 70% of global freshwater

demand. As the demand for clean water increases, so does the need to implement

more efficient strategies for water management in irrigated agriculture. While the benefits

of precision irrigation in high-value crops, such as cannabis, tomatoes, and potatoes,

are fully recognized, there is still need to investigate and implement cheap and efficient

irrigation strategies for widespread low-value crops such as maize. In this study, the

soil moisture dynamics in a sprinkler-irrigated maize field in Veneto (Northeastern Italy)

was monitored using six time domain reflectometry (TDR) probes for the entire growing

season. The TDR sensors were positioned at different depths into two separate sites: an

Uninformed Site irrigated based on the farmer’s experience and an Informed Site in which

a water balance irrigation strategy was applied based on soil moisture measurements. A

parsimonious hydrological model was then implemented and calibrated to quantify the

different water balance terms (precipitation, evapotranspiration, lateral fluxes, and deep

percolation). The comparison between the water budget terms in the two sites highlights

that soil moisture monitoring during agriculture activities leads to substantial savings

in terms of irrigation water volumes requirements and cost, without compromising the

productivity of the crop field. A simplified upscaling of the results at the regional scale,

assuming average conditions as in this study site and growing season, reveals that

potentially significant economic savings, compared to the total profits linked to maize

crops, could be possible.

Keywords: time domain reflectometry, hydrological modeling, Markov chainMonte Carlo, water balance, irrigation

costs

1. INTRODUCTION

Agriculture accounts for around 70% of global freshwater withdrawals, reaching up to 90% in
some fast-growing economies, irrigation and food production representing one of the major
uses of freshwater resources, with about 3,100 km3 of annual water consumption (World Water
Assessment Programme, 2012). About 40% of the total food production is relying on irrigated
agriculture, which represents less than 20% of the total cultivated lands (World Water Assessment
Programme, 2009), while global population growth projections of 2–3 billion people over the next
40 years, combined with changing diets, are estimated to result in a food demand increase of
70% by 2050 (World Water Assessment Programme, 2012). Therefore, efficient and responsible
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methods for agriculture water management are of paramount
importance for global environmental preservation and securing
human food needs.

Water resources management largely depends on climatic
and soil factors as well as freshwater availability, with rainfall
representing the primary source of uncertainty in quantifying
the productivity and profitability of crop fields (Vico and
Porporato, 2011). When natural rainfall intermittency is too
large, irrigation has the function of supplementing the soil water
needs. Local climatic conditions cannot be controlled by farmers
in order to increase crop productivity, but proper water resources
management may significantly increase the overall efficiency of
irrigation and water productivity (crop yield per unit applied
water). Micro-irrigation is one of the newest and most efficient
irrigation schemes for water use optimization, but its installation
and maintenance cost is very high compared to surface and
sprinkler irrigation schemes. The latter are the most diffuse
worldwide and balance sustainability, yield and profitability with
lower cost for farmers (Vico and Porporato, 2011).

Identifying optimal irrigation strategies is not trivial, due to
multiple variables involved: soil and vegetation features, climate
and rainfall variability, water cost, and crop sale price. Soil water
content and its dynamics, in particular, play a crucial role by
influencing many hydrological processes relevant for the root
zone, such as partitioning of rainfall into infiltration and runoff
and the partitioning of net radiation into sensible and latent
heat fluxes (Hupet and Vanclooster, 2002). In addition, soil
moisture dynamics have an impact on subsurface drainage and
thereby losses by deep percolation. The rate of transpiration,
carbon assimilation and biomass production are often limited
by the soil water content during the plant growing season.
In water-stressed conditions, plants undergo a state of limited
transpiration that depends on the plant physiology and the
local pedological and climate characteristics (Porporato et al.,
2002) and induces a negative impact on the plant’s health
and productivity. Water management applied to agricultural
activities has the objective of minimizing water losses through
percolation and maximizing plant’s carbon assimilation through
an optimization of irrigation application. A proper knowledge of
the processes that control soil water dynamics proves essential to
achieve this target. Hydrological models can thus play a crucial
role in the understanding of the dynamic interactions among
climate, soil, water and vegetation (Milly, 2001), with relevant
implications for agriculture (e.g., Albano et al., 2017).

