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In this study, a novel temporal convolutional neural network (TCNN) model is developed

for long-term streamflow projection in California within the Catchment Attributes for

Large-Sample Studies (CAMELS) watershed regions. The TCNN model consists of

several convolution blocks and causal convolution is used as physical constraint. The

ensemble performance of the model is first compared with other machine learning

models for streamflow prediction. The model is further assessed through comparison

with reduced models and using different hyperparameters, with results suggesting that

this model correctly ascertains the physical relationship between input variables and

streamflow. The stability of the model and its behavior in the extrapolated regime

is assessed through an idealized extreme test with quadruple precipitation and 5◦C

higher temperature. Future streamflow projections are then developed using daily

high-resolution Localized Constructed Analogs dataset (LOCA). To understand the

importance of the nonlinear machine learning approach, we estimate the degree of

nonlinearity in the streamflow response among input variables. Our work shows the ability

and potential for TCNNs to perform future hydrology projections.

Keywords: machine learning, temporal convolutional neural network, model sensitivity, streamflow projection,

projection analysis

1. INTRODUCTION

Streamflow is an undeniably important hydrologic quantity for agriculture, society and ecosystems.
While historical records of streamflow have been indispensable in informing us of the probability
associated with particular flow conditions, it is unclear to what degree these predictions are valid
under future meteorological conditions in light of climate change. Failure to correctly predict
reservoir inputs has the potential to lead to reservoir failure, such as was witnessed recently with
the Oroville reservoir spillway collapse (White et al., 2019). Long-term projections of streamflow
that capture the climatology of streamflow within each watershed are further useful for informing
water management strategy. Models for streamflow prediction and projection can be generally
divided into two categories: physically-based models and data-driven models (Shen, 2018). Since
physically-based hydrological models typically require significant computational expense and
extensive calibration of land surface characteristics, machine learning (ML) models are being
increasingly employed for streamflow prediction, especially Artificial Neural Networks (ANNs)
(Gao et al., 2010; Noori and Kalin, 2016; Atieh et al., 2017; Peng et al., 2017), Support Vector
Machines (SVMs) (Kisi and Cimen, 2011; Huang et al., 2014), and recurrent networks like
Long-Short Term Memory (LSTM) (Feng et al., 2019; Kratzert et al., 2019; Le et al., 2019; Yan
et al., 2019).
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Instead of directly simulating physical processes, ML models
mimic the physical rules from historical datasets to develop
a functional relationship between inputs and outputs. The
learning process largely consists of repeated matrix algebra to
adjust the weights in the models, which makes it amenable
to acceleration by graphics processing units (GPUs). Further,
because ML is broadly applicable across a variety of industries
and fields, significant investments have beenmade in the software
supporting its use. Compared with physically-based models,
ML models are generally faster to train and can operate with
essentially any predictors (Kratzert et al., 2019). However, the
structure of the model and predictor selection are important
since they determine the model performance. The general
principle governing these models is to build a simple, easy to
train model with all the necessary predictors—while avoiding
redundant predictors—and ensuring the relationships being clear
and direct.

Significant research onML data-driven models for streamflow
has been directed toward data preprocessing, with the purpose
being to reduce the number of degrees of freedom in the input
dataset and so make any underlying patterns or relationships
easier to be identified by ML algorithms. Streamflow at a
single gauge station is a fairly traditional 1D time-series
dataset, but one that is composed of different components
at a variety of frequencies. Consequently Kisi and Cimen
(2011) used the discrete wavelet transform (DWT) with SVM
for monthly streamflow prediction. The DWT was used to
decompose streamflow into high-frequency and low-frequency
components, referred to as the “details” and “approximation” in
their study, respectively. The approximation, which is the low-
frequency component, acts as the baseflow while other high-
frequency details represent the variation with shorter period.
Their results demonstrated preprocessing with DWT increased
the prediction accuracy compared with a model leveraging
the raw series. Analogously, Peng et al. (2017) employed the
empirical wavelet transform (EWT). Unlike DWT, the EWT
decomposition consisted of only three modes, which were used
for an ANN model and a residual component. Huang et al.
(2014) introduced the empirical mode decomposition (EMD)
method for streamflow preprocessing. They decomposed the
original data into five intrinsic mode functions and a residual.
Instead of removing the residual, they retained it and excluded
the high-frequency intrinsic mode function, producing better
performance compared with the model using only the original
data series. Although these preprocessing steps can simplify the
streamflow series and increase performance, they also introduce
additional hyperparameters and uncertainty into the model
which may impact model robustness.

