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Karst water is vital for local drinking and irrigation but is susceptible to contamination.

Hydrochemistry, which is highly related to carbonate weathering in karst catchments,

can affect water quality and respond rapidly to climate change. In order to explore

hydrogeochemical sources, dynamics, and their responses to rainstorms, rainwater,

throughfall, hillslope runoff, surface water, and groundwater were sampled synchronously

during rainstorms at a karst Critical Zone Observatory (CZO), Southwest China. Results

showed that the total dissolved solids (TDS) concentration in throughfall increased

by 30.1 ± 8.0% relative to rainwater, but both throughfall and rainwater contributed

little to TDS in surface water and groundwater compared with terrestrial sources.

Hydrochemistry in surface water and groundwater was diluted by rainstorms but

displayed chemostatic responses with different intensities to increasing discharge. This

is possibly regulated by hydrogeological conditions, available sources of various solutes,

and the difference between solute concentrations before and after rainstorms. Ca2+ and

Mg2+ dynamics were mainly regulated by carbonate weathering, gypsum dissolution,

and gypsum-induced dedolomitization (geological sources), which also affect Ca2+,

Mg2+, and SO2−
4 in deep confined groundwater draining a gypsum stratum. For HCO−

3 ,

CO2 from respiration and microbiologic activities is one dominant contributor, especially

for spring. The chemostatic behaviors of NO−

3 , Cl
−, and K+ were related to agricultural

activities, especially in surface water. These controls on hydrochemistry may already exist

as hillslope runoff occurs, which has be further demonstrated by principle component

analysis (PCA). The heterogeneous permeability of epikarst can affect the mixture of

groundwater from different sources and flowing pathways, enabling hydrochemistry at

different hydrogeological conditions to display discrepant responses to rainstorms. The

epikarst aquifer with high permeability is susceptible to changes in external environment,
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such as rainstorms and agricultural activities, increasing the potential risk of water

environment problems (chronic pollution of nitrogen and high hardness of water) during

a certain period. Drinking water safety thus deserves consideration in the agricultural

karst catchment.

Keywords: hydrochemistry, high-resolution data, rainstorms, chemical weathering, chemostatic behavior, karst

catchment

INTRODUCTION

Karst landforms cover 2.2 × 107 km2 and are scattered around
the world, especially in Southeast Asia, South America, and
the Mediterranean coasts (Yuan and Cai, 1988; Ford and
Williams, 2007). Southeast Asia is the largest continuous karst
region, centered on Southwest China (Zhao and Seip, 1991).
Comprised of chemically soluble rocks with large passages or
network of conduits and caves inside, karst aquifers are very
permeable and can store and transport large amounts of water,
supplying drinking and irrigation water to ∼25% of the world’s
population (Ford and Williams, 2007). However, the increasing
water demand (residential, industrial, and agricultural use) can
cause water shortage and water quality degradation. Additionally,
the special hydrogeological conditions (high permeable soil/rock
systems with caves and fractures inside) of karst systems
benefit water and solutes migration, making the CO2-H2O-
CaCO3 system sensitive to hydrological changes (Yuan and
Zhang, 2008; Beaulieu et al., 2012), and making karst aquifers
vulnerable to contamination (Kačaroglu, 1999). Researching
karstic hydrochemical dynamics during rainfall storms is
conducive to understanding the transfer of contaminants and
solutes and their responses to climate change.

Intense carbonate weathering and mixing of “new” and “old”
water can alter solute concentrations in karst water (Gabet et al.,
2006; Basu et al., 2010). Solute concentrations also normally show
distinct seasonal patterns due to hydrological variations and
some biogeochemical processes (Han and Liu, 2004; Lang et al.,
2006; Zhong et al., 2020). Therefore, hydrogeochemical behaviors
in karst catchments need to be demonstrated by high-resolution
information that can capture key processes. High-frequency
field campaigns during rainstorms are thus necessary to analyze
the dynamic response of chemical compositions to hydrological
variations and its potential effects on water quality as well
as public health. The dynamic behaviors and corresponding
controls of hydrochemistry in river and/or groundwater have
been reported (Koger et al., 2018; Piazza et al., 2018; Correa et al.,
2019). However, there are few studies conducting high-frequency
sampling to analyze hydrochemistry in both surface water and
groundwater in karst regions of Southwest China. Additionally,
rainwater, one important source of surface and ground water, also
plays a significant role in hydrochemical dynamics (Polkowska
et al., 2005;Ma et al., 2017). But most research only pays attention
to sources of solutes in rainwater (Han and Liu, 2006; Lu et al.,
2011; Wu et al., 2012; Zhang et al., 2012; Rao et al., 2017; Zhou
et al., 2019); the dynamic variation of hydrochemistry among
different waters (rainwater, throughfall, hillslope runoff, surface
water, and groundwater) are rarely explored during rainstorms.

