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Some machine learning (ML) methods such as classification trees are useful tools to

generate hypotheses about how hydrologic systems function. However, data limitations

dictate that ML alone often cannot differentiate between causal and associative

relationships. For example, previous ML analysis suggested that soil thickness is the key

physiographic factor determining the storage-streamflow correlations in the eastern US.

This conclusion is not robust, especially if data are perturbed, and there were alternative,

competing explanations including soil texture and terrain slope. However, typical causal

analysis based on process-based models (PBMs) is inefficient and susceptible to human

bias. Here we demonstrate a more efficient and objective analysis procedure where ML is

first applied to generate data-consistent hypotheses, and then a PBM is invoked to verify

these hypotheses. We employed a surface-subsurface processes model and conducted

perturbation experiments to implement these competing hypotheses and assess the

impacts of the changes. The experimental results strongly support the soil thickness

hypothesis as opposed to the terrain slope and soil texture ones, which are co-varying

and coincidental factors. Thicker soil permits larger saturation excess and longer system

memory that carries wet season water storage to influence dry season baseflows. We

further suggest this analysis could be formulated into a data-centric Bayesian framework.

This study demonstrates that PBM present indispensable value for problems that ML

cannot solve alone, and is meant to encourage more synergies between ML and PBM

in the future.

Keywords: Machine Learning (ML), process-based model (PBM), streamflow-storage relationships, data-centric,

Bayes law, classification tree, soil texture
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BACKGROUND

Basin water storage has deep connections with streamflow
(Reager et al., 2014; Fang and Shen, 2017). Hence terrestrial
water storage anomalies (TWSA) data could, under certain
circumstances, be used to increase flood forecast lead time
(Reager et al., 2015). From a physical hydrologic point of view,
more water stored in a basin could mean a higher groundwater
table or wetter soils which lead to more runoff source areas
(Dingman, 2015). The storage-streamflow relationship is also
important for predicting baseflow (Thomas et al., 2013) and
related ecosystem (Poff and Allan, 1995) and water supply
issues. The issue is that these relationships vary widely in
space. Fang and Shen (2017) (hereafter named FS17, more
description in section The Background Story) conducted an
analysis of the correlation between TWSA annual extrema
and different streamflow percentiles in a year, and found very
interesting patterns of these correlations over the conterminous
United States (CONUS). The correlations between TWSA
annual extrema and high-percentile flows are strong in certain
parts of the CONUS, e.g., the southeastern Coastal Plain and
northern Great Plains, but are weak in other areas such as the
Appalachian Plateau, northern Indiana, and Florida. Why are
there wildly different storage-streamflow relationships, i.e., what
physical factors caused them? Our limited understanding of this
question hampered our use of water storage and groundwater
data in flood forecasting.

In general, to answer “why” questions such as the one raised
above, one could resort to two avenues: process-based models
(PBMs) or data-driven analyses. They are often regarded as
two separate roads that do not cross. PBMs embody our beliefs
about how the system functions. We can use PBMs to conduct
numerical experiments to assess causal relationships, as we
can alter measurable physical factors to directly examine their
impacts on the outputs. We typically employ a “model-centric”
framework, where we (i) deploy some prior distributions or
beliefs of model structures; (ii) create an ensemble of model
simulations (with different parameter sets, inputs, or model
structures); (iii) confront these models with observations by
evaluating likelihood functions either formally or informally by
visually examining the outcomes; and (iv) identify the model(s)
that best describe(s) the data. It is easy to see that paradigms
like model calibration (Vrugt et al., 2003) or Monte Carlo
Markov Chain (Vrugt et al., 2009) fit into this framework.
Moreover, numerical experiments where the modelers perturb
model physics on an ad-hoc basis (e.g., Maxwell and Condon,
2016; Shen et al., 2016; Ji et al., 2019) could also be placed in this
framework. Potential issues with this framework are that it can
be both subjective and inefficient, as many competing hypotheses
remain un-tested. The priors are often based on one’s own beliefs,
and one needs to throw a huge amount of simulations to capture
the plausible model structure. It has been argued that hydrologic
models are necessarily degenerate (Nearing et al., 2016) and even
sampling exhaustively from its parameter distribution does not
capture the whole possible model space.

In contrast to PBMs, various interpretable machine learning

approaches could be used to generate possible explanations, or

“hypotheses” in machine learning language (Russell and Norvig,
2009), of an observed behavior. For example, the weights from
linear regression could inform us of the relative importance
of factors. Classification and regression tree (CART) analysis
(Breiman et al., 1984; Mitchell, 1997), which iteratively separates
data points based on predictors and their thresholds, is another
explanatory tool that has often been employed. For example,
Verhougstraete et al. (2015) used the first level split in a CART
model to draw the conclusion that septic systems are the primary
driver of fecal bacteria levels in 64 US rivers. An advantage of
machine learning approaches is that they are highly efficient to
execute compared to PBMs, and the models they generate are
already consistent with data. They also carry the appeal of relying
less on subjective assumptions and model choices.

However, the “Achilles heel” for machine learning as an
explanatory tool is arguably their inability to distinguish between
causal and associated relationships. If we had a large enough
training dataset that covered all possible combinations of physical
factors, machine learning should theoretically be able to extract
the causal factor. However, we are limited by the combinations
that exist in the real world and for which we have data, posing
limits on the power of data. Naturally, onemight wonder if PBMs’
strength in causality analysis could be exploited to complement
machine learning algorithms.