ML model research has also focused on limiting the choice
of predictors—including both input variables and time window
size—so as to reduce the number of inputs (Rasouli et al.,
2012). Since traditional ML models do not generally incorporate
comprehensive physical relationships, ML model developers can
focus on only the predictors that explain the most output
variability. For streamflow, the most common predictors are
precipitation (P) and streamflow (Q) over some historical time
period. However, other predictors have been explored as well,

informed by our understanding of the system’s physical drivers;
for instance, Rasouli et al. (2012) investigated several climate
indices as predictors, and demonstrated that these can be
beneficial for prediction with long lead times up to 7 days. If one
only uses precipitation and historical streamflow as predictors,
the 1-day lag streamflow prediction problem can be expressed as:
Identify a function f so that the predicted daily time series

Q̂t = f (Pt−N , Pt−N+1, . . . , Pt;Qt−N ,Qt−N+1, . . . ,Qt−1) (1)

satisfies Q̂t ≈ Qt (measured under some prescribed metric).
Here the subscript represents the time index and N represents
the number of historical time points used for prediction. N must
typically be large enough to incorporate all historical information
relevant to prediction of streamflow at present, but large values
of N can lead to increased model complexity which can in turn
reduce performance. The value of N is thus usually decided by
calculating the autocorrelation or partial correlation; Yaseen et al.
(2016) used this approach for monthly streamflow prediction,
eventually deciding on a time lag of 5 months.

A common feature in early data-driven streamflow prediction
models is that the input variables were independent of time
when fed into the ANNs or SVMs. For example, there were no
connections within each layer of dense ANNs, and consequently
the network could not “remember” past states. Under such
architectures, temporal features in the predictors that may be
vital for time series prediction might be neglected. To deal with
this problem, some recurrent ML models have been adapted to
recognize time dependent features (Le et al., 2019; Yan et al.,
2019). Among such models, the most commonly used network
(at present) is the LSTM. Kratzert et al. (2019) used LSTM
and Catchment Attributes for Large-Sample Studies dataset
(CAMELS) to predict streamflow over CONUS. Their results
demonstrated that the LSTM model is capable of extracting
temporal features and the results from the MLmodel can then be
used to interpret the physical characteristics of different basins.
Feng et al. (2019) added the previous flow rate as data integration,
which improves the prediction accuracy of LSTM model. They
also employed a convolution data integration method, although
the resulting model did not outperform feeding observations
directly into LSTMmodel.

Although there are many ML prediction models, not all
can be directly employed for long-term projection. Under
future climate change scenarios driven by increased greenhouse
gas concentrations, the U.S. West is expected to experience
more precipitation and higher surface temperature (Huang and
Ullrich, 2017; Ullrich et al., 2018). It is similarly expected that
the resultant streamflow patterns will also change. In MLmodels,
since the model is developed and trained with a prescribed
training dataset, it is generally expected that the target variable
is the same in both training and testing sets. In the real world,
however, the statistical properties of the target variable may be
changing in time (for instance, under climate change). Under
such scenarios, the prediction model may be inconsistent with
future projection data, a problem referred to as concept drift
(Tsymbal, 2004). Although streamflow can be used in a predictive
model framework such as Equation (1) (an initial-boundary value
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problem), a simple substitution of Q̂ forQ to produce a projection
model can lead to errors in streamflow that accumulate over
time, potentially biasing the projection. Consequently, projection
models must be more heavily constrained to external forcing
data, which can restrict the selection of ML model. In the
context of projection, Koirala et al. (2014) used the Catchment-
based Macro-scale Floodplain Model (CaMa-Flood) with runoff
from CMIP5 models as input to derive streamflow under
different climate scenarios. Gao et al. (2010) used an ANN and
ECHAM5/MPI-OM model output to derive monthly projection
for Huaihe River Basin. These studies demonstrated the potential
for ML in streamflow projection.