Rainwater may play a more important role in karst catchments
than non-karst systems, since the acidic rainwater may also
dissolve carbonate minerals and then alter the hydrochemistry
as well. Analyzing hydrochemistry of different water bodies
in spatial profile can offer comprehensive information to
understand hydrogeochemical dynamics in Earth’s Critical Zone.
This is necessary for modeling the migration processes of
hydrochemistry and better implementing cost-effective water
quality management in karst catchment.

Against this background, high-frequency sampling for surface
water and spring was conducted during rainstorms at a karst
catchment in Southwest China. Rainwater, throughfall, hillslope
runoff, and well water were also synchronously collected,
to analyze (1) the dynamic response of surface water and
groundwater to rainstorms and corresponding controls and (2)
the dynamic variations of hydrochemistry among different water
bodies at a catchment scale and corresponding controls.

MATERIALS AND METHODS

Study Area
Chenqi catchment (26◦15′20′′-26◦16′9′′N, 105◦46′3′′-
105◦46′50′′E), with an area of 1.25 km2, is a karst Critical
Zone Observatory (CZO) located in Puding, Guizhou province,
Southwest China (Figure 1). This CZO has been investigated
for ∼40 years in the aspect of hydrogeological structure,
hydrological connectivity, soil characteristics, and other
fundamental information (Chen et al., 2005, 2018; Cheng et al.,
2019; Zhang et al., 2019; Liu M. et al., 2020). It is an agricultural
karst catchment where irrigation and drinking water are both
supplied by karst water. Under the influence of a subtropical
monsoonal climate, the annual mean rainfall is 1,140mm, over
80% of which falls in the wet season. Average monthly air
temperature is highest in August (24◦C) but lowest in December
(7◦C). Average monthly humidity ranges from 74 to 78%.

The elevation of this catchment decreases from east of 1,520m
to west of 1,320m (outlet). Carbonate rocks dominate the
lithology, over which Quaternary soils are unevenly distributed.
Limestone is the dominant geological strata in the higher
elevation area with 150–200m thickness, and the underlying
layer is impermeable marlite strata (Zhang et al., 2019). Soil
is thin (mean < 50 cm) in hills but thicker (40–100 cm) in
valley depressions. Deciduous broad-leaved forest and scrub-
grassland, occupying 83% of total land use, grow mainly on the
mountains. Agricultural paddy and dry land are spread in valley
depressions, accounting for about 3 and 14% of the catchment
area, respectively (Qin et al., 2020). The catchment outlet is in the
valley depression surrounded by scattered hills. There are three
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FIGURE 1 | Location of the study area and sampling sites. W1, W2, and W3 refer to three observation wells.

observation wells with different depth distributed in depression
(Figure 1). The depth (below the ground surface) of well W1 and
wellW3 are 20 and 12m, respectively. The permeability of aquifer
around W1 is low (most resistivity > 1,000 �m) but that around
W3 is high (most resistivity < 100 �m) (Chen et al., 2018). The
well W2 (depth > 20m) is fed by deep confined spring draining
gypsum stratum and scarcely suffers outside disturbance. The 3-
wells can thus reflect the circumstances at different depth in the
karst structure.

Sampling and Measurement
High-frequency sampling was conducted at the outlet of spring
(SP) and surface water (SU) during rainstorms from June
11 to 17, 2018 (Figure 1). Well water samples of W2 were
synchronously collected at the outlet through a drain line. Well
water at different depths of W1 and W3 were sampled before
(B), during (D), after (A) and on the fourth days (F) after the
rainstorms. Meanwhile, rainwater (RA), throughfall (TH), and
hillslope runoff (HI) were also collected on surrounding hills.