Recently, there have emerged increasing interest in combining
physics with data-driven models. One could adopt a variety
of methods loosely termed “physics-guided machine learning”
(PGML) or “theory-guided machine learning” (Ganguly et al.,
2014; Karpatne et al., 2017; Jia et al., 2019; Read et al., 2019; Yang
et al., 2019), such as modifying the loss function to accommodate
physical constraints (Jia et al., 2019) or pre-training a ML model
using PBM outputs (Jia et al., 2018). These constructive ideas
have made ML more robust and have enriched our means
of investigations. Nevertheless, PGML frameworks have not
taken advantage of PBM’s ability to conduct experiments and
assess causes and effects. Here we propose that the evaluation
of competing hypotheses could be accomplished by running
numerical experiments with a PBM to utilize the physics encoded
in the PBM (Figure 2), as an example of the alternative research
avenue proposed earlier (Shen et al., 2018). We then compare
the probability of each hypothesis and reject those with low
probability. Bayes’ law allows information from different sources
to be merged in a sequential manner given some evidence. In the
context of hydrology (Beven and Binley, 1992; Kavetski et al.,
2006; Raje and Krishnan, 2012; Viglione et al., 2013), the gist
is that a likelihood function based on (oftentimes subjective)
assumptions of error or data distribution replaces the conditional
probability of observing a data point given model parameters.
While such kinds of likelihood functions have been well-
established, Bayes’ law itself is quite generic and not restricted
to this use. An opportunity exists to explore using Bayes’ law
to use process-based models to provide a quantification of the
likelihood. Because this framework first starts with data, we
call it a data-centric framework, in contrast to a conventional
model-centric Bayesian framework where a model’s inputs and
parameters are perturbed and the posterior probability of each
realization is calculated. We will use the storage-streamflow
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question to showcase the effectiveness of this framework and help
us understand the main controlling factors of streamflow in the
Susquehanna River basin to inspire best modeling practices. This
work is a first exploration of this particular method of coupling
data-driven hypotheses with process-basedmodeling capabilities,
and by no means do we indicate this method is optimal or the
most efficient.

In the following, we first provide some background for the
case study of streamflow-storage correlations and the competing
hypotheses that explain them (section The Background
Story). Then we describe the process-based model and the
experimental setup (sections Process-Based Hydrologic Model
and Competing Hypotheses and the Implementation of
Perturbation Experiments). We make sure the model produces

FIGURE 1 | Class map (A) and boxplots of the SSCS for Class #1 to Class #6 (B). The boxes contain 25–75% percentiles, and the crosses are those considered

outliers (Reprinted from FS17 with permission).
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reasonable hydrologic dynamics (section Performance of
the Physically-Based Model), and then finally we use the
perturbation experiments to test the competing hypotheses from
ML (section Testing Competing Hypotheses).

THE BACKGROUND STORY

The Storage-Streamflow-Correlation
Spectrum
In FS17we introduced a hydrologic signature termed the Storage-
Streamflow-Correlation Spectrum (SSCS), which quantifies
how water storage is correlated with streamflow at different
flow regimes. SSCS is the collection of Pearson’s correlation
coefficients (R) between annual extrema (peaks or troughs) of
the terrestrial water storage anomalies (TWSA) and different
streamflow percentiles (15 percentiles extracted are: {0.5%, 1%,
2%, 5%, 10%, 20%, 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%,
99.5%}) in a window around the extrema for the same basin. The
correlations are calculated on an annual scale, using the water
year (the 12-month period from October 1 through September
30 of the following year). The study period of FS17 is from 1
October 2002 to 31 September 2012. Treating each flow percentile
as a “band,” we obtained a correlation “spectrum.” The SSCS gives
a snapshot of the correlations across all bands, as compared to
previous studies that focused only on high flow regimes.

If streamflow is disconnected from storage, e.g., when most
rainfall runs off or evaporates directly without entering the
subsurface, the system would exhibit low correlation between
flows and storage during peak flows. Generally, the high-
flow bands have lower R than low-flow bands because peak
streamflows result from large storms whose magnitudes are
poorly correlated to water storage. In contrast, if groundwater
exerts a significant influence over streamflow, we expect the
correlation to be higher. A high correlation between TWSA
peaks and low flows indicates a long system memory: when such
basins receive plenty of precipitation in the wet season, the excess
storage is carried over the seasons and is reflected in low flows.
Therefore, SSCS gives us a window of observation into how
varied surface and subsurface hydrologic systems function. Please
see FS17 for more details.

When applying the SSCS over the conterminous United States
(CONUS), a large variety of SSCS behaviors emerged (FS17). To
facilitate our interpretation, we clustered these responses into
6 different classes using K-means and a distance measure (the
Euclidean distance in the SSCS space). The correlation values
for different classes and the spatial distribution of classes are
shown in Figure 1. We can clearly observe regional clusters and
spatial gradients in the SSCS patterns. Class #1 was described as
“full-spectrum responsive” since it had the highest correlations
and the smallest variability across all SSCS bands. Class #1
concentrated on the southeast Coastal Plain and northern
Great Plains. Class #2 and #3 catchments had weaker SSCS
values and were concentrated along the northern Appalachian
Plateau. For Class #3, in peak-TWSA bands, streamflow-storage
correlation was low for flow percentiles below 20%, but higher
for percentiles above 60%; in trough-TWSA bands, there were
high streamflow-storage correlations at percentiles below 60%,

FIGURE 2 | A framework for integrating PBM and machine learning.

but correlations were a little lower for high streamflow percentiles
(80% above). Class #2 can be considered a transition type between
class #1 and class #3.