In the present work, we document the development and
validation of a ML-based modeling system for estimating
future daily streamflow in California under climate change.
After intercomparison among various ML models, a general
Temporal Convolutional Neural Network (TCNN) is selected as
our candidate system. Although CNNs have not been typically
employed for streamflow prediction and projection—being more
widely known for image processing—recent work has shown
that they exhibit comparable performance to recurrent networks
for time series problems (Bai et al., 2018). Consequently our
study aims to further establish that TCNNs are competitive
for streamflow forecasting with only atmospheric forcing data.
Model sensitivities to input variables and time window size are
investigated to develop optimal configurations for each basin.
With theML-based streamflowmodel in hand, future streamflow
projections are constructed through the end of the twenty-
first century using statistically downscaled LOCA meteorology
as input. To the best of the authors’ knowledge, this is the
first work to assess TCNNs for streamflow projection with
only atmospheric forcing data. The comprehensive study of the
model’s sensitivity to covariates and time window size are further
novelties of this study. Although this work identifies a strategy
for production of future streamflow projections, future work is
needed to validate the methodology against physical constraints
and investigate the impacts these changes may convey.

The remainder of the paper is structured as follows: section 2
provides technical details about our study, including descriptions
of the data sources and the ML model structures. Section 3
explores prediction and projection across ML models, examines
the sensitivity of the TCNN to input variables and time window
size, and assesses the linearity of the problem. Insights from
these future streamflow projections are presented in section 4.
Conclusions follow in section 5.

2. DATA AND MODELS

2.1. CAMELS
The Catchment Attributes for Large-Sample Studies (CAMELS)
dataset provides the hydrologic data for this study (Newman
et al., 2014). The CAMELS dataset contains gauge streamflow
data and forcing data for 671 basins that feature minimal
human disturbance and at least 20 years of data over CONUS.
The forcing data is provided as a basin average from NLDAS,
Daymet, and Maurer, and includes precipitation, day length,
solar radiation, and temperature. The streamflow time series data

is obtained from USGS gauge stations. The dataset covers 40
watersheds in California, which we have downselected to the 20
watersheds without missing values for this study. Figure 1 shows
the location, HUC8 identifier, and name of these watersheds.
Based on the location of these watersheds, we divided them into
five categories and there are the corresponding abbreviations: NC
for Northern California (Basin 11381500, 11451100, 11475560,
11522500, and 11528700), SN for Sierra Nevada (Basin 10343500,
11264500, 11266500, and 11284400), SC for Southern California
(Basin 10258500, 10259000, and 10259200), CC for Central Coast
(Basin 11141280, 11143000, 11148900, 11224500, and 11253310)
and BA for the Bay Area (Basin 11162500, 11176400, and
11180500). In our model, streamflow is normalized by the basin
area to avoid discrepancies in the magnitude of the streamflow.
The data period is from January 1st, 1980 through December
31st, 2014. In total, we select 10,000 daily samples for training
(approximately 27 years) and leave the remainder of the dataset
for testing. These training samples are consecutive from the
beginning of the time series.

