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With the growing use of machine learning (ML) techniques in hydrological applications,

there is a need to analyze the robustness, performance, and reliability of predictions

made with these ML models. In this paper we analyze the accuracy and variability

of groundwater level predictions obtained from a Multilayer Perceptron (MLP) model

with optimized hyperparameters for different amounts and types of available training

data. The MLP model is trained on point observations of features like groundwater

levels, temperature, precipitation, and river flow in various combinations, for different

periods and temporal resolutions. We analyze the sensitivity of the MLP predictions at

three different test locations in California, United States and derive recommendations

for training features to obtain accurate predictions. We show that the use of all

available features and data for training the MLP does not necessarily ensure the best

predictive performance at all locations. More specifically, river flow and precipitation

data are important training features for some, but not all locations. However, we find

that predictions made with MLPs that are trained solely on temperature and historical

groundwater level measurements as features, without additional hydrological information,

are unreliable at all locations.

Keywords: machine learning, groundwater level prediction, feature selection, sensitivty analysis, hyperparameter

optimization

INTRODUCTION

Groundwater is an important source of freshwater, accounting for almost 38% of the
global irrigation demand (Siebert et al., 2010). With growing economies and increasing
food demand, the stress on freshwater aquifers has increased in places like North America
and Asia (Aeschbach-Hertig and Gleeson, 2012). This situation is further aggravated by
increased climate variability. In California, USA, groundwater provides nearly 40% of the
water used by the state’s cities and farms. Many of the state’s groundwater basins have
experienced long-term overdraft due to withdrawal rates exceeding recharge rates. The
negative impacts of long-term overdraft include higher energy requirements for pumping
water from deeper wells, land subsidence, reduced river flow, and impaired water quality
(especially in coastal aquifers due to saltwater intrusion). Thus, in 2014, following a series
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of droughts, the Sustainable Groundwater Management Act
(SGMA) was passed, requiring local agencies to sustainably
manage groundwater and minimize undesirable results (DWR,
2020). This in turn requires decision makers access to accurate,
reliable, and timely predictions of groundwater levels.

Traditionally, groundwater depths and other water budget
components such as runoff and soil moisture are estimated using
mechanistic multi-scale, multi-physics simulationmodels such as
MODFLOW, PARFLOW, HydroGeoSphere, and TOUGH (Xu
et al., 2011; Steefel et al., 2015; Langevin et al., 2017). These
models capture physical processes of mass, momentum, and
energy transfer through partial differential equations and require
extensive characterization of hydrostratigraphic properties and
accurate boundary conditions, including recharge sources,
climate variability and changes in water use (Sahoo et al., 2017).
Such information is not always known a priori, and some
parameters can only be determined by solving an inverse problem
(Arora et al., 2011), which itself requires running simulation
models repeatedly until their values have been determined,
thereby substantially increasing the computational costs (Arora
et al., 2012). In addition, running the high-fidelity simulation
models at high resolution requires high performance computing
resources. Therefore, it is difficult for groundwater sustainability
agencies and policy makers to use these simulations to guide
water management decisions.

With the improvement of sensor technologies and data
systems, an unprecedented amount of environmental data
are being collected, through established long-term monitoring
networks, including river flow, groundwater level, water quality,
temperature, and precipitation (Rode et al., 2016). This has
resulted in an increased interest in applying ML methods for
hydrological applications (Deka, 2014; Shen, 2018) such as river
flow forecasts (Lin et al., 2006; Rasouli et al., 2012; Deo and
Sahin, 2016; Kratzert et al., 2018); water quality estimation and
prediction (Ahmad et al., 2010; Najah et al., 2013; Xu and Liu,
2013), and water demand forecasts (Ghiassi et al., 2008; Herrera
et al., 2010; Adamowski et al., 2012; Tiwari and Adamowski,
2013).

Deep learning (DL) models can be trained to approximate
the behavior of a complex system, such as a groundwater basin,
in a computationally inexpensive way while making highly
accurate predictions. DL techniques can utilize the climate
and hydrogeology data to capture the relationships between
groundwater levels and other dependent features such as nearby
river flow, precipitation and temperature. Recent advances inML
have enabled making groundwater predictions by using purely
data-driven models (Taormina et al., 2012; Moosavi et al., 2013;
Sahoo et al., 2017; Müller et al., 2020). ML techniques have been
used for both prediction and optimization purposes including
modeling of groundwater levels and or quality, optimization of
groundwater well design, pumping rate, and location (Banerjee
et al., 2011; Gaur et al., 2013). As an example, Sahoo et al.
(2017) utilized a hybrid feedforward neural network (FNN) to
model groundwater level changes in the High Plains aquifer,
United States, using both in-situ and remote measurements
with model simulations of different input features (climate and
anthropogenic). Their DL models were trained on monthly data

spanning over 33 years. Emamgholizadeh et al. (2014) built a
groundwater prediction model using an FNN model built from
9 years of monthly data that included rainfall recharge, pumping
rate and irrigated return flow at the Bastam Plain, Iran. The
FNN model showed the highest accuracy when built with a
lag time of 2 months giving a prediction error of about 3%
of difference between observed maximum and minimum levels.
Guzman et al. (2017) utilized a dynamic form of a Recurrent
Neural Network (RNN) model to predict groundwater levels in
the Mississippi River Valley Alluvial aquifer, United States. Eight
years of daily historical input time series including precipitation
and groundwater levels were used to forecast groundwater levels
for up to 3 months. Their results showed that models generated
with 100 lag days provided the most accurate prediction
of groundwater levels. Adamowski and Chan (2011) coupled
discrete wavelet transforms (WA) and artificial neural networks
(ANN) to predict groundwater levels using monthly average
precipitation, temperature, and groundwater level at two sites in
the Chateauguay watershed in Quebec, Canada. Their WA-ANN
models performed better than standard autoregressive integrated
moving average (ARIMA) time series models.