Explaining the Controls of SSCS
When observing the large spatial gradients of SSCS classes
over CONUS in Figure 1, one cannot help asking, “what
causes the SSCS behavior to differ between Appalachia and

the Coastal Plain?”, which was the central question of this
study. FS17 employed a CART analysis to learn simple and
interpretable decision rules (the split criteria and thresholds)
from the data. Focusing on the differences between basins in
Appalachia (Appalachian Plateau, Piedmont, and Valley and
Ridge physiographic provinces) and basins in the southeastern
Coastal Plain, FS17 trained a specific CART model to predict
the distances of basins to class centers in SSCS space. They used
a number of predictors including the aridity index, depth to
bedrock, rainfall seasonality, and the fraction of precipitation as
snow (supporting information Table S1 in FS17). In other words,
they asked what factors made the two clusters of basins different
in terms of their SSCS patterns. From this ad hoc tree, the CART-
based model automatically identified soil thickness (RockDep),
obtained by merging soils-survey-based depth to bedrock with
bedrock depth simulated by a geomorphological model (Pelletier
et al., 2016) as the main difference between the two types of
streamflow-storage correlation patterns.

The problem of learning an optimal CART is that a CART is
not robust. This can be mitigated by training multiple trees in
an ensemble as in the random forest (RF) algorithm (Ho, 1995),
where the features and samples are randomly sampled with
replacement. The RF generalizes from the CART and provides
an estimation of probability. While RF models are more robust
and can be used to infer probabilities, they are more difficult for
humans to interpret.

While the RockDep explanation does make physical sense, it
could be dangerous to take this hypothesis as the truth. First, even
though soil thickness appeared to be the stronger explanatory
model, there could be other slightly weaker but nonetheless valid
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models. We have yet to explore what would happen if we slightly
alter the training dataset. Because we rely on available data, the
results may be dependent on a few data points that critically cover
certain parts of the input space. However, such critical data points
may happen to be missing in our training data; the robustness of
the model has not been established.

METHODS AND DATASETS

To answer our central question, here we propose a novel
framework that combines the strengths of machine learning
and process-based modeling. In this framework, machine
learning first presents competing hypotheses and assigns them
prior probabilities. Then, we construct numerical perturbation
experiments with a process-based model to implement and
test the hypotheses (Figure 2). The testing of the hypotheses
could be achieved by visual examination of the outcome of the
experiments, or via a more quantitative Bayesian approach.

Study Area—Susquehanna River Basin
(SRB)
The Susquehanna River (watershed area: 71,225 km2) is a
major river located in the northeastern and mid-Atlantic
United States (Figure 3A), which has historically been the source
of many instances of flooding damage along the main river
floodplains (Yarnal et al., 1997; May, 2011). The basin spans the
physiographic provinces of the Appalachian Plateau, Piedmont,
Valley and Ridge, and Coastal Plain regions. In general, most of
the northern subbasins of the SRB consist of mountains mantled
by thin soils which are mostly thinner than 2m (Figure 3B). We
show the SSCS behaviors of 13 randomly selected subbasins in
the Susquehanna River Basin. We found that the all 13 stations
in the Susquehanna River Basin belong to either Class #2 or Class
#3 (Figure 3C, the original pattern of SSCS from 13 USGS gauge
stations is similar to class #3).

We further chose 4 subbasins (Figure 3A), namely, the Otselic
River basin (OR), the Pine Creek basin (PIN), the Raystown
Branch Juniata River basin (RAY), and the Octoraro Creek
basin (OCT) in the south to create process-based hydrologic
models. Both soils survey data and global modeled soil thickness
data were used to parameterize soil thickness: in most of the
basin where the bedrock is within the limit of the soils survey
depth (1.52m), the RockDep attribute in SSURGO (NRCS,
2010) was used; outside of these areas, we used the average
soil and sedimentary layer thickness from Pelletier et al. (2016),
which has global coverage with 1 km resolution. Among the
subbasins modeled, OR and PIN are headwater subbasins in the
Appalachian Plateau, RAY is a headwater subbasin in the Valley
and Ridge physiographic division, and OCT is near the Coastal
Plain region. OCT has a visibly larger soil thickness.