2.2. LOCA Downscaled Meteorology
For future streamflow projection, the Localized Constructed
Analogs (LOCA) dataset (Pierce et al., 2014) is employed. This
dataset provides the three necessary input variables for this
study, namely precipitation, solar radiation, and near-surface
temperature. LOCA is a downscaled dataset ensemble with 6
kilometer resolution over North America from central Mexico
through Southern Canada. Among all available LOCA datasets,
we downselect four global climate model for this study, which
are HadGEM2-ES, CNRM-CM5, CanESM2, andMIROC5 under
RCP8.5. These models agree with the four models chosen by
California’s Climate Action Team Research Working Group as
priority models for research contributing to California’s Fourth
Climate Change Assessment (Pierce et al., 2018). The climatology
of these models can be described as warm/dry (HadGEM2-
ES), cool/wet (CNRM-CM5), and average (CanESM2). Finally,
MIROC5 was selected because it is the most unlike the other
three. Since all the basins have irregular shapes, TempestRemap
(Ullrich and Taylor, 2015; Ullrich et al., 2016) is used to
conservatively regrid the LOCA data to obtain basin-mean
forcing data. Because of the uncertainty from both the climate
model output and the downscaling process, the historical LOCA
data and CAMELS data have some significant disagreements,
especially in the values of solar radiation. Specifically, LOCA
tends to overestimate the solar radiation compared with NLDAS,
as seen in Tables S1–S5. To avoid issues related to this systematic
difference, the LOCA data was linearly transformed based on
the historical forcing data to match the mean and variance
of observations. The same transformation was also applied on
the projection forcing data. Specifically, for a given daily input
XLOCA, either historical or projection, we denote the transformed
value as Xtrans, where µ and σ represent the corresponding mean
and standard deviation from the historical period:

Xtrans =
XLOCA − µLOCA_hist

σLOCA_hist
× σNLDAS_hist + µNLDAS_hist (2)
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FIGURE 1 | A topographic plot of California and the 20 watershed regions considered in this study.

The values of µ and σ for NLDAS and the climate model
ensemble can be found in Tables S1–S5.

Although LOCA provides historical daily atmospheric forcing
data, it is not suitable for model training since it is generated from
several climatemodels via an statistical downscalingmethod. The
climate models produce a simulated climatology which is only
constrained to the real world through prescribed atmospheric
greenhouse gas concentrations, so there is effectively no
relationship between LOCA and observed gage-based streamflow
measurements. This is also the reason why we only analyze the
climatology of flow rate in section 4, and do not directly compare
the time series of streamflow.

2.3. Model Predictors and Target
As mentioned earlier, the input variables (predictors) for our
streamflow models are precipitation, temperature, and solar
radiation. By default, the input time window size is set it to
365 days (although this is explored later in the text). In general,
the length of the input time window needs to be long enough
to capture the relevant physical relationships between input
variables and streamflow. For each of our ML models, the target
variable is streamflow on the last day in the time window. In
other words, our objective is to determine the function f in the

following equation:

Qt = f (Pt−N+1, Pt−N+2, . . . , Pt;Tt−N+1,Tt−N+2, . . . ,

Tt; St−N+1, St−N+2, . . . , St) (3)

where Q denotes streamflow, P the precipitation, T the
temperature, and S the solar radiation. Note that this equation is
only provided for the reader to better understand the relationship
between streamflow and the independent quantities. The actual
functional relationship will vary based on the model architecture.
The subscript denotes the corresponding daily value for that
particular quantity, and N denotes the input time window size.
The input and output variables are all normalized before feeding
them into the models via

Xi =
xi − µx

σ (x)
. (4)

Here Xi and xi are the ith normalized and original variable,
and µ and σ stand for mean and standard deviation of
that variable. With the normalized variables having zero mean
and unit variance, the specific units and range of the inputs
will not influence the model. In turn, the normalization
procedure is expected to improve the model performance (e.g.,
Shanker et al., 1996).
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2.4. Machine Learning (ML) Models
Four machine learning model architectures have been
investigated and compared with a baseline linear regression
model. For the predictive simulations, model performance
is quantified by the Nash-Sutcliffe model efficiency (NSE)
coefficient (Nash and Sutcliffe, 1970), which is defined as:

NSE = 1−

∑
(Qt

m − Qt
o)
2

∑
(Qt

o − Q̄o)2
(5)

where Qt
m denotes the predicted flow at time t, Qt

o the observed
flow at time t, and Q̄o the mean observed flow. Here the observed
quantities refer to output streamflow from USGS gauge stations.
Larger NSE values indicate better performance. Since the NSE
is proportional to the square of the difference between model
and observations, it tends to put greater emphasis on high flow
periods. Tomaximize NSE, we set 1−NSE as the loss function for
ourmodels—that is, the quantity to beminimized during training
process. For eachmodel, training is performed separately on each
basin but with the same model architecture.

Before training these networks, we first need to set the
hyperparameters, which are tuning factors in the model
architectures and training process. Common hyperparameters
include the number of layers, optimizer, and number of
epochs: The number of layers is important to the specific
model architecture; the optimizer refers to the gradient descent
algorithm used in the training process; and the number of epochs
refers to the number of times that the model is trained on the
entire training set. The Adam optimizer is used with 0.0005 as
the learning rate. We trained each model for 150 epochs with the
batch size set to 512. These training configurations are set based
on the training loss function, which ensures the loss decreases
and stabilizes at a low value. Although the hyperparameters are
important for overall model performance (Bergstra and Bengio,
2012), in this work we hold the optimizer and the number of
epochs the same for all models. This study does not investigate
differences that may arise through more fine tuning of these
hyperparameters for specific models—indeed a comprehensive
investigation of the optimal hyperparameters for each model is
beyond our current computational capability. The remainder of
this section describes the architecture of the models investigated
in this study.

2.4.1. Linear Regression
Linear regression refers to the simple linear regression model
that only incorporates first-order terms from Equation (3). This
precludes nonlinear relationships between days in the time
series of input variables or between different input variables. As
mentioned earlier, the simple linear regression model will be our
baseline for assessing the ML models.

2.4.2. Artificial Neural Network (ANN)
An ANN is a traditional neural network composed of dense
neural layers (Hassoun et al., 1995). It is an all-connected network
without interactions within each single layer. According to the
universal approximation theorem, with enough hidden units
and depth among the hidden layers, an ANN can simulate any

nonlinear relationship (Csáji et al., 2001; Lu et al., 2017). For
time series data, however, recurrent neural networks such as GRU
and LSTM normally outperform ANNs because of their ability
to capture temporal features. In our work, the ANN model has
two hidden layers with 100 hidden units and a “ReLU” activation
function in each layer. The set of hyperparameters is set based
on our coarse tuning for all interested basins. This ANN model
is a nonlinear model without temporal features, which is the
baseline for the following GRU, LSTM, and CNN models. ANNs
have been previously investigated for streamflow prediction
in Kisi and Kerem Cigizoglu (2007), and they compared the
performance from different ANN models. Noori and Kalin
(2016) used an ANN coupled model and it was found that ANN
can help improve the streamflow prediction when coupled with
physically-based SWAT model.

2.4.3. Gated Recurrent Units (GRU)
As mentioned earlier, recurrent neural networks (RNNs) are
typically used to deal with time series and related quantities.
However, under simple recurrent designs the gradient will often
vanish or explode during the training process (Bengio et al.,
1994). As introduced by Cho et al. (2014), GRUs are a typical
gated recurrent neural network whose design can help to avoid
gradient vanishing for recurrent networks. There are two gates
in a GRU cell, referred to as the update gate u and relevant gate
r. A general GRU cell is depicted in Figure S1, followed by a set
of equations defining the GRU cell. There can be several hidden
units in a GRU layer and the number of hidden units is the
number of features in cell states.