All of these prior studies involved building the DL model to
predict groundwater levels at a single well. In contrast, Mohanty
et al. (2015) built an FNN model to predict weekly groundwater
levels simultaneously at 18 different locations in the Mahanadi
Delta, India. The input features in this study included weekly
values of precipitation, pumping from tubewells, and the river
stage. The DL model could predict groundwater levels up to 4
weeks of lead time with a prediction error of about 8% of the
annual groundwater-level change. Our previous study (Müller
et al., 2020) compared results from a variety of DL methods
including multilayer perceptron (MLP), RNN, long short term
memory (LSTM), and 1D-convolutional neural network (CNN)
designed with our hyperparameter optimization approach for
both single- and multi-well groundwater level predictions in
California, and were able to attain prediction accuracies of 6–
20%, depending on the DL model.

Each of the referenced applications utilize different ML
models and architecture under different scenarios such as multi-
point vs. single-point sites, with data of varying temporal
resolutions (hourly, daily, weekly, and monthly). Despite these
differences, and the constraints imposed by data availability, all
of these models have similar ranges for prediction accuracies.
This raises the following questions: What is the right DL model
to use? How should the parameters of the model be tuned?
What data should we use to build an accurate prediction model?
Most importantly, in order to use DL models effectively to make
reliable future groundwater predictions in a computationally
inexpensive manner, we must first understand which input
features are necessary and sufficient. Additionally, these prior
studies only report results from a single optimized neural
network, and they do not address the inherent stochasticity
that arises during training when using stochastic gradient
descent (Amari, 1993). Thus, when training the DL model
for the same architecture multiple times, we obtain different
performances, and therefore different future predictions. In order
to ensure the reliability of the DL model predictions, we must
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report confidence intervals, as well as average, best, and worst-
case predictions. These uncertainty estimates will enable water
managers to analyze and explore a wide spectrum of sustainable
management practices and to identify those that are the most
robust for all scenarios.

To address this critical need, we conduct a critical analysis
of the sensitivity of DL model predictions to the choice of
input features used to train a model. In particular, we compare
the sensitivity of groundwater predictions to different choices
of input features including groundwater levels, temperature,
precipitation, and river flow. This kind of analysis will extend
our understanding of the applicability of ML techniques for
hydrological predictions and provide guidance on how to build
accurate and reliable models. These DL models can potentially
enable water managers to better prepare and sustainably manage
water resources in the face of future climate variability.

The remainder of this article is organized as follows. In section
Description of Numerical Study, we provide details of the setup
for our numerical experiments (including the data collection,
processing, and model framework), and present their results in
section Numerical Results. In section Discussion, we discuss the
results of the numerical experiments in the context of applying
ML techniques to groundwater and outline potential future
research directions. Finally, in section Conclusion, we present the
conclusions of our study.

DESCRIPTION OF NUMERICAL STUDY

In this section, we describe the setup of our numerical
experiments, including the data we used, model selection and
hyperparameters, our experimental setup for sensitivity analysis,
and the method for computing confidence intervals.

Data Collection and Preparation
We focused our study on wells in three different locations
in Northern California, United States in Butte County, Shasta
County, and Tehama County with different hydrostratigraphy
and land use (Figure 1). Moreover, they represent different
SGMA basin prioritization categories (high, medium, and low
respectively), which are determined by historical groundwater
trends (DWR, 2020). We primarily chose these well locations
since they had relatively long-term daily observations that were
publicly available. We briefly describe the sites below.

The Butte County Well Site
The majority of Butte county is located in the Sacramento Valley
groundwater basin which is filled with sediments from marine
and terrestrial environments. The groundwater well in this study
(22N01E28J001M) is a dedicated monitoring well of depth 200m
and screened at 140–170m. The well site is located in the
Vina subbasin of Butte county, which covers 750 sq. km of the

FIGURE 1 | Location of the three well sites in California: Butte, Shasta, and Tehama County. The red dots show the location of the observation wells. Weather station

(green diamond) and river flow monitoring station (black square) are located close to the well site. The map was created using ArcGIS® software by Esri.
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northern portion of Butte county. This subbasin is categorized as
a high priority basin under the 2019 SGMA basin prioritization
report (DWR, 2020), showing an immediate need to mitigate
the groundwater depletion therein. The aquifer system includes
stream channel and alluvial fan deposits, and deposits of the
Modesto and Tuscan formations (DWR, 2004). Groundwater is
a major water source for about 150 sq. km of irrigated land in
the basin. Out of the total county wide freshwater withdrawal,
about 94% is attributed to groundwater pumping for different
uses (Dieter et al., 2018) while the rest is from surface water
withdrawals. The nearest discharge monitoring station (Butte
Creek Durham) measures the daily discharge rate at the Butte
Creek which is about 8 km from the well. The Butte Creek and the
much larger Feather Creek are the main sources for surface water
diversion in the county (Butte County Department of Water and
Resource Conservation, 2016). Temperature and precipitation
data were obtained from the Chico weather station located 7 km
from the well.

The Shasta County Well Site
The groundwater well in Shasta County is an observation well
(30N04W10H005M) of depth 49m and screened at 33–48m.
It is located in the Anderson subbasin which is a part of the
Redding Groundwater Basin covering an area of about 400 sq.
km. This subbasin is one of the primary agricultural regions in
the county, is categorized as a medium priority basin according
to the SGMA guidelines (DWR, 2020). Eighty to ninety percent
of the basin’s precipitation typically occurs from November to
April. The aquifer system is comprised of continental deposits of
late Tertiary to Quaternary age. The Quaternary deposits include
Holocene alluvium and Pleistocene Modesto and Riverbank
formations (California Department of Water Resources, 2004).
The nature of surface water-groundwater interaction across the
basin is complex, both spatially and temporally, but in most
areas shallow groundwater levels lead to groundwater discharge
to surface streams. During pronounced drought conditions,
groundwater levels may decline to a level such that streams
that formerly gained river flow from groundwater discharge
now recharge the groundwater system through streambed
infiltration. Major water supplies in this region are provided
by surface storage reservoirs (Bureau of Reclamation, 2011).
Agricultural, industrial, and municipal groundwater users in the
basin pump primarily from deeper continental deposits, whereas
domestic groundwater users generally pump from shallower
deposits. Groundwater withdrawals contribute about 54% of

the total county wide freshwater withdrawal from different
sources (Dieter et al., 2018). Although this well is closest to
the Sacramento River, the nearest discharge monitoring station
is located in Cow Creek, which feeds into the Sacramento
River and is about 5 km away. Since the nearest discharge
station in the Sacramento River was located 20 km upstream,
we chose to use the discharge observations from the Cow
Creek station, as the closest approximation of discharge trends
and seasonality that determines surface water influence on
groundwater behavior. The temperature and precipitation data
were obtained from the Redding Fire station located 15 km from
the well.