Within this context, various researchers have developed
decision support tools based on real-time monitoring of the
soil water status (soil moisture and/or matric potential) to
increase crop productivity and improve irrigation water use
efficiency compared to conventional irrigation management. For
instance, Létourneau et al. (2015) have shown that strawberry
yields increased on average by 6.2% when controlling irrigation
using real-time observations of soil matric potential in the
root zone, with an associated increase of water use efficiency
varying from 7 to 15%. Muñoz-Carpena et al. (2003) have
shown analogous results for tomato production, with water
use efficiency increasing by 7%, while Pelletier et al. (2015)
reported a 25% increase in cranberry yields in Canada. Rallo

et al. (2014), for mature olive groves, and Rekika et al. (2014),
for celery, onions, and spinach, have also shown water use
efficiency increases in a range from 16 to 25% when using
irrigation scheduling controlled by sensors. Besides the yields-
related financial benefits, irrigation controlled by field soil
measurements helps to reduce the environmental impact of
crop production. Sensor-controlled irrigation may also reduce
energy consumption for pumping, resulting in a reduction
of greenhouse gas emissions (Trost et al., 2013) and energy
savings (Hedley et al., 2009), as well as reduced runoff and
deep percolation, including nitrate and others nutrients leaching
(Daccache et al., 2015; González Perea et al., 2018).

On the other hand, monitoring systems, especially the ones
based on tensiometers (Muñoz-Carpena et al., 2003) or even
more sophisticated sensors (Rallo et al., 2014), may require
high installation costs and routine maintenance. Therefore, while
it is well-established that precision irrigation is beneficial for
high-value crops, it is still unclear whether the installation
and maintenance costs of sensor-based irrigation strategies
are convenient for widespread low-value crops such as maize,
especially in relatively wet regions (Daccache et al., 2015).

The goal of this study is to present and test a modeling
and experimental framework for efficient sprinkler irrigation
of maize, a widespread crop in Italy, especially in the North,
and in other regions of the world. The framework is based
on field monitoring of soil moisture dynamics, based on low-
maintenance and affordable time domain reflectometry (TDR)
sensors, integrated with a parsimonious hydrological model for
the estimation of the water balance terms at the daily time
scale. The proposed irrigation strategy is applied to a maize
field in Northeastern Italy, whereby two sites were compared: an
“Uninformed Site,” irrigated based on farmer’s experience, and
an “Informed Site,” where the crop was watered based on soil
moisture monitoring.

The paper is organized as follows. This Introduction is
followed by a section 2, describing the study area and the
monitoring instruments, together with the modeling framework.
Section 3 reports on the data collected, model results, and
water balance analysis and comparison. Then, a comprehensive
discussion of the benefits of informed irrigation is presented
in section 4, including estimations of water savings obtained
by extrapolation to a larger regional scale. Finally, we draw
conclusions in section 5.

2. MATERIALS AND METHODS

2.1. Study Area
This study was conducted in an agricultural field located in
Albettone, province of Vicenza, Northeastern Italy (Figure 1),
during the 2013 growing season. On April 17, 2013, the field
was sowed with a hybrid corn variety labeled “P1758,” provided
by Pioneer Hi-Bred Italia S.r.l. and rated as FAO (Food and
Agriculture Organization of the United Nations) class 700,
indicating a late maturity hybrid with a maturation period
ranging from 130 to 140 days. In particular, the hybrid used in
this study has an average maturation period of 132 days and a
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FIGURE 1 | (A) Location of the study area within Italy. (B) Position of the TDR probes in the uninformed site (yellow dot) and in the informed site (green dot), TDR data

logger (blue dot), and rain gauge (red dot).

TABLE 1 | Amount of water (mm) applied to the uninformed and informed sites

during the study period.

Date Uninformed site Informed site

24–25 June 40 34

23–24 July 40 30

3 August 40 30

Total 120 94

plant density of about 7 plants per square meter. Harvesting was
carried out in mid September, 2013.

Soils in the study area are classified as Gley-Fluvic Cambisols,
with a relatively homogeneous profile and occasional organic
horizons. They are moderately deep (50–100 cm), with fine
or moderately fine texture, slow drainage capability, low
permeability, and very high available water capacity. The
typical horizons sequence is Ap-Bg-(H)-Cg (ARPAV, 2005). In
particular, the soil in the experimental site can be classified as
clay loam, with percentages of sand, silt, and clay of 24.7, 44.5,
and 30.7%, respectively. Due to the relatively high content of clay,
the soil is prone to cracking as a consequence of shrinkage when
soil moisture decreases (e.g., Bronswijk, 1988). The depth to the

water table in the field is typically larger than 2 m, as inferred
from observing the water level in the side ditches.