Similar with the ANNmodel, a GRUmodel consists of several
layers, with each layer containing several hidden units. In our
work, we analyze a three-layer GRU model connected with a
dense layer. The GRU layers are set to extract temporal features
and the final dense layer is for output. Each GRU layer has
50 hidden units; this number is from coarse hyperparameter
searches. The stacked layer design provides sufficient complexity
to fit the streamflow data, and provides a similar stacked
architecture to compare with the TCNNmodel.

2.4.4. Long-Short Term Memory (LSTM)
The LSTM model is another example of a gated network,
and one which has been increasingly explored in recent years
for streamflow forecasting (Kratzert et al., 2019). The primary
difference between the LSTM and GRU models is that the LSTM
features three gates—the update gate u, the forget gate f and
the output gate o. A typical LSTM cell and the corresponding
formulas are shown in Figure S2. Like our GRU model, the
LSTM model has three LSTM layers and one dense layer. Within
each LSTM layer, there are 50 hidden units. The stacked layer
design ensures complexity to fit the streamflow data and the
same number of cells with GRU can help compare the different
model performance.

2.4.5. Temporal Convolutional Neural Network (TCNN)
CNNs remain a widely used model for image processing and
analysis because of their ability to extract and decompose
features (Gu et al., 2018). The typical input of the CNN
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model is an image with width, length, and color channels.
In our study of streamflow, which is one-dimensional data,
the input shape is the number of variables times the
input time window size. A typical CNN is comprised of
convolutional layers and dense layers. Some CNNs will further
add pooling layers between convolutional layers to reduce
the dimensionality of the problem and extract important
features. But it has also been argued that with sufficiently
large convolutional layers, the network can perform well only
using convolutional operations (Springenberg et al., 2014).
Thus, for simplicity we have only used convolutional layers in
our CNN.

A typical CNN architecture used for time-series data is the
Temporal Convolutional Neural Network (TCNN) (Lea et al.,
2017). Compared with the more well-known CNN for images,
TCNNs consist of a one-dimensional network using dilated
causal convolutions to keep temporal causation and residual
blocks for deeper networks. Bai et al. (2018) tested TCNNs
and LSTMs with different time series problems, and argued
that TCNNs are better in terms of accuracy and speed for
problems of similar complexity. Thus, to compare with our
three-layer GRU and LSTM models, we will assess a three-
block TCNN with residual connections. Each block has two
convolution layers and one residual connection. Dilation rates
are set to 1, 6, 12, respectively and kernel size is fixed at 7 for
all convolution layers. The number of filters are set to 40, 20,
20 for each block. In the final block, the reception field is large
enough to cover the entirety of the time window. Also, with
stacked causal convolution blocks, the input information will be
concentrated within the last few neurons. To reduce redundancy
and avoid overfitting, a slice layer is set after the final TCNN
block to only keep last 20 neurons. The TCNN model flow
chart and an illustration of dilated causal convolution are shown
in Figure S3.

2.5. Ensemble Runs
Unlike the linear model, which has an exact analytical solution,
all the neural networks use gradient-based method to optimize
the loss function. Since the networks allow for local minima,
different initial weights can potentially produce different models
with different performance. Thus one needs to be careful to
avoid drawing conclusions on the relative performance of each
model that are merely a byproduct of the initial weights. In
order to eliminate this effect, we run each model 15 times to
get an ensemble distribution of NSE values. Thus our results
and conclusions are based on the statistical distribution of model
performance across the ensemble.

Throughout this study we make use of boxplots for assessing
comparative performance between ensembles. As shown in
Krzywinski and Altman (2014), comparative performance is
intuitive from the boxplot—namely, if the median for one model
is above the interquartile range of another, we are confident that
it is the better model. However, if the median from the second
model lies within the interquartile range of the first model,
performance could be the result of randomness in the training
process, making it difficult to determine the better model.