The Tehama County Well Site
The groundwater well in Tehama County is an observation
well (29N04W20A002M) of depth 137m, with a screen at 109–
131m depth. It is located in the Bowman subbasin which is
categorized as a low priority basin. This subbasin, is also a
part of the Redding groundwater basin covering 495 sq. km
in the north central portion of the county. The aquifer system
of the Bowman subbasin is comprised of continental deposits
of late Tertiary to Quaternary age. The Quaternary deposits
include Holocene alluvium (thickness ranging from 0 to 10m)
and Pleistocene Modesto and Riverbank Formations (thickness
ranging from 0 to 15m). The Tertiary deposits include the
Pliocene Tehama Formation (thickness may reach up to 150m)
and Tuscan Formations (thickness may reach up to 750m)
(Ayres and Brown, 2008). The Bowman subbasin is primarily a
rural area where groundwater is used for agriculture, domestic,
and municipal purposes. Groundwater sources represent the
majority of supply, followed by local surface water. During an
average water year, Tehama County does not experience any
water shortages since the water supply is generally higher than
the water demand. Groundwater contributes about 37% of the

county’s total freshwater withdrawal (Dieter et al., 2018). The
observation well is located 0.6 km from the Cottonwood Creek.
However, the closest river flow monitoring station is located
about 8 km from the test site. The weather data was obtained from
the Davis Ranch station located 10 km from the well.

Input Features, Data Sources, and
Preprocessing Methodology
For our DL model, we identified features that we expect
to directly or indirectly impact groundwater levels including
temperature (T), precipitation (P), and river flow (i.e., discharge;
Q). Daily historical observations of these variables from 2010 to
2018 are used together with groundwater level measurements
(G) to train the neural network models (Table 1). In addition,
we use the week of the year of the measurements’ timestamps
as a training feature, which naturally represents the inherent
seasonality in the dataset.

The observation wells indicate regional drawdowns due
to groundwater extraction through pumping activities (for
agriculture, urban use, or other). However, pumping data are
not reported in California, and are not publicly available. Higher
pumping rates are observed during summer months when the
temperature is high with infrequent and small precipitation
events and low surface water availability. Low precipitation years
therefore lead to higher depletion rates, whereas wet years show
lower depletion rates (Figure 2). Our assumption is that the ML
model can capture the interaction between groundwater level and
pumping through other proxy hydrological or climate variables
that typically drive pumping (precipitation, temperature, or
river flow).

All the datasets are processed for quality assurance and
quality control (QA/QC), including gap-filling (also called as
“missing value imputation”) and normalization. The QA/QC
helps to remove erroneous values or outliers (unrealistic values)
in the measurements due to faulty sensors or equipment
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TABLE 1 | Data sources of historical observations.

County Groundwater well

station code

Average depth to

groundwater level from

surface (meters)

1max= GWLobs
max−GWLobs

min

(meters)

Weather station

code

River flow

station code

Butte 22N01E28J001M 16.3 9.4 Chico (CHI) Butte Creek

Durham (BCD)

Shasta 30N04W10H005M 6.2 4.6 Redding Fire

Station (RFS)

Cow Creek (COW)

Tehama 29N04W20A002M 15.6 4.2 Davis Ranch (DVR) Cottonwood

Creek (COT)

CNRA, California Natural Resources Agency; CDEC, California Data Exchange Center. Observations were obtained from CNRA and CDEC.

FIGURE 2 | Timeseries of all features at the three well sites at a daily frequency from 2010 to 2018. The top panel at each site shows the groundwater level (meters

above mean sea level). The second panel shows the temperature (◦C), the third panel shows the precipitation (mm), and the bottom panel of sites shows the river flow

(m3/sec).

failures, and the data gaps are then filled by using time series
imputation techniques. We imputed the missing values using
the imputeTS package (Moritz and Bartz-Beielstein, 2017) in
R. This package is used for univariate time series imputation.
We use the na.seadec (Seasonally Decomposed Missing Value
Imputation) function with the application of the “kalman”
algorithm, of the imputeTS package, which is well-suited for
gap filling of time series exhibiting seasonality. Using this
approach, the seasonal component is first removed, missing
data are imputed in the general trend and then the seasonal
component and the general trend are combined to generate
a gap-filled uninterrupted time series. The missing values of
each of the features in the datasets contribute to at most 2%
of total length of the time series. The ratios of missing data

to the total period at each monitoring station are provided in
Supplementary Table 1.

Since our input features have significantly different ranges
of absolute values, we scale each dataset to the range [0, 1].
This ensures that during the learning process (iterative weight
adjustment) a percentage change in the weighted input sample
is reflected with a similar percentage change at the nodes
of the output layer (Kanellopoulos and Wilkinson, 1997). To
this end, we use the minimum and the maximum values of
each dataset. For temperature, precipitation, and river flow
data, these lower, and upper limits are known and the task is
unambiguous. Since the observed values for the river discharge
have a huge variation (orders of magnitudes difference between
summer and winter due to the lack of precipitation in California
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in the summer months), we log-normalized the values to
attenuate the effect of high values that would occur in a
uniform scaling. For the groundwater levels, determining the
minimum and maximum levels is more difficult as the water
table depths reached unprecedented lows during the 2012− 2016
drought. Fixing the lower bound at the historically observed
minimum value is unreliable, because future droughts may cause
the lowest observed groundwater level to further decrease. A
similar argument can be made for the maximum groundwater
levels, which are expected to increase in particular for heavily
overdrafted basins as sustainable groundwater management
practices are being implemented. Thus, in this study, we set the
minimum groundwater level to the lowest historically observed
value less 15% and the maximum level to the highest historically
observed value plus 15%. Given these lower and upper bounds,
we then scale the groundwater data to [0, 1]. Note that scaling the
input data values does not force the predicted values to remain
within the lower and upper limits used for scaling.