Process-Based Hydrologic Model
To be able to conduct causal experiments, we employed the
Process-based Adaptive Watershed Simulator coupled with the
Community LandModel (PAWS+CLM) (Shen and Phanikumar,
2010; Shen et al., 2013, 2014, 2016; Ji et al., 2015, 2019;
Niu et al., 2017; Ji and Shen, 2018; Fang et al., 2019). First

introduced in Shen and Phanikumar (2010), the PAWS model
was coupled to the Community Land Model (CLM) (Collins
et al., 2006; Dickinson et al., 2006; Oleson et al., 2010; Lawrence
et al., 2011) which describes the land surface and vegetation
dynamics (Shen et al., 2013). The PAWS model has been used to
explain the relative importance of different controlling processes
on hydrologic and ecosystem dynamics. CLM incorporates
comprehensive physical and biogeochemical processes including
vapor and momentum transfer, surface radiative transfer, soil
heat transfer, freeze-thaw phase changes, and biochemical
photosynthesis, as well as plant carbon and nitrogen cycles (Shen
et al., 2014). PAWS+CLM inherits the land surface processes
from CLM, including surface energy fluxes, ET, vegetation
growth, and carbon cycling, while solving physically-based
conservative laws for flow processes including 2D overland flow,
quasi-3D subsurface (soil and groundwater) flow, vectorized
channel networks, and the exchanges among these domains. The
flow module starts with throughfall, stemflow, and snowmelt
as the precipitation inputs, and converts the CLM-computed
evapotranspiration term into a sink. The surface water layer is
divided into the flow domain, which can flow laterally, and the
ponding domain, which exchanges with the main soil column
and does not circulate laterally. The flow domain water is
routed downstream as overland flow, described by a diffusive
wave equation (DWE). Infiltrated water is governed by the
Richards equation. Water reaching the phreatic water table may
move laterally, as described by Dupuit-Forchheimer flow in
an unconfined aquifer. 1D columns of vertical soil flow are
coupled to the saturated lateral flow at the bottom. The confined
aquifers below are described by a 3D saturated groundwater flow
equation. The channel flow is governed by DWE in a 1D cascade
network. More information about PAWS can be found in Shen
et al. (2016).

Configuration of the Hydrologic Model
In this study, a 1,040 × 1,040m horizontal grid was
used to discretize the domain. Precipitation and climate
forcing data used in PAWS+CLM were obtained from the
North American Land Data Assimilation System (NLDAS)
(Mitchell, 2004). Information from the Soil Survey Geographic
Database (SSURGO) was used to provide initial values for
the soil properties. In PAWS+CLM, we extracted topographic
information from the National Elevation Dataset (30m) to
parameterize the river bed elevations, and used the mean
elevation to parameterize the gridcell elevation (Shen et al., 2016).
The climatic forcing datasets that come from NLDAS are on an
hourly basis.

The channel network is represented by an explicit, vectorized
channel network for larger rivers and the implicit, gridded
overland flow for smaller headwater streams. As an advance of
PAWS+CLM, the channel network topology is now established
based on the National Hydrography Dataset Plus Version
2 (NHDPlus V2) shapefiles. In NHDPlus V2, each segment
is encoded with a unique ID number and the downstream
ID. Combing through this connectivity information, our pre-
processing package traces the rivers from downstream to
upstream and records the river distances of each segment. The
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FIGURE 3 | Study area, Susquehanna River Basin (SRB). Main class of SRB observation data is class #3 and #2 in FS17. (A) Study area, Susquehanna River Basin.

Among the subbasins modeled, OR and PIN are headwater subbasins in the Appalachian Plateau, RAY is a headwater subbasin in the Valley and Ridge physiographic

division, and OCT is near the Coastal Plain region. (B) Soil thickness. (C) SSCS in Susquehanna River Basin for 13 USGS gauge stations (station numbers in legend).

available channels from NHD are vastly greater than what can
be explicitly represented in the vectorized channel network in
the model. In previous work, the selection of the explicitly
modeled streams was manual. We have now implemented
an automatic selection procedure: our pre-processing utility
iteratively selects the longest rivers from the candidate pool
built from NHDPlus V2, so that the total selected river
length satisfies a prescribed river density (river length :
basin area). Based on these explicitly represented rivers, we
then establish a network structure, recording names of the
streams, network topology, upstream/downstream nodes in
the hierarchy, boundary condition types (headwater, inflow,
connecting streams, or outflow), tributaries, and locations of
confluences. For each explicitly modeled river, the discretization
procedure evenly distributes the river polyline into river cells.
We then overlay the river cell with high resolution DEM and
groundwater data, extracting information, e.g., bank and bed
elevation (inferred through regional regression equation), during
discretization (Shen et al., 2016).

In PAWS the soil water retention and unsaturated hydraulic
conductivity are parameterized using the van Genuchten
formulation. To obtain spatially distributed van Genuchten

parameters, we incorporated a range of well-established
pedotransfer functions (PTFs) (Guber et al., 2009) and the
Rosetta (Schaap et al., 2001) program which employs a hierarchy
of PTFs, ranging in complexity from a soil textural lookup
table to algorithms based on Artificial Neural Networks (ANN).
We also exported soil textural information (sand, clay, and
silt percentages), bulk density, and water contents from soil
horizon data from the SSURGO database (NRCS, 2010) into
Rosetta, wherever they were available. Rosetta was then used
to predict van Genuchten parameters, and the results were
subsequently read into PAWS. Normally, we chose the “best
possible model” option in Rosetta. The SSURGO database
contains fine resolution (1:24,000 map scale) soil type maps,
which are encoded as “map unit” keys (mukey). A mukey value
serves as an index key to the SSURGO relational databases that
detail the characteristics of that soil type. A mukey may contain
several “soil components,” each taking up a certain fraction of
the map unit. Every component then describes the vertical soil
horizons and their depths.