3. RESULTS

In this section we first compare the various ML models discussed
in section 2.4 to demonstrate the competitive performance
of the TCNN. The TCNN is then examined in light of
stability under extreme forcing, its sensitivity to choice of input
variables across basins, and sensitivity to time window size. A
physical interpretation of the observed model sensitivity is also
discussed here.

3.1. Model Intercomparison
Figure 2 shows the ensemble prediction results for each basin
among the four ML models, plus the linear regression model.
The linear regression model performs the worst among available
models in almost all basins, in testament to the nonlinearity
of the prediction problem. The ANN model tends to achieve a
higher NSE value than the linear regression model for almost
all basins, but in terms of NSE the ANN is still inferior to the
recurrent networks and the TCNN, especially for basins where
the NSE values for the recurrent networks and the TCNN are
over 0.6, such as 11475560(NC) and 11522500(NC). In these
basins, the relatively low NSE scores from the ANN indicate
that there are some temporal features that the ANN cannot
capture but which are important for streamflow prediction.
Nonetheless, for some basins, the ANN outperforms the LSTM.
There are two possible reasons this may occur. Firstly, it could
be that temporal features are not important for these basins, a
hypothesis that is supported by the observation that the ANN
tends to also be better than GRU [e.g., basins 11176400(BA) and
11224500(CC)]. On the other hand, the TCNN doesn’t have a
recurrent architecture so it can effectively ignore the temporal
features and mimic the ANN. This could suggest that LSTMs
may not be as generalizable as TCNNs. Another possible reason is
that the LSTM hyperparameter set is suboptimal for these basins
– assessing this possibility may require a more comprehensive
basin-dependent hyperparameter search.

Among models with temporal features (TCNN, LSTM, GRU),
the TCNN exhibits the best average performance. The average
NSE over all basins and all ensemble runs is 0.40 for LSTM,
0.44 for GRU, and 0.55 for TCNN. The average NSE value for
the best run over all basins is 0.58 for LSTM, 0.58 for GRU,
and 0.65 for TCNN. For those basins where LSTM and GRU
achieve the highest NSE values, the performance of the TCNN
model is competitive—for example, in basins 11141280(CC)
and 11284400(SN) the NSE values among the different neural
networks are all higher than 0.5. For basins where neural
networks do not perform well, such as basins 10259200(SC),
11176400(BA), and 11253310(CC), the TCNN is nonetheless the
best among the different neural networks. Notably, the recurrent
networks can achieve high NSE values for some basins while
performing poorly for other basins. That is, their performance
varies substantially among different basins. The TCNN, however,
is more stable among all basins: The standard deviation of the
ensembles over all basins is 0.47 for LSTM, 0.38 for GRU, and 0.23
for TCNN. Although the choice of hyperparameters is important
in these results, the wider spread in the NSE value indicates that
for streamflow prediction the recurrent networks have more local
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FIGURE 2 | Ensemble prediction comparison for all basins with different models. The boxplots denote results over each ensemble of 15 model runs for the ML

models. The straight line denotes the linear regression result. For basin 11224500 CC the linear regression model produced a NSE of −2.47.

minima over the optimization space, and consequently must be
trained many times to find a globally optimal configuration.

The stacked recurrent networks here are chosen to compare
with the stacked TCNN model. A one-layer LSTM model, such
as the one used in Kratzert et al. (2019), is also investigated.
We employ 256 hidden units for the LSTM to match (Kratzert
et al., 2019). Similarly a one-layer GRU model with 256 hidden
units is also compared. With this configuration, the average
NSE over all basins and all ensemble runs does improve to 0.47
for the one-layer LSTM, but degrades to 0.34 for the one-layer

GRU. The standard deviation is 0.40 and 0.74 for the one-layer
LSTM and GRU, respectively. When comparing the average NSE
for the best run, the one-layer LSTM and GRU achieve 0.61
and 0.56, respectively. We again tested another one-layer LSTM
model with 370 hidden units so as to match the number of free
parameters within the TCNN model. The average NSE over all
ensemble runs is 0.44, and 0.58 for the best run. The standard
deviation is 0.43. A comprehensive comparison can be found in
Table 1. Figure S4 shows the ensemble prediction comparison of
the TCNN model with one-layer recurrent networks. Compared
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TABLE 1 | Mean and standard deviation for ensemble prediction comparison with different models.