Neural Network Model and
Hyperparameter Tuning
In this study we implement an MLP type of neural network
to build the groundwater prediction model. The MLP
is a feedforward type of neural network with different
hyperparameters that need to be adjusted before its training. The
MLP was chosen as it was the best performing model in terms of
accuracy and compute time, based on comparison with CNN,
RNN, LSTM neural networks (Müller et al., 2020).

The choice of hyperparameters reflect the complexity of the
MLP model. Hand tuning, grid and random sampling are the
most widely used methods for choosing the hyperparameters of
DL models (Bergstra and Bengio, 2012). Hand tuning is time
consuming, it does not scale well to large search spaces, and it
does not usually lead to the optimal hyperparameters. Thus, we
use an automated hyperparameter optimization (HPO) method
to find the best DL model hyperparameters.

We follow (Müller et al., 2020) to formulate a bilevel
optimization problem:

min
θ , w∗

ℓ
(

θ , w∗; Dval

)

(1)

s.t. θ ∈ � (2)

w∗∈ argmin w∈WL(w; θ ,Dtrain) (3)

where θ are the hyperparameters in the search space �; w are the
weights and biases associated with each node in the MLP, Dtrain

and Dval are the training and validation datasets, respectively.
The search space � is a product of finite sets of integer values. At
the upper-level optimization problem (Equation 1), the optimizer
selects a set of hyperparameters θ (the model architecture). Given
θ , the lower-level problem (Equation 3) is solved with RMSprop,
in which we find optimal weights w∗ that minimize the loss
function L for the training data. Once we obtain w∗, we can
then evaluate the upper-level objective function l that reflects how
good a choice θ is. Based on the outcome for l, the optimizer at the
upper-level selects the next set of hyperparameters for which the

lower-level problem is solved, and so on until convergence at the
upper-level is achieved. For solving the upper-level optimization
problem, we use a derivative-free optimization algorithm that
uses radial basis function surrogate models, see Müller et al.
(2020) for further details. Since a stochastic optimizer is used
to solve the lower-level problem (Equation 3), the performance
of the MLP for a given architecture θ depends on the random
number seed of the stochastic optimizer. Therefore, in order to
obtain an approximated expected performance for a given MLP
architecture, we solve the lower-level problem five times and
average the results.

In our study, we search for the hyperparameters in a 6-
dimensional search space, � =

∏6
h= 1 θh:

• Number of layers: θ1 ∈ { 1, 2, . . . , 6 }
• Number of nodes per layer: θ2 ∈ { 5, 10, . . . , 50 }
• Number of lags: θ3 ∈ { 30, 35, . . . , 365 }
• Dropout rate: θ4 ∈ { 0.1, 0.2, . . . , 0.5 }
• Batch size: θ5 ∈ { 50, 55, . . . , 200 }
• Epochs: θ6 ∈ { 50, 100, . . . , 500 }

and we map these numbers to consecutive integers for
optimization. Thus, if we used complete enumeration to
find the optimal MLP architecture, we would have to train
6, 120, 000 different MLPs, which is impractical for real-world
decision-support applications. In the “upper level optimization,”
we iteratively test only 50 different MLP neural network
hyperparameters (50 different hyperparameter sets that describe
the network architecture). This was sufficient to achieve
convergence at the test site (Müller et al., 2020). To handle
the lagged temporal relationship between variables, we use the
concept of Time-Delayed Neural Network (Waibel et al., 1989). A
consecutive set of observations is used as one input instead of one
observation. We call this amount of historical data the lag. Lag
is one of the most important hyperparameters in a feedforward
neural network for handling time series data (Zhang, 2003).

We divide the observations of all the features into training
(Dtrain(θ)), cross-validation, (Dval(θ), finding the optimal
hyperparameters), and testing data (Dtest(θ)), with a 50–25–25%
split, except when indicated otherwise. The MLP models are
trained to predict the groundwater level for the next time step
(e.g., day or month). This output is computed based on the
values of all features at the current time step and several previous
time steps (equal to the lag number). For example, with a lag
of 4-time steps, measurements of all features including the
groundwater level from the past 4-time steps are used along with
the current time step’s data, to predict the groundwater level at
the next time step. The MLP’s output is a single groundwater
level value for the next time step. When training the MLP
for a given set of hyperparameters, observed values of all
features are used to optimize the weights in the MLP model.
During cross-validation and testing, the observed values of
only temperature, precipitation, river flow, and week of year
are used as drivers for making groundwater level predictions.
To make groundwater level predictions over several time
steps, the predicted groundwater level from the previous
timestep is recursively incorporated with the observed values
of temperature, precipitation and river flow to make the new
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input sample. Using the recursive approach during the testing
and validation period, we test the capability of the MLP model
to make multi-month predictions of groundwater level using
projections of future meteorological or hydrological features.
This can potentially enable decision support for sustainable
groundwater management in the long run.

In this study, we use backpropagation (Rumelhart et al., 1986)
to train the MLP. Hyperparameters such as activation functions
and the optimization method used in training the MLP are fixed
(Rectified linear unit (Nair and Hinton, 2010) and RMSprop
(Tieleman and Hinton, 2012), respectively). We conducted our
numerical experiments with python (version 3.7) on Ubuntu
16.04 with Intel R© Xeon(R) CPU E3-1245 v6 @ 3.70GHz ×8,
and 31.2 GiB memory. We use the Keras package (Chollet, 2016)
with the TensorFlow (Abadi et al., 2016) backend for our deep
learning architectures.

DL Model Ensembles to Quantify
Prediction Accuracy and Variability
Given that a DL model training involves a stochastic optimizer,
we cannot infer prediction accuracy from a single DL model
trial. Thus, we train the model multiple times (Ne = 20
trials) for the same DL model architecture and the same inputs
to gain insights into the inherent prediction variability. Each
trial generates a future groundwater level prediction of Nt time
steps and a corresponding error between the predicted and the
observed values for all time steps of the testing period. The
accuracy of a trial i is quantified by the RMSE (δi) of the
groundwater prediction (Gpred), which is computed in Equation
(4). The average of the error (δi) generated across the trials gives

the mean prediction error (δ) of the MLP model (Equation 5).