The runtime of PAWS-CLM for 18 years of simulation in
an SRB subbasin (OR) is about 4 h on a machine with CPU.
Even with the help of the pedotransfer functions, process-based
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hydrologic model parameters need to be further adjusted or
calibrated. The SRB is large, and it is difficult to perform
calibration for the whole basin. We thus defined our objective
function as the mean of the Nash-Sutcliffe model efficiency
coefficients (Nash and Sutcliffe, 1970) for the four subbasins.
This way, the resulting parameter set may not produce the best
achievable performance for each subbasin, but presents a balance
between them for the whole basin. Model performance was
evaluated against USGS streamflow records.

Competing Hypotheses and the
Implementation of Perturbation
Experiments
To identify potential competing hypotheses, we first ran a CART
analysis, which combines classification tree and linear regression
algorithms, for both southeastern and Appalachian basins with
multiple random seeds and randomized removal of training data
points (basins). A classification tree is used to split data points
with a binary decision rule, and a linear regression is used to
predict the distance to clusters’ centroids. The runtime of the
CART-based model was 3∼5 s for both the southeastern and
Appalachian areas. Then we further ran RF analysis with an
expanded list of attributes. With the CART-based model, we
considered all basin physiographic parameters that were deemed
as important for SSCS in FS17, including: RockDep, sand,
slope, soil bulk density, watershed percent agriculture, watershed
percent developed, and standard deviation of elevation. In FS17,
we employed sand and clay as representatives for soil texture
and removed silt, since they add up to one. In the present
analysis we also followed this practice. We then implemented
changes in these factors via perturbing corresponding parameters
in the process-based model. Essentially, we first replaced the
values of these factors in the SRB by their counterparts from the
Southeastern CONUS, and ran experiments to determine their
individual impacts on the SSCS classes. We also considered the
combinatory impacts of these factors by altering them at the
same time.

Some climatic variables such as relative humidity, annual
precipitation, and fraction of precipitation as snow could
overtake as the top-level split, but are ignored in the manual
CART analysis because we are interested in the relative impacts
of physical basin parameters. We nonetheless included them in
the RF model and PBM perturbation experiments by replacing
forcing data on the SRB with those from some locations in the
Coastal Plain region, to compare their impacts with the physical
basin parameters.

One of the important physical basin parameters is soil
thickness. The difference in average soil thickness between the
thinly-mantled Appalachian basins and their southeastern
neighbors is about 30m. Hence, for the perturbation
experiments, we added 30m of soil thickness to each subbasin
of SRB.

The second factor of importance is soil texture (sand or clay
percentages). We replaced the soil van Genuchten parameters
in the SRB with those from soil classes that were randomly
selected from two survey areas in the Southeast. One survey area

had many map units, each of which had many soil component
and horizons. We randomly selected one soil horizon from
each survey area (GA603 and GA632). The soil van Genuchten
parameters were obtained using the Rosetta program. We also
selected two SSURGO horizons where one had the maximum
sand content (FL131) and the other one had the minimum sand
content (TN081). Hence, in these experiments, the SRB basins
effectively are given the same soil texture as the Coastal Plain
region. The characteristics of soil texture of these four SSURGO
entries are shown in Table 1 (sand, silt, and clay percentages).
One could note that basins in the Coastal Plain region have much
more sandy soils, and thus have high infiltration capacity.

The third factor to be analyzed was the terrain slope. We
examined the difference between the slopes of the southeastern
CONUS (Class #1) and SRB, which are <10% and ∼30%,
respectively. Thus, we implemented an experiment where the
terrain slope was reduced by 80%, by changing the digital
elevation data that were inputs to the data pre-processor (Shen
et al., 2014) of PAWS+CLM. 80% was chosen because after this
treatment, the average slopes of the SRB basins were similar to
those in the Coastal Plain region.

Besides single factor experiments, we also evaluated how
multiple factors interacted to impact hydrologic fluxes. After
implementing the numerical experiments, we recalculated the
SSCS from each perturbed simulation. The total simulated water
stored in the soil column and groundwater in the model was used
as the water storage, while streamflow was extracted from the
simulated daily outflow from each subbasin.

The Data-Centric Bayesian Learning
Framework
The effects of the ML hypotheses can be demonstrated solely
by visualizing the results from the experiments. However, as
an exploratory step, here we also propose a quantitative, data-
centric Bayesian framework to integrate data and the results from
the modeling experiments. Essentially, the machine learning
provides the prior, and the numerical experiments compute
a likelihood for a factor being the causal factor. The two
probabilities can be integrated using Bayes’ law.

Here, we define y as the observed patterns and F as the list
of perturbations of the “process parameters”, i.e. physical factors
whose effects can be represented by perturbing our PBM. In
the present example, F can take one of three values in {“soil
thickness,” “soil texture,” “slope”}. When F is equal to “soil
thickness,” the setup of the PBM experiment is to increase soil

TABLE 1 | The characteristics of alteration of soil texture.