At the sampling time, water temperature (T), dissolved oxygen
(DO), electrical conductivity (EC), and pH were measured in
the field by a portable multiple parameter sensor (WTW, Multi
3630 IDS). All water samples were collected in duplicate in dry
and clean bottles that were rinsed twice beforehand with in-situ
water and stored in darkness at 4◦C until analysis. One part was
used for measuring HCO−

3 concentration through acid titration
with 0.02mol L−1 HCl. The other was filtered through 0.22µm
filters to measure major ions (Ca2+, Mg2+, Na+, K+, SO2−

4 , Cl−,

NO−

3 ) by the Ion Chromatography (Thermo Scientific, Dionex
Aquion). Blank test and sample duplicates were conducted
during analytical processes to perform quality assurance and
control. The blank was lower than the method detection limits
and the relative standard deviation (RSD) of above analyses were
all within 5%.

Total dissolved solids (TDS) were calculated by the sum
of eight ions measured above. The bracket “[]” was used to
symbolize the concentration of solutes, e.g., Ca2+ concentration
is simply described as [Ca2+]. To more accurately compare
solute concentrations within this study or between different
researches, discharge-weighted concentration (DWC) of solutes
was calculated as follows:

DWC=

∑
(Qi × Ci)
∑

Qi
(1)

where Qi is the discharge at timestep i and Ci is the synchronous
concentration of solutes.

RESULTS

During the sampling period, two considerable rainstorms
occurred continuously, with amounts of 30.4mm on June 11
and 24mm on June 12 (Figure 2). The pH value of rainwater
here is 6.27 ± 0.03, which increases by 0.44 in throughfall
(Supplementary Table 1). Ion concentrations in rainwater are
low and follow the order of [HCO−

3 ] (109 µmol L−1) > [SO2−
4 ]
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FIGURE 2 | Time series of rainfall, discharge (Q), and water quality parameters of surface water (A) and spring water (B).

(79.8 µmol L−1) > [Ca2+] (46.3 µmol L−1) > [NO−

3 ] (30.7
µmol L−1) > [Mg2+] (7.87 µmol L−1) > [K+] (3.57 µmol
L−1) > [Na+] (2.76 µmol L−1) > [Cl−] (2.40 µmol L−1)
(Supplementary Table 1). The first four ions dominate chemical
compositions, accounting for 94.1%. After passing through the
vegetation canopy, [NO−

3 ] decreases by 9.13 ± 6.13 µmol
L−1 but other ions increase with different degrees. The TDS
concentration in TH is slightly higher than that in RA (24.2 vs.
18.6mg L−1). Both RA and TH show lower total cation charge
(TZ+ = 2[Ca2+] + 2[Mg2+] + [Na+] + [K+]) than total anion
charge (TZ− = [HCO−

3 ]+ 2[SO2−
4 ]+ [NO−

3 ]+ [Cl−]). The net
inorganic charge balance (NICB= [TZ+ − TZ−] / [TZ+ + TZ−]
∗ 100%) in RA is even <-10% (Figure 3).

During rainstorms, discharge varied from 0.4× 10−3 to 179.5
× 10−3 m3 s−1 at SP outlet and from 0 to 378.1 × 10−3 m3 s−1

at SU outlet, and high discharge normally accompanied high DO
and low EC (Figure 2). SU samples have higher DO and pH but
lower EC compared with SP samples, and all of them have small
coefficient of variation (CV < 10%) (Supplementary Table 1).
TDS in SU and SP range from 331 to 397mg L−1 and from 345
to 475mg L−1, respectively. The DWC of ions in SU follow the
order of [HCO−

3 ] (3,371 µmol L−1) > [Ca2+] (1,804 µmol L−1)

> [Mg2+] (362 µmol L−1) > [SO2−
4 ] (333 µmol L−1) > [NO−

3 ]
(321 µmol L−1) > [Cl−] (73.4 µmol L−1) > [Na+] (35.5 µmol

L−1) > [K+] (33.5 µmol L−1) (Supplementary Table 1). In SP,
the DWC of HCO−

3 , Ca
2+, and Mg2+ are higher than that in SU,

at 3,812, 2,053, and 436 µmol L−1, respectively. While the DWC
of NO−

3 , Cl
−, and K+ in SP are lower than that in SU, at 217,

61.0, and 21.8 µmol L−1, respectively. Except NO−

3 , parameters
have higher CV in SP than in SU (Supplementary Table 1). The
NICB of both SU and SP samples are within±10% (Figure 3).