2.1.1. Informed vs. Uninformed Site

The maize field is irrigated by means of a traditional sprinkler
system, the most common technique in Italy, which typically
consists in spraying water over the crop by fixed sprinklers
and/or moving hose reels. In this study, in particular, a small
portion of the maize field was selected as our “informed site,”
where irrigation was applied by a fixed sprinkler, with timing and
volumes based on the concept of “readily available water,” RAW:

RAW = Zr
(

θfc − θ∗
)

= Zrn
(

sfc − s∗
)

, (1)

where n is porosity, Zr is rooting depth, and θfc and θ∗ are
soil water content at field capacity and incipient water stress,
respectively, which are related to their corresponding water
saturation values, sfc and s∗, through the porosity (θfc = n × sfc
and θ∗ = n × s∗). Porosity is around 0.50, as estimated in the
laboratory, while the rooting depth was assumed equal to the
depth at which the field was plowed, i.e., 400 mm. Even though
this is less than the maximum effective rooting depth for maize
recommended by FAO (Allen et al., 1998) (1.0–1.7 m), the soil in
the study area has a high clay content, resulting in a restriction
of the root elongation (Schneider and Don, 2019). Parameters sfc
and s∗ were estimated on the basis of a preliminary analysis on
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soil moisture data collected as described in section 2.4, resulting
in values of 0.82 and 0.65, respectively. These correspond to
soil water content at field capacity and incipient water stress
equal to 0.41 and 0.325, respectively. As a result, the estimated
RAW in our study is 34 mm, which corresponds to the target
water amount applied over the field whenever the measured soil
moisture decreased under the threshold θ∗ = 0.325. The actual
amount of water provided to the informed site may differ from
the target value, as it was only possible to monitor irrigation by
means of a simple rain gauge with manual reading.

In the remaining part of the field, the “uninformed site,”
sprinkler irrigation was performed by means of a hose reel.
Irrigation here usually relies on the farmer’s experience, whereby
timing and volumes of water application are decided by
observing the leaves of the maize plants and sometimes taking
into account the air temperature and weather forecasts. However,
in this study we deliberately chose to irrigate the two sites with
approximately the same timing, to make watering operations
simpler for the farmer and prevent the formation of significant
soil moisture gradients from one site to the other. On the other
hand, the target water amount in the uninformed site (40 mm for
each irrigation event) was decided by the farmer independently,
based on their habit, and the actual amount of water released
basically matched this value, thanks to a flow meter installed on
the supply pipe. Table 1 summarizes the timing and volumes of
irrigation events in the two sites during the study period.

2.2. Instruments and Hydrologic Data
On June 10, 2013, six time domain reflectometry (TDR) probes
were installed in the field, in two different locations about 30 m
apart (Figure 1). Each probe consisted of three stainless steel 20
cm-long rods connected to a coaxial cable. The first three probes
(1, 2, and 3) were located in the informed irrigation site, while the
other three (probes 4, 5, and 6) were placed in the uninformed
site. In both sites, the probes were installed horizontally at three
different depths: probes 1 and 4 at 10 cm, probes 2 and 5 at 20
cm, and probes 3 and 6 at 35 cm. The uninformed site is located
slightly downslope from the informed site. This is due to a small
slope in the field that allows water (including possible runoff) to
flow toward the side ditches. However, we note here that surface
runoff was never observed during the 2013 growing season.

A TDR data logger was wired to the probes and set up to
collect measurements at a 2-h interval, which reduced to 15
min during irrigation events, in order to capture the soil water
content response to infiltration with a higher time resolution.
The raw data recorded by the logger consist of the typical TDR
waveform, which was subsequently elaborated to estimate the
soil bulk dielectric constant. This was then converted into water
content, θ , by means of the widely accepted empirical calibration
relationship proposed by Topp et al. (1980).

Rainfall and irrigation rates were measured in the study
site as described in the previous section. Additional weather
data, namely solar radiation, air temperature, relative humidity,
and wind speed, were collected at a daily resolution from
the meteorological station of Teolo, less than 7 km from the
study site and managed by the Veneto Region Environmental
Protection Agency (ARPAV), in order to compute the reference

crop evapotranspiration, ET0, using the FAO-Penman-Monteith
formula (Allen et al., 1998).

2.3. Yield Data
In order to compare the productivity of the two sites, right after
the end of the soil moisture data collection period, two samples
of corn were collected from each site. Harvesting was carried out
by collecting the maize row directly above the probes as well as
two adjacent rows, so as to cover an area, A, of about 4 m2, with
approximately the same number of full-grown plants. The plants
were weighed separately for the two sites, before removing and
weighing the corncobs. The kernels of a representative number
of corncobs were counted for each site, after which the corncobs
were removed and the kernels weighed. A sample of kernels for
each site was analyzed in the laboratory to estimate their specific
weight and moisture content. The harvest data were used to
estimate the crop yield, Ya = Wg/A, in the two sites, where Wg

is the weight of the corn kernels.
The crop yield was then used to assess the water productivity,

WP, of each site:

WP =
Ya

TWU
, (2)

where TWU is the total water used, which accounts for irrigation,
rainfall and lateral flow. From a farmer point of view, referring
only to irrigation water used, IWU, is more relevant, as it
represents an actual cost. Therefore, we also compute irrigation
water productivity,WPI, as:

WPI =
Ya

IWU
. (3)

2.4. Soil Moisture Model
We used here a vertically averaged approach to describe the soil
water dynamics over a representative soil rooting zone of depth
Zr (e.g., Rodriguez-Iturbe et al., 1999; Laio et al., 2001; Settin
et al., 2007; Porporato et al., 2015):

nZr
ds(t)

dt
= I

(

s(t), t
)

− ET
(

s(t), t
)

− L
(

s(t), t
)

, (4)

where n is porosity, s is the spatially averaged water saturation (or
relative soil moisture), and t is time. The right-hand side input
and output terms are infiltration, I, actual evapotranspiration,
ET, and percolation to deeper soil layers, L. We elected to use a
parsimoniousmodel, instead of a detailed physics-based Richards
equation solver, to keep a balanced tradeoff between accuracy
of the water budget estimation and number of parameters to
calibrate. Also, the use of a parsimonious model allowed us to
speed up the computation of uncertainty using a Markov Chain
Monte Carlo method, as described later on in this section.

The infiltration rate is computed starting from Ps, i.e., the sum
of rainfall, P, and irrigation rates, R, through the expression:

I
(

s(t), t
)

= min(Ps(t),Ksat), if s(t) < 1; (5)

I
(

s(t), t
)

= 0, if s(t) = 1; (6)

where Ksat is the saturated hydraulic conductivity.
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Starting from the reference crop evapotranspiration, ET0,
actual evapotranspiration, ET, is computed using:

ET = ks
(

s(t)
)

kc
(

t
)

ET0, (7)

where ks is the water stress coefficient, which depends on
water saturation, vegetation, and soil properties, while kc is
the crop coefficient, which is a function of the season and
the crop. In particular, the FAO (Allen et al., 1998) identifies
four different periods during the growing season: initial, crop
development, mid-season, and late-season, whose lenghts vary
with crop variety and crop conditions from region to region. The
kc function is further defined by three parameters: kc,ini for the
initial stage, kc,mid for the middle season and kc,end at the end of
the late season stage, for a total of seven parameters (four lengths
and three coefficients). However, to keep the number of tuning
parameters limited, in this study we fixed the ratios of kc,mid/kc,ini
and kc,end/kc,ini at values of 1.6 and 1.2, respectively. Moreover,
we considered the kc values as constant over three growth periods
instead of linearly variable, corresponding to period lenghts of
15, 66, and 20 days, for the initial growth, mid-season, and late
season, respectively. Note that the model simulations start from
June 10, when the TDR probes were installed, and not April 17,
when the field was sowed. This explains the difference between
the sum of the three growth periods in the model (101 days)
and the maturation period of the hybrid corn used in the study
(130–140 days).

The water stress reduction function depends on the pressure
head according to the formulation by Feddes et al. (1978), but
here it is expressed in terms of water saturation: ks is equal to 1 in
well-watered conditions, i.e., for s greater than the incipient stress
point, s∗, and then decreases linearly, reaching zero at the wilting
point, swp. As a result, ET is maximum and equal to the potential
evapotranspiration when the soil moisture is higher than the
incipient stress point, while, when water content decreases under
s∗, the plant stomata gradually start to close, reducing ET to zero
when soil moisture is lower than the wilting point.

Deep percolation, L, is computed assuming free drainage at
the bottom of the rooting zone. This is a reasonable assumption,
as the water table is deep enough to ensure it does not have an
influence on the soil moisture dynamics in the first 40 cm of soil.
The relative hydraulic conductivity is computed as suggested by
Clapp and Hornberger (1978), resulting in:

L
(

s(t)
)

= Ksats(t)
2b+3, (8)

where b is an empirical fitting parameter.
At this point, all the terms appearing in the soil water

balance are expressed as a function of water saturation, s, and
Equation (4) is solved using a forward finite difference scheme
with a discrete time step of 1 h, which ensures stability at all times.

In Equation (4), it is initially assumed that lateral water
fluxes from surrounding areas are negligible. This is a reasonable
assumption, because, in normal conditions, despite the small
slope of the maize field, the product of horizontal hydraulic
conductivity and hydraulic head gradient is relatively small and
does not allow for significant quantities of water to move laterally

TABLE 2 | List of constant parameters used for modeling soil moisture dynamics.