Soil Sand percentage Silt percentage Clay percentage

category (%) (%) (%)

GA603 86 4 10

GA632 43 40 17

FL131 85 10 5

TN081 21 55 25

SRB Average 32.8 51.7 15.5
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thickness, while leaving soil texture and slope untouched. We
can then identify the factors causing the differences in observed
patterns between instances using Bayes’ law:

P
(

F
∣

∣y
)

=
L(y|F)P(F)

P(y)
(1)

where P(F) is the prior probability of the process parameters
being the cause of the observed differences between instances,
to be obtained from the pure data-driven analysis (more
below), L(y|F) is the likelihood that, after making the process
perturbations in F, the differences in patterns in y are observed,
P

(

y
)

=
∫

L(y|F)P(F)dF is the marginalized probability, and
P

(

F
∣
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is then the probability that, given the evidence with
the model experiments, F is the causal factor for the observed
differences. In the Bayesian analysis here, we only consider the
top three individual factors as potential values for F, and do not
consider parameter interactions.

More specifically for this case, we start from basins that are
by default of SSCS class #2 and #3 in the SRB, and ask whether
a change in one of the physical factors could turn them into
class #1. Therefore, P(F) is the prior probability of each process
perturbation, and was calculated as the frequency that F appears
as the first level split in the RF model trained to predict the
distance to the class center #1; L(y|F) is the likelihood function for
the perturbed model to produce class #1 basins. This likelihood
was assessed using a Gaussian Mixture Model (GMM), which is
a generalization from K-means clustering. Instead of predicting
one class membership, the GMM generates a fuzzy membership
for all classes. Our GMM used the clustering results of FS17,
including the clusters’ centroids, clusters’ covariances, and the
fraction of data points belonging to each class (more details of the
GMM are in Appendix A). The marginalized probability, P(y),
was computed by integration.

The definitions of P(F), which uses model visit frequency,
may seem unestablished. However, in the world-shocking event
where AlphaGo defeated the Go world champion, the algorithm
selected the most visited move during its Monte Carlo tree search
as its actual action (Silver et al., 2016). Their choice, also reliant
on model visit frequency, also seemed informal, but it performed
marvelously well. Our choices were based on the current best tool
we have given the overall objective of this paper.

RESULTS AND DISCUSSIONS

In this section, we first show the limitations of CART analysis and
ML in general, and present multiple competing hypotheses from
ML. After demonstrating the performance of the PAWS+CLM
model for the Susquehanna River basin, we show results from
the perturbation experiments. Finally, we put those results in the
exploratory Bayesian framework and examine its usefulness.

The Robustness of CART and the
Competing Hypotheses
While soil thickness was the most frequent factor that can
predict the SSCS difference between class #1 and class #3 basins
(Figures 4A,B), we found that soil texture (Figures 4C,D display

the result for sand percentage), and terrain slope (Figures 4E,F)
are competing hypotheses. The CART experiments with 20
different random seeds showed that there is a 75% chance
that RockDep was selected as the top-level split, followed by
Sand and then Slope. From the RF modeling, RockDep, Sand,
and Slope have 21%, 17%, and 2% chances to be selected
as the top-level split, respectively, with the other remaining
chances mostly taken by climatic variables. The performance of
these alternative models are weaker than soil thickness, but the
difference, especially between soil thickness and soil texture, was
not big enough to warrant confident rejection. These competing
hypotheses exist because terrain slope, soil texture, and depth to
bedrock covary in space. As we go fromAppalachia (Appalachian
Plateau, Piedmont, Valley and Ridge) to the Coastal Plain,
simultaneously the terrain flattens, the soil texture becomes more
sandy, and the soil thickness increases substantially.

Besides random seeds, we also ran experiments with reduced
training data points to examine the robustness of CART.
We found that the frequency of the first-level criterion of
the classification tree changed significantly when we randomly
removed ∼22% of the data. Moreover, in the extreme case, if
we purposefully removed as few as 7 data points with the lowest
sand percentages out of 693 total data points, the most important
variable would change from “RockDep” to “Sand.”

These results all suggest that the CART analysis is not robust.
CART is indeed problematic; however, this is not just an issue
with CART, but more generically an issue with the statistical
power of the data. It can be argued that there is not enough
statistical power in the data to differentiate between the causal
and the coincidental factors. Geoscientists are opportunistic in
the sense that we can only examine basins with the combinations
of land use, geology, soil texture, and slope that naturally exist in
the world and have been, or are, under study. It is not be hard to
imagine missing some critical combinations which would lead to
erroneous conclusions.

More importantly, from these results, we extracted three
factors that are treated as competing hypotheses that explains
the main difference in SSCS between the Appalachian basins
and their Southeast neighbors: soil thickness (RockDep), soil
texture (Sand, Silt, or Clay), and terrain (Slope). Other
basin parameters such as soil bulk density and land use
have very low importance and can be ignored in later
analysis. We then implemented changes in these factors
in the process-based model to examine their impacts on
the SSCS.

Performance of the Physically-Based
Model
The daily observed USGS streamflow and simulated flow
for a period of 18 years (2000–2017) were compared in
Figure 5. The model had decent performance for streamflow
simulation, especially within the baseflow and low flow periods
(Figure 5), and captures the long-term streamflow pattern as
well as some extreme high flows. The Nash-Sutcliffe model
efficiency coefficient is not as high as in some of our previous
applications (e.g., Shen and Phanikumar, 2010; Shen et al.,
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FIGURE 4 | A one-level classification tree model picks up soil thickness (RockDep) as the main difference between two types of storage-stream flow correlation

patterns compared to other physical factors like soil texture (result for sand percentage shown here, Sand) and terrain (Slope) (Reproduced from FS17 with

permission). (A,C,E) Southeastern region of CONUS. Color indicates SSCS class, symbols indicate tree nodes for physical factor (RockDep, Sand, Slope). (B,D,F)

One-level ad hoc trees to predict class #1 in (A,C,E) via physical factor (RockDep, Sand, Slope).