The water levels in W1 and W3 fluctuated by 1.6 and 3.7m,
respectively (Supplementary Figure 1). All ion concentrations in
W1 have relatively small spatial variations in vertical profiles and
temporal variations among the four sampling campaigns [before
(B), during (D), after (A), and on the fourth days (F) after the
rainstorms], as reflected by their CV in Supplementary Table 1

and box plots in Figure 4. In vertical profiles of W3, however,
ion concentrations normally fluctuate more widely, except the
third sampling (A) when almost all ions have the minimum CV.
The mean ion concentrations in W1 follow the order of [HCO−

3 ]

(4,434 µmol L−1) > [Ca2+] (2,355 µmol L−1) > [SO2−
4 ] (1,743

µmol L−1) > [Mg2+] (1,385 µmol L−1) > [Cl−] (122 µmol L−1)
> [K+] (98.4 µmol L−1) > [Na+] (68.9 µmol L−1) > [NO−

3 ]
(64.3 µmol L−1) (Supplementary Table 1). In W3, the mean
[Ca2+], [Na+], [NO−

3 ], and [Cl−] are higher, at 2,672, 81.9, 526,

and 199 µmol L−1, respectively. But [Mg2+], [HCO−

3 ], [SO
2−
4 ],

and [K+] are lower, at 653, 3,819, 1,114, and 33.0 µmol L−1,
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FIGURE 3 | The correlation between total cation charge (TZ+ = 2[Ca2+] +

2[Mg2+] + [Na+] + [K+]) and total anion charge (TZ− = [HCO−

3 ] + 2[SO2−
4 ] +

[NO−

3 ] + [Cl−]). The light gray zone stands for that the net inorganic charge

balance (NICB = [TZ+ – TZ−] * 100/ [TZ+ + TZ−]) is within ±10. RA, TH, HI,

SU, and SP refer to rainwater, throughfall, hillslope runoff, surface water, and

spring water, respectively. W1, W2, and W3 refer to three observation wells.

respectively. The water velocity of W2 flowing from the drain
pipeline was almost unchanged. All ion concentrations inW2 are
relatively stable at different depths or moments throughout the
whole rainstorms, following the order of [SO2−

4 ] (11,560 µmol
L−1) >[Ca2+] (8,003 µmol L−1) > [Mg2+] (3,952 µmol L−1)
> [HCO−

3 ] (3,766 µmol L−1) > [Na+] (262 µmol L−1) > [K+]
(66.4 µmol L−1) > [Cl−] (39.6 µmol L−1) > [NO−

3 ] (10.3 µmol
L−1) (Supplementary Table 1).

DISCUSSIONS

Dynamic Responses of Surface Water and
Groundwater to Rainstorms
Solute concentrations normally vary inversely with discharge,
which can be well reflected by power-law function (Godsey et al.,
2009; Musolff et al., 2015; Zimmer et al., 2019; Ackerer et al.,
2020). To demonstrate relationships between concentrations and
discharge, power-law function was adopted as follows:

Ci = aQb
i (2)

where Ci and Qi are instantaneous solute concentrations (C) and
discharge (Q) at timestep i. The exponent “b” is an indicator
reflecting the sensitivity of solute concentrations to discharge
variation (Godsey et al., 2009). When b = −1, solute fluxes (the
product of C and Q) equal the constant “a” and the dilution
effect occurs; when b is near-zero, chemostatic behavior occurs;
when b > 0, the flushing effect arises. In this study, the C-
Q fitting curves generate “b” closer to 0 for HCO−

3 , Ca2+,
and Mg2+ than other ions (Figure 5), indicating that there are

more supplementary inputs alleviating dilution of increasing
discharge, resulting in stronger chemostatic response (Clow and
Mast, 2010). Except NO−

3 and Na+, other ions all exhibit weaker
chemostatic behavior in SP than SU (Figure 5). This observation
may be largely related to their initial concentrations at or before
the beginning of rainstorms (low discharge). In this catchment,
there is no flow in ground surface at no-rain days, but the
discharge at the spring outlet occurs almost all the time.