δi=

√

√

√

√

∑Nt+k−1
j=k

(

G
pred
i,j − Gobs

j

)2

Nt
for i ∈ {1, 2, 3, . . . ,Ne} (4)

δ =
1

Ne

Ne
∑

i=1

δi (5)

where G
pred
i,j is the groundwater prediction made at the jth

time step for the ith trial, Gobs
j is the corresponding observed

groundwater level at the jth timestep. The testing period of Nt

time steps starts from time step k in the dataset and runs until
Nt+k−1 time step. In order to quantify the prediction variability,
at each time step j, we compute the standard deviation (σj) of
the ensemble over the Ne trials (Equation 6). We compute the
standard deviation as follows:

σj =

√

√

√

√

∑Ne
i=1

(

G
pred
i,j − G

pred
j

)2

Ne
,

where G
pred
j =

1

Ne

Ne
∑

i=1

G
pred
i,j and j = k, . . . , k

+Nk − 1 (6)

TABLE 2 | Combinations of input features for training the DL model.

Scenario label Input features

G-T-P-Q-4-d Groundwater, Temperature, Precipitation, River

flow, week of year

G-P-Q-4-d Groundwater, Precipitation, River flow, week of

year

G-T-P-4-d Groundwater, Temperature, Precipitation, week

of year

G-T-Q-4-d Groundwater, Temperature, River flow, week of

year

G-P-4-d Groundwater, Precipitation, week of year

G-Q-4-d Groundwater, River flow, week of year

G-T-4-d Groundwater, Temperature, week of year

G-T-P-Q-2-d Groundwater, Temperature, Precipitation, River

flow, week of year

G-T-P-Q-4-m Groundwater, Temperature, Precipitation, River

flow, month of year

We assume that groundwater levels are always available during the training period. G,

groundwater; T, temperature; P, precipitation; Q, river discharge; 4 indicates 4 years of

training; 2 indicates 2 years of training; d, daily resolution; m, monthly resolution.

To compute the overall prediction variability (S) of a DL model
architecture, the average of the standard deviations σj; j =

k, . . . , k+Nt−1 is computed as indicated in Equation (7). Lower
values of S means the DL model architecture is more robust to
the stochasticity in the training.

S =
1

Nt

k+Nt−1
∑

j=k

σj (7)

Sensitivity Analysis of DL Model
Predictions
In our numerical study we examine how different combinations
of input features and the length of training time series affect
the prediction accuracy of the DL model. These combinations
represent potential settings in different watersheds where
different amounts and types of data are collected by local
agencies. This study enables us to identify input data that are
necessary and sufficient for making accurate predictions of future
groundwater levels. It also allows us to gain insights into “how
much accuracy we lose” when certain data are not available. We
examine eight different input feature scenarios for training the
MLP model (Table 2). For example, the experiment labeled G-T-
P-4-d indicates that groundwater, temperature, precipitation, and
week of year are used as input features. The number 4 indicates
that we used 4 years of historical observations as training data
and d indicates a daily data resolution for validation and testing.
Using data at the monthly resolution (indicated bym) means that
the number of training data points is reduced by 97%. In this
scenario, we also replace the week of year feature with the month
of the year.

We designed the numerical experiments such that they
address the following questions: (1) Which input features are
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sufficient to predict the groundwater level accurately? (2) Is there
a minimum amount of data necessary to build a reasonably
accurate prediction model? (3) How robust are the DL model
predictions given different input feature combinations?

In order to answer these questions, we optimized and
trained the MLP for each experiment shown in Table 2.
We cannot expect the same DL model to perform well for
all experiments, because the lack of certain input features
potentially requires different model architecture, and if not
adjusted, using too complex models may lead to data overfitting.
For each experiment, we solve the bi-level optimization
approach described in the section Neural Network Model and
Hyperparameter Tuning to find the best model architecture. We
solve the lower level problem five times to obtain an average
model performance. For the optimal hyperparameter choice, we
train the MLP network Ne = 20 times, each time generating a
different MLP model. Using the resulting model ensemble, we
obtain Ne replications of future groundwater predictions, which
allow us to compute the statistics of the DL model performance,
to quantify the prediction variability, and analyze the sensitivity
of the model predictions to the input data.

NUMERICAL RESULTS

In this section we describe the results of our numerical
experiments and provide a discussion of their implications on our
guiding questions.

Sensitivity Analysis of Prediction Errors
We compare the future predictions obtained with our optimized
and trained MLPs when using the different input feature
scenarios described in Table 2. We make predictions for a time
frame that was not used during optimization or training of the
MLP (2 years unless otherwise specified), to assess the ability of
the models to extrapolate beyond their training time frame.

We find that for all sites the mean prediction error ( δ )
ranges from 0.4 to 3.7m (Table 3). Ideally, a good predictive
model has low prediction errors and low variability. From the
numerical results, we observe that for the Butte well, we achieve
the lowest mean prediction error when training the model on
G-P-4-d scenario and the lowest prediction variability in the G-
T-P-Q-4-d scenario. For both Shasta and Tehama wells, we find
multiple scenarios that give the same lowest values of prediction
error and prediction variability.

The MLP model that is optimized and trained on all
input features (Groundwater, Temperature, Precipitation and
River flow) performs reasonably well across all the locations,
showing similar values of normalized error of about 0.1 or
10% of 1max (Figure 3), where 1max is the difference between
the observed maximum and minimum groundwater levels.
We use this scenario (G-T-P-Q-4-d) as the base scenario in
the following per-site analysis to understand the sensitivity of
different input features.

Butte Site
The Butte site is highly sensitive to the precipitation data (the
prediction error increases significantly compared to the base case

TABLE 3 | MLP predictive performance at all three sites and for nine scenarios.