Symbol Parameter Value

Zr Root zone depth 400 mm

sw Saturation at wilting point 0.59

s∗ Saturation at incipient stress point 0.65

sfc Saturation at field capacity 0.82

n Porositya 0.5

t1 Time of cracking appearance 1,300 h (54 d)

kcmid/kcin Crop coefficient ratio at mid-growth 1.6

kcend/kcin Crop coefficient ratio at growth end 1.2

L1 Duration of initial growth phase 15 d

L2 Duration of middle growth phase 66 d

aCalibrated in the uniformed site.

between the sites and from upslope areas to the sites. However,
it was observed that, after approximately t1 = 54 d from the
beginning of data collection, subsequent to a dry period with
no rainfall events, soil cracks started to appear on the field
surface, especially in the informed site. Such cracks were quite
shallow, extending to a depth not exceeding 20 cm. However,
this probably led to the formation of macropores and thus an
increased capacity of the soil to transfer water laterally in the field.
For this reason, for times t > t1, the model takes into account
additional water contributions from upslope areas, in both sites,
and from the informed to the uninformed site. This is done by
replacing Ps(t) in Equation (5) with the following terms, Ps,inf for
the informed site and Ps,uninf for the uninformed site:

Ps,inf = P + Rinf + α(P + Runinf ), (9)

Ps,uninf = P + Runinf + α(P + Rinf + Runinf ); (10)

where P is rainfall, Rinf and Runinf are irrigation rates in the
informed and uninformed sites, respectively, and α is a fraction
of the total input from upslope areas. For simplicity, time
dependence has been dropped in Equations (9) and (10), where
α is represented as a constant value, even though the actual
coefficient in the informed site is likely different from the one in
the uninformed site. Also, note that the uninformed site receives
an additional water input, αRinf , as it is located downslope from
the informed site. This could also explain why the informed site
exhibitedmore cracks than the uninformed one, due to its slightly
higher elevation and thus susceptibility to being dryer.

Model calibration was performed separately for the two
sites. Initially, we considered the informed site only, as its soil
moisture dataset is complete, whereas some data gaps occurred
for probe 6 in the uninformed site. Based on a preliminary
one-at-a-time sensitivity analysis, we elected to keep most of
the parameters fixed (Table 2), and to tune only Ksat , b, kcin,
and α. Parameter optimization was carried out through the
Markov Chain Monte Carlo (MCMC) method. In particular, the
DREAM algorithm (Vrugt et al., 2009) was chosen, due to its high
computational efficiency. A uniform prior distribution for each
parameter was used with ranges specified in Table 3. To keep
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TABLE 3 | List of calibrated parameters used for modeling soil moisture

dynamics, including their prior and posterior uncertainty intervals

(minimum–maximum values) derived with DREAM.

Symbol Parameter Prior Posterior

Informed

Ksat Saturated hydraulic conductivity (mm/h) 0–150 107.82–147.72

b Clapp-Hornberger exponent (-) 0–100 35.29–38.21

kcin Initial crop coefficient (-) 0–1.5 0.61–0.67

α Fraction of lateral water fluxes (-) 0–1.5 0.44–0.71

Uninformed

Ksat Saturated hydraulic conductivity (mm/h) 107.82–147.72 121.25–145.82

b Clapp-Hornberger exponent (-) 35.29–38.21 35.31–37.18

kcin Initial crop coefficient (-) 0.61–0.67 0.64–0.67

α Fraction of lateral water fluxes (-) 0–1.5 0.47–0.66

n Porositya (-) 0–1 0.53–0.54

aNot calibrated in the informed site.

the computational effort low, we used 10 parallel chains and a
maximum number of model runs equal to 5,000.

After calibration in the informed site, the model was also
tuned in the uninformed site. However, to maintain as much
physical consistency as possible between the two sites, the prior
distribution of Ksat , b, and kcin were set equal to the posterior
distribution found by DREAM in the informed site. On the other
hand, α and n were sampled from prior uniform distributions
with full uncertainty ranges, as reported in Table 3. This was
done to allow for some limited spatial variability of the porosity
between the two sites and to properly take into account the
uncertainty of parameter α.

Due to the time resolution of the weather data and to increase
numerical robustness, the parameter calibration was performed
in both sites by minimizing the discrepancy (in terms of sum
of squared errors) between model predictions and measured soil
moisture data averaged at the daily time scale.

3. RESULTS

3.1. Observed Data
Figure 2 reports the measured data in the two sites: rainfall
(uniform over the whole maize field), irrigation rates, soil
moisture content as recorded for every single TDR probe, and the
daily averages of water content in both informed and uninformed
sites. Consistent with irrigation data in Table 1, the top plot
shows that the informed site received less irrigation water than
the uninformed site. During the monitoring period, several
rainfall events occurred, but only rainfall rates larger than about
10 mm/d led to a significant water content response, as shown by
TDR data in Figures 2B,C. Also, the two-hourly TDR data clearly
exhibit diurnal fluctuations, due to the daily cycle of root water
uptake by the corn plants. Such fluctuations are no longer visible
in Figure 2D, which reports the daily averages, i.e., the data used
for the calibration of the soil moisture dynamic model.