During low-flow periods, most groundwater is retained in
underground networks (Zhang et al., 2019) and has enough
time to interact with carbonates, leading to the accumulation
of solutes and products. At the early stage of rainstorms,
rainwater infiltrates into epikarst initially and is intercepted in
the aquifer (Williams, 2008), mixing with “old” water in soil
or matrix. This process usually accompanies the dissolution of
soil CO2. As rainstorms go on, rainfall is enough to generate
hillslope runoff and surface runoff, and “old” water is extruded
and gradually replaced by the percolating “new” water. At this
stage, the dominant pathway of underground flow is likely to
change from matrix to conduit after saturating epikarst aquifer;
the supplementary sources of solutes in spring can be quickly
mobilized by the increasing discharge along pathways (Qin et al.,
2020); the excess infiltration water would quickly pass through
conduits and flow out at the outlet (Trček, 2007). This process
can shorten the available time for both spring transportation and
fluid-rock interaction (Tipper et al., 2006; Chen et al., 2018),
generating differences on the transportation of both fluid and
solutes (Bakalowicz, 2005; Bowes et al., 2005). Therefore, solute
concentrations in SP decrease with increasing discharge and are
gradually close to that in SU, and the effect of increasing discharge
on solute concentrations is smaller in SU than SP. At the end
of rainstorms, most available proximal sources near to or even
within the flow pathways have been flushed. Hillslope runoff
and surface runoff gradually decrease until they stop; spring
runoff also decreases but normally maintains low discharge with
slow velocity due to the recharge of matrix flow. Throughout
the complete rainstorm, flow velocity, pathways, and the time
for transportation and water-rock interaction all have been
changing, leading to variations of sources and its contributions
to solutes.

As highlighted by Thompson et al. (2011), the interpretation
of b ≈ 0 might be incomplete when the concentration variability
is small. The ratio of CV of concentrations to CV of discharge
(CVC/CVQ) is an alternative metric to statistically assess
chemostatic behavior (Thompson et al., 2011; Musolff et al.,
2015; Duncan et al., 2017; Zimmer et al., 2019), which could be
calculated as follows:

CVC

CVQ
=

µQσC

µCσQ
(3)

where µ and σ represent the mean and the standard deviation
of concentrations (µC and σC) and discharge (µQ and σQ),
respectively. The condition of −0.2 < b < 0.2 and CVC/CVQ

< 1 is deemed a criterion of chemostatic behavior (Thompson
et al., 2011; Zimmer et al., 2019). A CVC/CVQ > 1 indicates
a relatively bigger variability in concentration than discharge,
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FIGURE 4 | The variation of ion concentrations in water collected from three observation wells before (B), during (D), after (A), and on the fourth days (F) after the

rainstorms. W1, W2, and W3 refer to three observation wells. Each box plot corresponds to an individual depth-profile.

which is usually referred to as “chemodynamic” (Musolff et al.,
2015). According to the export regime classification system
proposed by Musolff et al. (2015), plot of b vs. CVC/CVQ can
be used to intuitively categorize and compare various solutes
in catchment or between catchments (Figure 6). HCO−

3 , Ca
2+,

and Mg2+ in both SU and SP have near-zero b values and low
CVC/CVQ ratios (<< 1), indicating chemostatic behaviors. The
three ions in Yu River (Liu J. et al., 2020) and Xijiang River
(Zhong et al., 2018) display similar export regime with this study,
but their chemostatic behaviors are relatively weaker. Conversely,
there are scenes of b > 0 for the three ions in the Bode River
of central Germany (Musolff et al., 2015) and Ca2+ in SU of
Los Alamos (Koger et al., 2018), showing an enrichment trend.
This phenomenon indicates their large potential supplements
with increasing discharge. Other ions in this study display weaker
chemostatic behavior, especially Na+ and NO−

3 in SU and Na+,

SO2−
4 and NO−

3 in SP, implying that the pool of these ions is more
susceptible to dilution, which is mainly due to their slower release

or lower quantities along flowing pathways (Qin et al., 2020).
SO2−

4 in SP is more sensitive to hydrological variation than that
in SU. This is similar to the results from Los Alamos (Koger et al.,
2018) and signifies that the potential sources of SO2−

4 in SP could
be more quickly mobilized by increasing discharge. Overall,
the dynamic response of hydrochemistry to rainstorms or
climate change is largely controlled by regional hydrogeological
properties (e.g., porosity, thickness, and hydraulic conductivity).
It may differ between different conditions and needs to
be analyzed using detailed local information. In this study,
chemostatic is the predominant export regime of solutes in
SU and SP.