Scenario label Butte Shasta Tehama

δ (m) S (m) δ (m) S (m) δ (m) S (m)

G-T-P-Q-4-d 1.1 0.5 0.4 0.3 0.4 0.2

G-P-Q-4-d 1.0 0.6 0.5 0.1 0.5 0.2

G-T-P-4-d 1.1 0.6 0.6 0.4 0.4 0.2

G-T-Q-4-d 1.3 1.0 0.4 0.3 0.4 0.2

G-P-4-d 0.8 0.6 0.6 0.1 0.5 0.4

G-Q-4-d 1.2 0.6 0.5 0.1 0.4 0.2

G-T-4-d 3.7 2.4 1.4 1.1 0.9 0.3

G-T-P-Q-2-d 1.1 0.6 0.5 0.3 0.5 0.3

G-T-P-Q-4-m 1.5 0.8 0.8 0.3 0.4 0.3

δ indicates the mean prediction error as the difference between the model prediction

and true groundwater level. S indicates the overall prediction variability (rounded to first

decimal place). Low values are better. All values are computed over 20 trials as described

in section DL Model Ensembles to Quantify Prediction Accuracy and Variability.

FIGURE 3 | Barplot comparing the normalized mean prediction error and their

standard deviation at all well-sites for all experiments. The normalized values

are obtained by dividing the error by the difference between the maximum and

minimum observed groundwater levels (1max). This normalization helps us to

compare model performance across different locations. Lower bars indicate

smaller prediction errors and therefore better model performance. The errors

were computed by comparing the true and predicted groundwater levels in the

testing dataset.

scenario when we remove precipitation as an input feature).
In fact, the MLP model trained only on groundwater and
precipitation provides the lowest prediction error. A comparison
of the prediction errors of the G-P-Q-4-d and G-Q-4-d scenarios
with the base scenario reveals that the precipitation events
in the past are most likely to impact the future groundwater
availability at this site. As the groundwater table at this site is
fairly deep (16m below ground surface), we postulate that river
flow likely does not directly impact the groundwater level at the
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well site. Instead, given the high proportion of water use being
groundwater at this site, the water table are likely driven by
pumping and dependent on the amount of rainfall received over
the past year.

Shasta Site
Based on simulations with different input feature scenarios,
we observe that the Shasta site is most sensitive to the river
flow feature. This can be seen by the error differences between
the scenarios G-T-P-Q-4-d and G-T-P-4-d. Precipitation is the
second most important feature. Although the river flow feature is
generated using Cow Creek discharge rates, given our scaling and
normalization procedure, we assume it is representative of the
discharge fluctuations in the Sacramento River (which is closer
to the well site). The sensitivity to river flow can be attributed to
the shallow depth to groundwater (about 6m), and short distance
from the river, suggesting possible hydraulic connectivity.

Tehama Site
The MLP model trained on the base case scenario gives the
lowest prediction error. We observe relatively small changes
in prediction accuracy when input features such as river flow
and precipitation are individually removed, showing equal input
feature sensitivity. The MLP model trained only on groundwater
and river flow (G-Q-4-d) also gives the same prediction
performance as the base scenario. However, this is not observed
when the MLP model is trained only on groundwater and
precipitation (G-P-4-d), or groundwater and temperature (G-T-
4-d). This indicates that the river flow carries more groundwater-
relevant information, followed by precipitation in this region.

This is consistent with the relatively low reliance on groundwater
for water use in this region.

In all cases, the predictions are the worst when all input
features except for groundwater and temperature are removed. In
the following sections we only present summarized findings from
the numerical experiments. The groundwater level prediction
results of the individual scenarios at each of the test sites are
provided in Supplementary Section 3.

Stochasticity in Training and Associated
Prediction Variability
In order to better illustrate the stochasticity associated with the
training process, we train an MLP with the same architecture but
with different random number seeds. This results in a slightly
different model for each run. For example, three different trials
resulted in three different accuracies, with some trials yielding
muchmore accurate outcomes than others (Figure 4). Therefore,
we should not base decisions for groundwater management on a
single trial with an MLP.

At the Butte well site the prediction variability (S) resulting
from the stochasticity in training shows the highest sensitivity
to the precipitation feature followed by the river flow feature
(Figure 5). By comparing the different scenarios across all well
sites, we find that the MLP models trained on groundwater
and temperature features (G-T-4-d) have a wider spread in
the predictions.

We illustrate the increasing variability of the MLP predictions
when excluding necessary input features in Figures 6, 7. The
prediction ensemble generated with all input features (G-T-P-Q-
4-d) at the Butte site is able to predict the groundwater levels

FIGURE 4 | MLP prediction for three trials with the same input features and hyperparameters at Shasta with different random seeds. The black time series shows the

observed groundwater level and the other colors represent predictions from three ensemble members. The stochasticity in the training leads to different MLP models

and corresponding different predictions. The prediction indicated by the Trial #5 (blue line) shows a large decrease of the groundwater level and has the highest

prediction error. Trial #4 (orange line) is closest to the observed groundwater levels (truth) while Trial #17 (green line) shows a more optimistic future with less

groundwater depletion.
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over the 2 years with good accuracy (Figure 6). On the other
hand, the predictions at Butte site when using only groundwater
and temperature data for training the MLP have low prediction
accuracy and high prediction variability (Figure 7). Although the
model is still able to capture the seasonality of the groundwater
levels, the differences between the observed and the mean of the

FIGURE 5 | Barplot comparing normalized model prediction variability (S).

Lower S values indicate more robust MLP models that make more reliable

predictions, while higher values indicate a higher variability in future

predictions. The model prediction variability S is also normalized in the same

way as the mean prediction error ( δ ). The standard deviation of S,

represented by the black line on each bar indicates the variation in the

ensemble prediction spread across all time steps.

predicted groundwater levels are large. We conducted a similar
analysis for Shasta and Tehama (see Supplementary Sections 3.1

and 3.7). Note, however, that low prediction variability does
not automatically imply high prediction accuracy, and thus both
variability and prediction accuracy must be considered.