From the end of June to the end of July 2013, the average
soil moisture dynamics was very similar in the two sites, even

though during that period the informed site received 16 mm less
irrigation water than the uninformed site (Table 1). This is a first
clue that soil moisture stress was avoided in the informed site,
despite the smaller amount of irrigation water applied there.

However, starting from the beginning of August, the two daily
soil moisture time series slightly diverge, with the uninformed
site displaying a larger water content compared to the informed
site. This is probably due to the formation of soil cracking,
which was observed precisely in that period. Soil cracks, acting
as macropores, likely increased the capability of water to be
transferred laterally within the field. As the uninformed site
is located downslope from the informed site, it was likely to
receive more lateral contributions from upslope areas in the field,
resulting in higher soil moisture values.

Finally, we note that the probes at different depths do not
show significant discrepancies in soil moisture, except for probe
3 (35 cm depth in the informed site), which is characterized by
consistently smaller water content values. This is probably due to
some small-scale inherent variability in soil texture, horizonation
or drainage characteristics. Note also that TDR probe 6 was
affected by technical issues, starting fromAugust 15th, withmany
data gaps in the last month of the monitoring period.

3.2. Model Performance
Overall, the DREAM algorithm achieved a satisfactory
performance and was able to narrow down the posterior
parameter distributions quite significantly (Table 3). In both
sites, the only parameter with a relatively large posterior
uncertainty compared to the prior is α, suggesting that the
fraction of lateral water fluxes is difficult to estimate accurately
without distributed information within the maize field.

The results of the calibrated model simulations, which refer
to the ten final sets of parameters the MCMC chains converged
to, are shown in Figure 3A for the informed site, together
with daily averaged soil moisture observations. The fit between
model and data is very good, with a root mean square error,
RMSE, ranging from 0.0092 to 0.0095 m3/m3 and a Kling-Gupta
efficiency (Gupta et al., 2009), KGE, ranging from 0.95 to 0.96 (a
value of 1 representing a perfect fit). For comparison, we note
that the typical accuracy of TDR soil moisture measurements
without any soil-specific calibration is about 2% of the measured
value (Skierucha, 2000), corresponding here to errors ranging
from about 4×10−3 to 1×10−2 m3/m3. The figure also highlights
the soil moisture ranges where (i) plants are completely water-
stressed (red zone), i.e., ET = 0, (ii) plants are partially water-
stressed (yellow zone), (iii) evapotranspiration occurs at the
potential rate (green zone), and (iv) deep percolation losses occur
due to excess of water availability. Model and data agree that soil
moisture never fell below the wilting point and deep percolation
occurred only four times, mostly corresponding to significant
rainfall events, except for the third peak, on August 3, which was
caused by irrigation.

The match between model simulations and observed data is
also satisfactory (RMSE = 0.0178–0.0185m3/m3 andKGE = 0.88–
0.91) in the uninformed site, although not as good as in the
informed site (Figure 3B). This is likely due to the fact that only
porosity and the fraction of lateral water fluxes were allowed to
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FIGURE 2 | (A) Water inputs as rainfall and irrigation in the informed and uninformed sites; water content measured by the TDR probes in (B) the informed site and

(C) the uniformed site; (D) daily averages of soil moisture in both sites.

vary within a large range in their prior distribution, whereas Ksat ,
b, and kcin were constrained within the posterior distribution
found in the informed site, to maintain a reasonable consistency
between the two sites. This could have prevented the model from
taking into account additional possible heterogeneities within the
maize field. However, we observe that the posterior distribution
of the porosity is very close to the value measured in the informed
site, indicating that the model is able to properly capture the soil
moisture dynamics also in the uninformed site. Indeed, theRMSE
range resulting from the MCMC procedure is still close to the
TDR data accuracy, meaning that the goodness of fit of the model
predictions is still sufficient to give us confidence that the water
balance terms calculated by the model (section 3.3) are accurate

enough for the scopes of this study. Overall, both the observed
and simulated soil moisture time series display a larger range of
variability compared to the informed site.

3.3. Water Balance
Once calibrated, the soil moisture dynamic model was used
to compute the different water balance terms in the informed
and uninformed sites. Figure 4A shows that the median total
water input (total infiltration) estimated by the model in the
uninformed site is 35mmmore than in the informed site, broadly
consistent with the difference in irrigation rates between the two
sites. This can be seen in Figure 4B, which shows the partitioning
of the overall water input among rainfall, irrigation and lateral
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FIGURE 3 | Measured (circles) and simulated (solid lines) daily water content in (A) the informed site and (B) the uninformed site. The simulation results refer to the

final 10 sets of parameters derived with DREAM. The blue, green, yellow, and red regions indicate soil moisture ranges where percolation, optimal ET, partially

stressed ET, and no ET occur, respectively. The soil moisture thresholds delimiting the four regions are field capacity, stress point, and wilting points, respectively.