During rainstorms, hydrochemistry in 3-wells respond
differently to rainstorms, which is quicker in W3. This is mainly
attributed to the higher permeability of epikarst around W3
(Chen et al., 2018). In the epikarst with better permeability,
the relative proportion of vertical flow from infiltration
replenishment increases and the lateral flow from “old” water
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FIGURE 5 | Power-law relationships (C = a Qb) between concentration (C) of major ions and discharge (Q). Rainwater dilution curves denote ideal conditions that ions

are purely diluted by local rainwater. SU and SP refer to surface water and spring water, respectively.

FIGURE 6 | Plot of b (the power-law exponent of C=aQb) vs. CVC/CVQ (the ratio of CV of concentrations to CV of discharge) for ions in different catchments. SU and

SP refer to surface water and spring water, respectively. The shadow areas classify corresponding zones of ions in Bode River catchment (Musolff et al., 2015).

is gradually extruded out with the ongoing rainstorms (Zhang
et al., 2019). At the second sampling (D), large inputting water
in W3 diluted solute concentrations, excluding [NO−

3 ], which

may be affected by fertilizer application and some biological
processes (Yue et al., 2020). The highest CV of [HCO−

3 ] in W3
at this time is possibly caused by the variation of dissolved soil
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CO2 and soil respiration during infiltration processes (Qin et al.,
2020). At the third sampling (A), the relative ratio of vertical
flow to lateral flow might remain constant or infiltration water
might dominate discharge, leading to small profile variation for
solute concentrations in W3. At the fourth sampling (F), water
level and chemistries in W3 nearly restored to the situation
before the rainstorms. The permeability of epikarst normally
weakens with increasing depth (Ford and Williams, 2007). W2
is a deep confined well fed by groundwater draining a gypsum
stratum and not susceptible to changes in external environment

(e.g., occurrences of rainstorms and agricultural activities) (Qin
et al., 2019). Therefore, its hydrological environment is stable
with smaller [NO−

3 ] and lower CV of most ions. [SO−

4 ] in W2 is
approximately an order of magnitude higher than that in other 2-
wells; [Ca2+] and [Mg2+] are also higher. It is thus reasonable to
deduce the existence of gypsum dissolution and gypsum-induced
dedolomitization around W2. Overall, the heterogeneous
permeability of epikarst can affect the mixture of groundwater
from different sources and flowing pathways, eventually enabling
hydrochemistry in groundwater at different hydrogeological

FIGURE 7 | The dynamic changes of ion concentrations among different spatial levels and corresponding CV during the rainstorms. In this figure, ion concentrations

in rainwater (RA), throughfall (TH), and hillslope runoff (HI) are mean values with standard deviation. Discharge-weighted concentrations (DWC) are shown for surface

water (SU) and spring (SP).
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FIGURE 8 | Schematic diagram showing the possible transport processes of TDS and waters among different spatial levels.

conditions to display discrepant responses to rainstorms or
discharge variations.

Dynamic Variations of Hydrochemistry
Among Different Spatial Levels
The pH value of RA in this study is higher than that of other
karst or forest regions in Southwest China, e.g., Guiyang of 4.5
(Han and Liu, 2006) and Chongqing of 4.75 (Ma et al., 2017), but
it is lower than that of some areas in Northwestern China, e.g.,
Alxa Desert Plateau of 7.6 (Rao et al., 2017) and Urumqi River
Valley of 7.0 (Zhao et al., 2008). This is most likely attributed
to active carbon circulation and intense carbonate weathering
within this karst depression (Qin et al., 2020). These processes
can release some alkaline products (e.g., CaCO3 and MgCO3)
into the atmosphere, neutralizing rainwater acidity (Tang and
Han, 2019). [SO2−

4 ] and [Ca2+] in RA are much lower than that a
decade ago (Wu et al., 2012), indicating that acid deposition has
decreased after implementing environmental protection policies.
This may also account for the higher pH in RA in this study than
before. But [SO2−

4 ] and [NO−

3 ] in RA of this study are higher
than that in Central Tibetan Plateau (Li et al., 2007), Eastern Tien
Shan (Zhao et al., 2008), and Xisha Islands of South China Sea
(Xiao et al., 2016), so there is still the possibility of anthropogenic
emissions (NOx, NH3, and SOx).