Analysis of Monthly vs. Daily Training Data
Climate model data and groundwater observations are often
available at a monthly temporal resolution rather than at a
daily frequency. Therefore, we examined the effect of using
lower-resolution data for training the MLP model, by averaging
the daily values for each month. Using monthly data means
that, for the same date range, the number of available training
points is significantly lower: the total amount of data points is
reduced by about 97% (≈ 100 monthly vs. ≈ 2, 900 daily). The
groundwater predictions at Butte trained on monthly data are
much smoother and the daily groundwater drawdowns (high
frequency oscillations that we observe in the daily data) are not
present (Figure 8). The predictions show that theMLP is still able
to capture the seasonality in the data (lower groundwater levels
in the summer, higher levels in the winter). When compared to
the corresponding daily frequency model at Butte, G-T-P-Q-4-
d (Figure 6), we observe that the prediction errors are higher
and the model does not pick up on the larger amounts of water
that are available during the wet years (2017 and 2018). The
prediction variability is also relatively low, indicating that for
monthly predictions, the stochasticity that arises from training
the models is lower, perhaps due to overfitting. At Shasta, the
MLP model trained on monthly data shows a lower prediction
accuracy and higher prediction variability than the base scenario.
At Tehama, the MLP model built on monthly data shows
similar prediction accuracy, but a higher prediction variability
in comparison to the daily frequency base scenario suggesting

FIGURE 6 | Groundwater level prediction at Butte with input features: groundwater level, temperature, precipitation, and river flow (G-T-P-Q-4-d). The small

differences between the predicted groundwater levels (ensemble mean, dark blue) and the observed levels (black) indicate a high prediction accuracy. The narrow blue

band around the mean prediction indicates higher reliability in model prediction, and thus low prediction variability. Predictions made by MLP models in Shasta and

Tehama are provided in Supplementary Figures 1, 2.
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FIGURE 7 | Groundwater level prediction at Butte with input features: groundwater and temperature. Large differences between the ensemble mean (dark blue) and

observed (black) show low prediction accuracy. The high variability of the predictions of individual ensemble members (blue band) shows that the MLP model is not

reliable. Predictions made by MLP models in Shasta and Tehama are provided in Supplementary Figures 18, 19.

FIGURE 8 | Groundwater level prediction at Butte using monthly averaged data for all features (groundwater, temperature, precipitation, and river flow). Although the

ensemble spread is narrow (the model predictions are reliable), the prediction error is high, indicating a lack of sufficiently numerous training data points.

a lack of sufficient training data to build a robust model (see
Supplementary Figure 24).

Choice of Optimal Lag Hyperparameter
The lag hyperparameter helps the MLP model capture long-
term dependencies between groundwater and other features.
As mentioned previously the input to the MLP model is a
lagged time series data at each timestep (section Neural Network
Model and Hyperparameter Tuning). A lag number of 30
indicates that 30 days of past observations of the features are
required to make the next-day groundwater level prediction.
The lag parameter is a hyperparameter that is automatically

optimized. Table 4 lists the optimal lags that lead to the best
groundwater level predictions. At the Butte site, we observe
that most input feature combinations require a lag > 300 days.
When using monthly data, the optimal lag is 23 months (≈2
years). At Shasta, the optimal lag values are > 70 days; at
Tehama, the optimal lag values are > 260 days. The results
indicate that the optimal lag is dependent on the specific
experimental conditions and cannot be generalized to be the
same across different scenarios and well sites. An incorrect
lag can be detrimental to the model’s predictive performance.
Values of the other hyperparameters chosen are presented in
Supplementary Tables 2–4.
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Sensitivity Analysis of the Prediction
Performance to the Length of the Training
Time series Data
Analyzing the sensitivity of the MLP’s predictive performance to
the length of the training data addresses two questions. First, we
will examine if the predictive performance of the MLP model
is reduced by using a smaller training set. Second, by using a
shorter time series for HPO and training, we can assess the
accuracy of groundwater predictions for a longer time period.
We experiment with using only 2 years of data for training and
2 years of validation, thus testing the MLP’s prediction accuracy
over 4 years. At the three sites, our MLP models are still able to
predict the groundwater levels fairly accurately compared to the
base scenario (Figure 3).

TABLE 4 | Optimal lag hyperparameter chosen in the hyperparameter

optimization process at all three sites and for each scenario.

Scenario label Butte Shasta Tehama

G-T-P-Q-4-d 335 70* 315*

G-P-Q-4-d 350 260 200

G-T-P-4-d 350 95 290

G-T-Q-4-d 355 100 260

G-P-4-d 335* 250 305

G-Q-4-d 355 230 285

G-T-4-d 150 45 355

G-T-P-Q-2-d 305 150 170

G-T-P-Q-4-m 23 3 21

(*) indicates the best performing input feature scenario at each site.

At the Butte site, the overall prediction accuracy is the same
as the base scenario with a slightly higher prediction variability
(Figure 9). The seasonality in the groundwater levels (less water
in the summer and more in the winter) is captured well. The
groundwater predictions are close to the true values for the first
1.5 years of prediction (2014–2015), but in the subsequent years
the model predictions fail to accurately capture the highs and
lows. The errors of the groundwater predictions accumulate over
time, due to how we make next-day predictions [use the previous
[lag] days of groundwater level data, and at some point, we start
making predictions based on predictions and thus the errors
accumulate]. At the Tehama site (see Supplementary Figure 22),
the MLP model makes accurate predictions for the first 2 years
(2014 and 2015) and subsequently we observe that the MLP
predictions fail to capture the highs and the lows. This may
either be related to error accumulation or a missing feature,
such as snow pack or pumping data. A similar result holds
for the Shasta well: the MLP is able to capture the seasonal
behavior of the groundwater levels, but as we make predictions
over multiple years, the prediction inaccuracies increase (see
Supplementary Figure 21).

DISCUSSION

Future Prediction Using MLP Models
With a suitable choice of input features (e.g., G, T, P, and
Q), MLP models can reliably predict groundwater levels for
up to 1 year and possibly longer at a daily frequency. This is
observed at all sites despite the differences in the contribution
of groundwater to the county’s water budget. In addition, models
built exclusively withmeteorological variables using temperature,
precipitation and groundwater as input features (G-T-P-4-d)
also show a good prediction accuracy of about 85–90%. Long-
term forecasts of these meteorological variables generated from

FIGURE 9 | Groundwater level prediction at Butte with input features: groundwater level, temperature, precipitation, and river flow when using only 2 years of data

each for hyperparameter optimization process and training. The MLP is able to capture the seasonality of the groundwater levels, and it reflects well the groundwater

levels during the drought years and the wet years.
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different weather models can potentially be used to predict future
groundwater levels. This can help derive sustainable groundwater
management strategies.