FIGURE 4 | Comparison between (A) the water balance terms and (B) the different sources of water input (total infiltration) in the informed and uninformed sites as

computed with the calibrated soil moisture dynamics model (ET and 1s are evapotranspiration and water storage change, respectively). The box plots of the

simulations with the ten final sets of parameters derived with DREAM overlap the colored bars (median values). The bottom and top edges of the boxes indicate the

25th and 75th percentiles, respectively, the whiskers extend to the maximum and minimum values not considered outliers, and the outliers are marked by the “+”

symbol. Note that rainfall and irrigation were not considered uncertain in the model.

water fluxes. The latter are characterized by large uncertainty
intervals, especially in the uninformed site, with a significant
overlapping of the box plots, indicating that the difference
between the two sites is not significant. This is confirmation that
irrigation rates are the dominant factor explaining the overall
water input differences between the two sites.

Figure 4A also shows that not all of the excess input
water in the uninformed site (35 mm) was converted to
evapotranspiration, whose median is 26 mm higher than in the
informed site (340 vs. 314 mm). The smaller than expected

difference in ET can be mainly explained by the informed site
relying to water stored in the soil to support evapotranspiration,
as apparent from the analysis of the water storage change, 1s,
whose median is −32 mm in the informed site and −16 mm in
the uninformed site, with no overlapping of the two uncertainty
intervals. The remaining fraction of input water left the root zone
via deep percolation; interestingly, the median value is larger in
the informed site (85 vs. 75 mm). However, there is a certain
overlap of the box plots for the two sites, suggesting that the
difference in percolation is not significant.
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TABLE 4 | Summary of yield data.

Informed Uninformed

Number of plants 27 26

Number of corncobs 29 29

Total weight of the plant, Wb [kg/plant] 12.5 15.5

Total weight of the corncobs [kg/cob] 9 9

Average number of kernels per corncob [kernels/cob] 619 639

Total weight of the kernels, Wg [kg] 7.3 7.4

Seed temperature [◦C] 20 19

Moisture content 25.7 25.9

Specific weight [kg/hl] 72.8 72.6

Weight of kernels per plants [kg/plants] 0.27 0.285

Weight of kernels per weight of plant [kg/kg] 0.584 0.477

In summary, the comparison between water budget terms
in the two sites demonstrates that more irrigation water
does not necessarily lead to an equivalent increase in crop
evapotranspiration (and thus yield, see following section 3.4).

3.4. Productivity
An analysis that is limited to the water balance terms, albeit
useful to stress that irrigation water can be used more efficiently,
has little meaning if not combined with yield data. Based
on the harvest data reported in Table 4, the crop yields of
the informed and uninformed sites were 18250 and 18500
kg ha−1, i.e., a very small difference of about 1%, while
irrigation water applied to the informed site was 21.7% less
than in the uninformed site. Applying Equations (2) and (3),
the total water productivity and irrigation water productivity
resulted in median values of 49.7 (informed site) vs. 46.0
(uninformed site) kg ha−1 mm−1 and 194.1 (informed site)
vs. 154.2 kg ha−1 mm−1 (uninformed site), respectively. The
latter index, WPI, is strictly linked to the economic return
of the crop, as irrigation represents one of the major costs
of agricultural activities for farmers. Therefore, the resulting
26% increase of WPI in the informed site compared to the
uninformed site suggests that significant economic savings can
be achieved by farmers with a data-driven irrigation strategy
without compromising productivity.

4. DISCUSSION

In order to quantify the real possible saving, the cost of equipping
the fields with TDR sensors and data logger must be taken into
account. Here we carry out a simple cost-benefit analysis and then
extrapolate the results at larger scales.

The cost associated to sprinkler irrigation is mainly related
to the energy needed for conveying water from the withdrawal
point to the field at the required minimum pressure and can be
assumed equal to 5 EUR ha−1 mm−1, i.e., 0.5 EUR/m3 (Berruto
et al., 2008). With a total field size of 10 ha, the irrigation cost
difference between the informed and uninformed sites in the
2013 growing season was equal to (120–94) mm × 5 EUR ha−1

mm−1 = 130 EUR ha−1. To this, we must subtract the cost of
installation and maintenance of the TDR probes, which can be
reasonably quantified at 100 EUR per year for a 10 ha field like
the one considered in this paper, i.e., 10 EUR ha−1. This would
lead to 120 EUR ha−1 year−1 savings, i.e., about 20% less than
the cost of irrigation in the uninformed site in the 2013 growing
season. Were this technological improvement extended to all the
crops owned by the farmer’s company (about 100 ha in this case)
the estimated economic benefit at the company level would be of
the order of 12,000 EUR per year.