Migration processes of water among different spatial levels
of Earth’s Critical Zone can alter ion concentrations to different
degrees (Figure 7). The variations of chemical compositions after
passing through the vegetation canopy are mainly ascribed to
(1) the adsorption of NO−

3 by vegetation (Polkowska et al.,
2005); (2) the volatilization of HNO3 after increasing its exposed
area in vegetation surface; (3) the dissolution of Ca2+and K+

transported from roots to leaves through transpiration and
respiration; and (4) the flushing of atmospheric particulates that
contain ions (Ca2+, Mg2+, SO2−

4 , and K+) and accumulate in
vegetation surface during dry deposition. In karst regions, some
weathering products could be released to ambient atmosphere

with dust and pedogenesis processes (Lü et al., 2017). This
possibly also affects Ca2+and Mg2+ in RA and TH in this
karst catchment, as demonstrated by Supplementary Figure 2.
However, NH+

4 , one dominant ion in rainwater originating
mainly from NH3 emission of agricultural soil (Zeng et al.,
2019), was not measured or considered when calculating TZ+

and NICB in this study. This should be responsible for the
imbalance of net inorganic charge. The better NICB in TH than
in RA indirectly means that the vegetation canopy may intercept
some NH+

4 from RA. All these hydrochemical variations above
are also the causes of the elevation of pH in TH relative to
RA. Solutes in rivers are mostly derived from rock weathering,
atmosphere, and anthropogenic inputs (Gaillardet et al., 1999;
Qin et al., 2019). In this study, most solute concentrations in
SU and SP are much higher than that in RA and TH (Figure 7),
indicating little contributions of atmospheric sources compared
with terrestrial sources. Carbonate weathering is one major
source for this catchment (Supplementary Figure 2). [Ca2+],
[Mg2+], and [HCO−

3 ] in HI are far higher than that in RA and
TH but closer to that in SU and SP (Figure 7), indicating that
the contribution of carbonate weathering and CO2 dissolution
may already exist when hillslope runoff occurs. Their relative
contribution ratios are different from that generated during
surface and underground processes, as illustrated in Figure 8.
Additionally, [Ca2+], [Mg2+], and [HCO−

3 ] in SP are higher than
that in SU (Figure 7). One possible explanation is that during the
infiltration of flow through epikarst and the spring transportation
within an underground conduit, there is dissolution of more soil
CO2 and intense carbonate weathering (Qin et al., 2020). In this
agricultural karst depression, NO−

3 characterizes nitrification and
owns large input from reductive nitrogen fertilizer and manure
(Yue et al., 2020). Cl− is deemed to have similar source area or
transport pathways with NO−

3 (Qin et al., 2020). K+ can also
accumulate in soil surface after the application of potash fertilizer
due to cation exchange and relative high contents in biomass
(Boy et al., 2008). Therefore, NO−

3 , Cl
−, and K+ all have potential
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TABLE 1 | Varimax rotated component matrix for physic-chemical parameters in

water at different spatial levels.

Parameters PC1 PC2 PC3 PC4 Extraction

Ca2+ 0.992 0.709

Na+ 0.970 0.995

SO2−
4 0.969 0.829

EC 0.963 0.909

Mg2+ 0.927 0.992

K+ 0.887 0.932

T 0.815 0.996

DO −0.808 0.975

NO−

3 0.885 0.906

Cl− 0.854 0.915

pH 0.896 0.990

HCO−

3 0.797 0.872

Eigenvalues 5.087 2.666 1.746 1.552

Variance (%) 42.394 22.215 14.551 12.935

Cumulative (%) 42.394 64.609 79.160 92.095

Extraction method, principal component analysis; Rotation method, Varimax with Kaiser

normalization. Here we only show loadings with high scores (>0.7).

agricultural sources and might be intercepted by epikarst during
infiltration processes, leading to lower concentrations in SP
than in SU (Figure 7). Overall, the difference of hydrochemistry
among different water bodies is related to the double properties
of agriculture and karst in this depression catchment.