Impact of Data Availability
A major challenge in this study was the selection of well sites
and monitoring stations that adequate measurement for training,
and located in near proximity. For example, at the Shasta site,
we would ideally use the discharge rate of the Sacramento River
rather than the CowCreek in theMLPmodel. But we did not find
such a monitoring station near the well site. On the other hand,
it is also difficult to find groundwater wells with a long period
of measurements close to river flow or weather monitoring
stations. Experiments with MLP models trained on monthly
averaged data and the analysis of optimal lag hyperparameter
chosen at the three sites (for different scenarios) also suggest
that access to a longer time range of data can help build better
prediction models. This recurring issue of site selection currently
makes DL techniques inapplicable in the majority of watersheds
in California.

Models built from monthly frequency data show a higher
prediction error than the daily frequency-based model and are
unreliable for making long term (multi-year) predictions. We
found that daily data were unavailable for most of the sites in
California. In fact, out of the 3,907 monitoring wells in the state,
only 387 had daily measurements through California statewide
groundwater elevation monitoring (CASGEM) network, and
most of the high-resolution datasets were only available for wells
in northern California, in mostly low-priority basins. Prediction
accuracies can be improved with access to higher-resolution
daily data, or longer monthly datasets (spanning decades).
Additionally, our current analysis is performed in the absence
of pumping data, which is not publicly available. Yet pumping
is a critical component of groundwater budget, and in several
places the primary driver of groundwater table depths. Access
to such data can potentially better equip our current DL models
with human behavior and improve management strategies. The
potential advantage of using additional data for obtaining more
accurate predictions may lead to investments into more in-situ
or remote measurement infrastructure. Based on our current
results, we recommend using more than 2 years of daily data
for training.

Impact of Training Stochasticity on
Prediction Results Matters
In addition to the prediction accuracy, we find that it is also
important tomeasure the prediction variability of theMLP, which
is due to stochasticity in the training process. The Keras tool used
in the study generated different weight optimized MLP models
for the same set of hyperparameters and training data.We cannot
analyze future predictions or derive water management strategies
based on a single training trial. We recommend training a DL
model of a given architecture multiple times, as the stochasticity
of the optimizer used during the training leads to multiple
prediction models that are consistent with the training data.
The resulting model ensembles allow us to assess the model’s
prediction reliability. Thus, in addition to potential uncertainty in

the data collected we also need to take into account the variability
in the training process. Our study showed that models trained on
groundwater, temperature, precipitation, and temperature data
(G-T-P-Q-4-d) yield the lowest prediction variability, whereas
models trained only on groundwater and temperature data
have the highest prediction variability. Note however, that low
variability does not necessarily mean high prediction accuracy,
and thus both metrics need to be taken into account when
assessing the quality of the DL model predictions. In a future
study, one can tackle this problem from a bi-objective perspective
in which the prediction accuracy is maximized and the variability
is minimized simultaneously.

Automated HPO Framework for Future DL
Applications
A key innovation in this study is the use of an HPO framework to
test different model architecture for making prediction models.
The setup of our study, and the HPO is general enough to be
applicable to any other type of neural network (e.g., CNN and
LSTM). The sensitivity analysis requires conducting multiple
experiments testing different input feature combinations and
our results indicate that each experiment requires a different
combination of hyperparameters. Hand tuning the model
architectures for each experiment can be a cumbersome process
especially when the number of features is large. The HPO
framework used in this study automates this process and ensures
the best model architecture (within the given bounds). We can
also potentially incorporate the choice of input feature into the
framework as a decision variable. The HPO formulation will
then choose the best combination of input features and its best
architecture simultaneously.

Multi-Well MLP Models
The current analysis has been conducted for single groundwater
well sites only, which does not reflect the overall health of
a groundwater aquifer. Thus, a spatially distributed parameter
sensitivity analysis across multiple groundwater well sites and
climatic parameters may reflect a more realistic behavior of a
groundwater aquifer and human use. Our previous study (Müller
et al., 2020) successfully built DL models to simultaneously
predict daily groundwater level at three locations in Butte county.
However, we saw that when we use an average prediction
error metric to measure the prediction performance across the
three wells, only two wells have accurate predictions. Thus, one
remedy could be a reformulation of the objective function by
introducing weights that reflect the importance of each well to
ensure optimal prediction performance across all wells. Although
training can be compute-intensive, once trained and optimized,
DL models are a more viable option for performing multi-
scenario analyses than high-fidelity simulation models, because
the required computational time to make future predictions
is orders of magnitude lower. Our multi-scenario analysis can
readily be used by groundwater managers who have access to
historical groundwater and local weather data.
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CONCLUSION

With the increased deployment of ML tools in hydrological
sciences, there is a need to understand the sensitivity of their
prediction performance to different input features. Groundwater
level timeseries are highly non-linear and non-stationary, making
them difficult to model with standard ARIMA models. DL
models offer a promising alternative for capturing the complex
interactions between features such as groundwater levels, river
flow, temperature, and precipitation.

In our study, we were able to accurately predict groundwater
levels at three different groundwater well locations (Butte,
Shasta, and Tehama) in California using an MLP model.
Additionally, we conducted a sensitivity analysis using multiple
different feature combination scenarios and compared the
accuracy and reliability of the resulting predictions. Our analysis
shows that models trained on groundwater, temperature, river
flow and precipitation data (G-T-P-Q-4-d) lead to the best
predictive performance at two of the three sites, while models
trained without hydrological features and based only on past
groundwater and temperature data consistently showed the
lowest prediction accuracy at all locations. The best predictive
models are shown to reliably predict groundwater levels at least
1 year into the future. The MLP prediction performance is
also affected by the data’s temporal resolution and the length
of the training period. The MLP models trained with only 2
years (rather than four) of data still gave reasonable accuracy
and indicate the potential capability for long-term predictions.
In addition to accuracy, we find that it is also important to
measure the prediction variability caused by the stochasticity in
the training process. The MLP model architectures for different
choices of input features, training length and temporal frequency
which were obtained using a hyperparameter optimization

framework indicate that the optimal combination is location-
specific. These results indicate that DL models are a good
choice for modeling groundwater levels, contingent on the
availability of adequately long time-series of prior groundwater
levels and some hydrological variables (precipitation or river flow
at the minimum).
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