A note of caution is necessary at this point. We acknowledge
that our study is case-specific, in the light of the fact that
we only have data from one growing season and one study
area. Therefore, upscaling our results to larger scales necessarily
requires significant simplifications. In particular, large-scale
economic evaluations of the advantages related to informed
irrigation would need to account for several potential sources of
spatial and temporal variability, such as soil type and texture,
the maize type, the sowing period, and the rainfall variability.
Moreover, the maize price, the irrigation water costs, the amount
of maize-cropped land, irrigation water volumes and techniques
could be characterized by important interannual variability, as a
function of the market fluctuations and meteorological events.
However, despite all these uncertainties, we speculate that the
farm in the study site is representative, by size and economic
value, of the typical farms in the Veneto Region. For this reason,
well aware of the limitations implied by this exercise, we decided
to perform a simple extrapolation also at the regional scale,
which we believe would still provide a reasonable first-order
estimate of the potential savings in the hypothetic scenario in
which all the environmental conditions remained as in our
study site.

In 2010, in the Veneto region, approximately 90,000 ha of land
were used as irrigated maize crops, 75% of which were irrigated
through sprinklers, for a total of 67,346 ha (Istituto Nazionale di
Statistica, 2010). The total amount of irrigation water applied was
192.8×106 m3 (Istituto Nazionale di Statistica, 2010), for a total
cost of 96.4×106 EUR. Upscaling our calculated savings to the
entire Veneto region would thus lead to an estimated saving of
more than 8 million EUR per year in irrigation water costs. To
assess how this figure compares with profits, we should consider
that, in 2010, the average maize yield in Veneto was about 10 tons
per hectare, and the price of maize was about 160 EUR per ton.
Assuming, as shown in this study, no significant change in field
productivity due to reduced irrigation, the total amount of profit
obtainable in Veneto from sprinkler-irrigated maize crops would
thus be 10 tons/ha × 67,346 ha × 160 EUR/ton, i.e., almost 108
million EUR. In summary, water cost savings related to a more
efficient data-driven irrigation strategy would amount to almost
8% of the total profits, considering also the costs associated to soil
moisture monitoring.

We reiterate that our goal here is not to provide an accurate
estimate of the possible savings at the regional scale, but rather
to show that, potentially, an informed management of irrigation
water can lead to economic and environmental advantages, also
in view of the increasing competition between different water
uses, e.g., food production, ecological functions of rivers, energy
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production, etc. Nevertheless, we suggest that a detailed regional
study should be carried out to provide a more reliable evaluation
of the economic benefits and the water savings implied by data-
driven irrigation strategies of the type investigated in this study.
The implications should be important not only at the regional
level, but also from a global perspective. In fact, our study was
carried out in a relatively water-rich region of Northeast Italy and
we expect that the economic and environmental benefits of data-
driven irrigation would be larger in regions with a drier climate,
such as Southern Italy and other countries characterized by a
Mediterranean climate.

5. CONCLUSIONS

An efficient management of irrigation water in agriculture will
be more important than ever, in view of future predictions
of increased demand in global food production and climate
change effects. In this study, soil moisture in a maize field
in the Veneto region (Northeastern Italy) was continuously
monitored during the 2013 growing season by six time domain
reflectometry (TDR) probes installed at two different locations
and three different depths. In the first location, the uninformed
site, irrigation was applied based on the farmer’s experience, while
in the second location, the informed site, the amount of water
and application timing were decided based on the observed soil
moisture data and a water balance scheme. A parsimonious soil
moisture dynamics model was then implemented and calibrated
against the available water content data. The model allowed
us to estimate the relevant water budget terms (infiltration,
evapotranspiration, deep percolation losses) in the two sites,
showing that not all the excess irrigation water applied to the
uninformed site was converted to evapotranspiration. Combined
with maize yield data, we found that significant irrigation water
savings are possible without compromising the crop productivity.

Despite being limited to one growing season and one
experimental plot, our study demonstrates that significant

economic and environmental advantages could be gained
by applying efficient data-driven irrigation strategies also to
widespread low-value crops such as maize and relatively water-
rich regions like Northeast Italy. Of course, further research is
needed to corroborate our results and we hope that this study
will be just one of many going in this direction.

Finally, it is worth highlighting the added value of the
integration between field data and a properly calibrated
hydrological model. This integration represents a potentially
significant advance over current practices provided by
agricultural services companies that typically consider only
observed soil moisture or at best make use of general purpose
models not calibrated to the site. As an interesting future
development, a one-dimensional Richards equation solver could
be used to compare the water budget terms derived from a more
physics-based model with the ones estimated in this study with a
zero-dimensional vertically averaged approach.
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