In order to acquire descriptive statistics and explore
interactive effects among physic-chemical parameters, principle
component analysis (PCA) was performedwith varimax rotation.
The Kaiser-Meyer-Olkin (KMO)Measure of Sampling Adequacy
and Bartlett’s Test of Sphericity were conducted and generated
a value of 0.738 with the significance of <0.001, indicating the
suitability of the dataset for PCA. As shown in Table 1, there
are four components (PC, eigenvalues >1), totally explaining
92.095% of the variation. PC1 explains 42.394% of the total
variance and has high positive loading values (>0.9) of Ca2+,
Na+, SO2−

4 , EC, and Mg2+. This indicates that these parameters
may follow an alike trend that is possibly due to same controls
or sources areas or transit pathways. According to the common
properties of these parameters, PC1 could be attributed to
geological origins. This also indirectly reflects that EC is mainly
controlled by Ca2+, Mg2+, and SO2−

4 . Themain geological source

of SO2−
4 is gypsum dissolution. PC2 can explain 18.56% of the

total variance and includes two positive loadings (K+ and T)
and one negative loading (DO), indicating that temperature and
dissolved oxygen may exert positive and negative influences
on the eluviation of K+, respectively. PC2 could be partially
attributed to the influence of the mixing of soil and natural
factors. NO−

3 and Cl− are two positive loadings of PC3 that
can explain 14.551% of the variance and is likely to denote
agricultural contributions. Additionally, PC4 can only explain
12.935% variance by pH and HCO−

3 , and HCO−

3 owns a loading
of <0.8. Because HCO−

3 is mostly contributed by soil CO2 that
is controlled by respiration and microbiologic activities (Qin

et al., 2020), we conclude that PC4 is mainly contributed by
biological sources.

Despite the differences of hydrochemical concentrations and
controlling factors among different spatial levels, all waters show
the dominance of HCO−

3 and Ca2+ in ions (except W2 draining
a gypsum stratum) (Supplementary Figure 3), reflecting the
characteristics of karst water. It is worth noting that Chenqi
catchment has continual agricultural activities (e.g., fertilization
and herding), so topsoil can store or accumulate NO−

3 and Cl−.
As a rainstorm occurs, water head of groundwater varies with
hydrology, regulating nutrient exchange between matrix flow
and conduit flow. Because the transportation from conduits to
matrix is faster than that from matrix to conduits (Li et al.,
2008), there is potential chronic pollution on karst groundwater
in this agricultural catchment. Additionally, the accumulation
of Ca2+ and Mg2+ in karst groundwater can elevate hardness
of water. Both can deteriorate regional water quality during a
certain period.

CONCLUSIONS

Rainwater, throughfall, hillslope runoff, surface water, spring,
and well water at different hydrogeological conditions were
collected synchronously during rainstorms to analyze the
dynamic responses of hydrochemistry and its variation at
different spatial levels at a karst Critical Zone Observatory
(CZO), Southwest China. In this karst depression, pH and TDS
in rainwater are 6.71± 0.03 and 18.6± 1.17mg L−1, respectively.
After passing through the vegetation canopy, pH increases
by 0.4, and most ion concentrations also have increments
with different degrees (except [NO−

3 ] which decreases by 4.1–
54.0%). Chemical compositions in rainwater and throughfall
could be affected by both anthropogenic emission (NOx, NH3,
and SOx) and some weathering products (Ca2+ and Mg2+)
released to ambient atmosphere with dust. Wet deposition
generally contributes little to hydrochemistry in surface water
and groundwater. The influences of CO2 dissolution and
carbonate weathering on hydrochemistry already exist when
hillslope runoff occurs, but their relative contribution ratios are
different from that generated during surface and underground
processes. Throughout the whole rainstorms, TDS in surface
water and spring are 331–397mg L−1 and 345–475mg L−1.
Hydrochemistry in surface water and spring displays chemostatic
responses with different intensities to discharge variations,
possibly controlling by available sources and the difference
between solute concentrations before and after rainstorms.
Carbonate weathering contributes most to Ca2+ and Mg2+,
gypsum dissolution and gypsum-induced dedolomitization also
regulate Ca2+, Mg2+, and SO2−

4 in deep confined well water
draining a gypsum stratum. Soil CO2 from respiration and
microbiologic activities is one biological source of HCO−

3 .
Agricultural activities are responsible for the chemostatic
behavior of NO−

3 , Cl
−, and K+, especially in surface water. All

these were further demonstrated by principle component analysis
(PCA). Epikarst aquifer with low permeability is insensitive to
changes in external environment (e.g., occurrences of rainstorms
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and agricultural activities). High permeability can enhance
the response of epikarst aquifer to hydrological variations,
deteriorating regional water quality (potential chronic pollution
of nitrogen and high hardness of water) during a certain
period. Optimal measures of water protection are necessary in
agricultural karst catchment.
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