2014; Niu et al., 2017), due to the compromise in the 4
subbasins’ parameter calibration. While the largest dam on
the Susquehanna River, the Conowingo Dam, is downstream
from our gage, there are other smaller dams in the basin

that could have contributed to the mismatch. In addition,
our experiences have indicated that NLDAS precipitation
often underestimates the peak storms, leading to an under-
estimation of peaks. As the main focus of the paper is
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FIGURE 5 | Model streamflow simulation of whole SRB streamflow simulation. The red solid line indicates the USGS measured streamflow, and the blue dashed line

indicates the model’s simulated flow.

not streamflow prediction, our calibration of the model is
not extensive.

Testing Competing Hypotheses
It is easy to observe the impacts of soil thickness on the SSCS
curves extracted from the default and perturbed simulations
(Figure 6). On this figure, we colored experiments by whether
they do have thicker soil implemented (adding 30m to the
soil thickness, shown in blue) or do not (shown in red). All
four basins have similar patterns. The default SSCS (red x)
curves are similar to SSCS classes #2 and #3 of FS17 (except
the trough band of PIN, which is similar to Class #4), in
that they have low correlations in peak-storage-low-flow bands,
medium correlations in peak-storage-high-flow bands, and low
correlations in trough-storage bands. These patterns all indicate
a limited system memory; the water storage in the wet season
has no impact on baseflow later in the water year. When we
increased the soil thickness, the correlations in peak-storage-
low-flow increased substantially, indicating that the annual-
scale system memory had been enhanced. Except for the OCT
subbasin, there is a clear separation between the red and
blue points.

On the other hand, when soil texture was modified from the
default (red x) into those from the Southeast (red plus, asterisk,
square, and diamond), SSCS barely fluctuated, and results based
on these southeastern soil textures were clustered closely with
the default simulation. We could see that soil texture has a
small impact: FL131 (red square) appears to encourage higher
correlations across the spectrum as compared to the others. The
notable soil texture characteristics were that GA603 had a high
sand percentage (most were higher than 70%); GA632 had high
sand and high silt percentages (summation of both were higher
than 70%); FL131 was high in sand percentage (most were higher

than 80%); and TN081 was high in silt percentage (most were
higher than 50%). However, the magnitude of the impact of
soil texture was not comparable to that of the soil thickness.
According to the likelihood value calculated by the GMM,with all
default parameters, OR belongs to Class #2 (highest probability,
almost 1) and PIN belongs to Class #2 with a likelihood of 0.75
(Figures 7A,B). In contrast, all experiments with “thick soil” had
SSCS class #1. Some parameter interaction can be observed, but
its effects were minor compared to the impact of soil thickness.

From the experiments where we replaced forcing data in the
SRB with those from the Coastal Plain region, we found the
impacts of climate on SSCS classes (or GMM likelihoods) to
be small (data not shown here). In fact, going from Appalachia
in the North to the Coastal Plain in the South, we saw a
lower fraction of precipitation as snow, which should have
reduced storage-streamflow relationships, but this effect ran
counter to the observation of higher correlations between
storage and streamflow in the south. Apparently, the effects
of climatic variables were not as strong as the physical basin
parameters, and were also coincidental factors. Hence, they were
not further examined.

The Data-Centric Bayesian Inference
Results
According to the Bayesian inference framework in Equation 1,
the soil thickness factor had the highest posterior probability
(Table 2). Although soil texture also had a prior that was
comparable to that of soil thickness, experiments that only
perturbed soil had very low likelihood functions, lowering its
posterior to almost zero. Terrain slope had a lower prior
(although it was higher than other physical factors which were
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FIGURE 6 | SSCS extracted from the numerical experiments. “Thin soil” is the default simulation with SRB-default parameters.

examined but not mentioned here), and its likelihood was also
low, indicating that it was only a coincidental factor, not causal.

These results unequivocally support soil thickness as the
causal factor of SSCS differences between Appalachian basins

and those on the southeastern Coastal Plain, whereas soil texture
and slope were merely coincidental factors. It is notable that the
PBM was needed to break the practical tie between the priors
of soil texture and soil thickness. From these results, we can
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FIGURE 7 | The likelihood function L(y|F) as calculated by GMM in different PAWS+CLM experiments. Deeper blue color highlights higher probability. Here, we only

show the (A) OR and (B) PIN subbasins, but the other 2 subbasins have similar results (Appendix B).
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TABLE 2 | Calculations of the data-centric Bayesian inference framework for three factors.

OR basin P(F) L(y|F)

(Class 1)

P(y)

(P1*L1+P2*L2+P3*L3)

P (F|y)

(Class 1)

Thickness 30m addition 0.21 (P1) 0.99999 (L1) 0.21012 1.00

Slope 80% reduction 0.02 (P2) 0.00001 (L2) 0.00

Soil texture Different SSURGO 0.17 (P3) 0.00070 (L3) 0.00

PIN basin P(F) L(y|F)

(Class 1)

P(y) P (F|y)

(Class 1)

Thickness 30m addition 0.21 0.99997 0.21001 1.00

Slope 80% reduction 0.02 0.00020 0.00

Soil texture Different SSURGO 0.17 0.00004 0.00

The remaining P(F) was mostly taken by climatic variables. Bold font indicates the factor with the highest posterior probability.

conclude that in general, systems with large soil thickness have
longer memory, allowing water from the recharge season to
accumulate, which thus impacts the baseflow in the hot summers.
Although more sandy soil could allow for more infiltration
and hence mildly boost storage-streamflow correlations, its
impact was apparently not comparable to that of soil thickness.
This contrast was automatically highlighted by the Bayesian
framework proposed here.

Further Discussion
In this case study, ML allowed us to focus on only three factors
prior to running any numerical experiments. If we were to run
the hydrologic model to assess all of the 11 factors analyzed in
CART, assuming 3 levels for each factor, 311 model runs would
be needed, but in this analysis we only ran 11 jobs. Not only
does this provide savings of computational power and time, but
also means that we need to objectively confront our PBMs with
the identified ML hypotheses. If the PBM at hand is not able
to represent the effects of these factors, one needs to take note
and either refine the PBM or select a different one. Because of
the target, inputs, training data, and other aspects of ML still
needing to be defined by humans, it is not unbiased, and fairness
in artificial intelligence is a big topic (Zou and Schiebinger, 2018).
However, as long as the initial ML problem is posed inclusively,
ML can be relatively impartial compared to only using one PBM
and starting only from expert-conceived hypotheses. The PBM
was also critically important here, allowing us to study causal
relationships and nuances of parameter interactions, where data
may not be sufficient for complete analysis via ML.

The proposed framework is very different from that of
physics-guided machine learning (PGML) (Ganguly et al., 2014;
Jia et al., 2019) in that it utilizes established PBMs, which are
valuable assets which the geoscience community has accumulated
over the past decades, as the backbone of the analysis, whereas
PGML relies on ML algorithms as the backbone. While one
can easily encode simple principles such as mass and energy
conservation in the loss function for PGML, it will be quite
difficult to similarly express the complex physical processes and
cross-domain interactions encoded in complex PBMs. Another

PGML method is to pre-train a ML network with outputs
from the PBM; in the future it will certainly be interesting to
compare these methods in terms of their capability and clarity
of finding explanations.

The proposed data-centric Bayesian framework is raised here
for the first time, and is thus only exploratory. It requires the
definition of a prior (from ML), a proper PBM, a likelihood
function (calculated by the GMM), and a marginalization
strategy. Upon proper definition of the prior and likelihood
functions, this framework can be autonomously executed. The
prior is obtained purely from data analysis of GRACE and
streamflow data while the posterior mostly depends on the
assumed model dynamics which were built from physical laws
such as the Richards equation, diffusive flow equations, and
ecosystem equations. Each one of these choices can have
alternatives, and may involve arbitrary decisions that lead to
debates. We fully recognize that the choices we made could be
improved in the future. However, our goal here was to highlight
the value of both PBM and ML, and to inspire exploration into
the diverse ways that both approaches can be coupled together
for the advancement of knowledge.

Here we used an interpretable machine learning method
(classification tree) for illustrative purposes, essentially to obtain
a parameter importance ranking and an estimate of a prior. Other
methods such as linear regression, support vector machines, or
deep learning neural networks could also be used to provide
the prior. Time series deep learning-based models (Fang et al.,
2017, 2018; Fang and Shen, 2020; Feng et al., 2020), have
also emerged and are transforming hydrology (Shen, 2018),
but they are less interpretable. The main purpose of the ML
algorithm is to obtain a parameter importance ranking and
an estimate of prior. Besides algorithm-specific methods such
as layer-wise relevance propagation (Bach et al., 2015), many
model-agnostic methods, e.g. permutation feature importance
(Fisher et al., 2019) or forward/backward feature selection, exist
to obtain parameter importance rankings and priors. On the
other hand, interpretability is not necessarily required if the
purpose is to autonomously discover knowledge, e.g., if the
purpose is for an AI agent to reduce uncertainty in the framework
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of active learning (Settles, 2012). The only true requirements
are that the hypothesis generated by the ML algorithm can
be translated into a PBM configuration and used to make
perturbations, and that the likelihood of those configurations can
be evaluated.

CONCLUSIONS

Here we have proposed a Bayesian framework that combines
machine learning and process-based modeling to overcome
limitations of both approaches. In this framework, machine
learning is first used to generate competing hypotheses that are
consistent with existing data. These hypotheses are subsequently
implemented as perturbed process-based model simulations,
which help to distinguish between causal and coincidental
factors. This framework can be executed by a program and
could be regarded as giving PBMs to machine learning as
diagnosis tools. ML has its limitations regarding robustness,
the statistical power of limited data, and causal reasoning,
but it allows us to rapidly focus on several competing
hypotheses and limit our subjective bias when choosing
a model.

We tested the framework using the example of inferring
the physical factor that controls storage-streamflow correlation
behaviors across the gradients from Appalachia to the Coastal
Plain. Although machine learning suggested that soil thickness
and soil texture have similar prior probabilities of being the
causal factor, the PBM experiments unequivocally supported soil
thickness. This example highlights the value of the PBM in the
era of big data, and promotes an alternative ML-PBM integration
methodology to physics-guided machine learning, as it works
with complicated, established PBMs.
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