Mean NSE for all ensemble runs Mean NSE for the best run Standard deviation

TCNN 0.55 0.65 0.23

Stacked LSTM 0.40 0.58 0.47

Stacked GRU 0.44 0.58 0.38

One-layer GRU (256) 0.34 0.56 0.74

One-layer LSTM (256) 0.47 0.61 0.40

One-layer LSTM (370) 0.44 0.58 0.43

The number in parentheses denotes the number of hidden units.

with the one-layer recurrent networks, the TCNN model still
exhibits slightly better performance with lower variation.

Besides evaluating the NSE value for the whole prediction
period, we also examined the model performance for high flow
and low flow days. High flow (low flow) days are defined as
days when the observed flow rate is higher (lower) than the
95th (5th) percentile over all days. Since the low flow series
for some basins is zero throughout, NSE cannot be used to
assess performance. Instead, we use mean squared error (MSE)
to quantify the performance, given by

MSE =
∑

(Qt
m − Qt

o)
2. (6)

The MSE spread for all basins over the ensemble can be
found in Figures S5, S6. Whereas the TCNN tends to perform
well during high flow periods, the LSTM does exhibit better
performance in low flow periods. For the high flow period,
when average MSE is compared over all the ensemble runs, the
TCNN achieves the best performance on 12 basins compared
with 4 basins for LSTM. When comparing the minimum MSE
for the high flow period, the TCNN is the best model for 10
basins compared with 6 basins for LSTM. For the low flow
period, when using the average MSE, TCNN is the best model
for 2 basins compared with 10 basins for LSTM; when assessing
minimum MSE value, the LSTM is superior in 16 basins. The
reason for this behavior is likely a simple consequence of the
chosen hyperparameters of the model; further optimization will
likely result in incremental improvements to both the TCNN and
LSTM. Notably, the purpose for the comparisons in this section
are not to show the TCNN is better than the LSTM, since such a
proof would require us to effectively test all possible architectures
and hyperparameters. Instead, these results demonstrate that the
TCNN can achieve comparable performance to other commonly
used models.

In addition to assessing model performance, training time
also merits comparison among the different models. The average
training time for one basin with the ANN on a single RTX 2080Ti
is 11 s, 77 s for TCNN, 149 s for stacked GRU, and 150 s for
stacked LSTM. For the one-layer LSTM model, it takes 220 s for
256 hidden units and 380 s for 370 hidden units. Hence, for this
particular configuration the TCNN model is the fastest among
the models with temporal features, although only by a factor
of two.

Based on the results presented in this section, TCNN is
chosen as our candidate network for prediction and projection
of streamflow. The remainder of this paper now focuses assessing
and explaining the performance of the TCNN.

3.2. Model Stability Under Extreme
Climatological Forcing
One of the biggest challenges for ML projection is concept
drift (also known as non-stationarity). Under climate change,
it is widely accepted that the statistical properties of the input
predictors and output streamflow will change through time.
Although surface temperatures are expected to increase almost
everywhere, in parts of California these increases are also
accompanied by an increase in total precipitation of about 1.2%
per decade (Ullrich et al., 2018). It is further expected that the
input variance will increase in conjunction with more frequent
extreme precipitation and temperature events (Swain et al.,
2018). However, because the TCNNmodel is trained on historical
data, the end-of-century inputs may incur extrapolation, which
has the potential to produce unphysical results such as negative
flow. To test whether the TCNN model is able to produce
physically reasonable results even when inputs are not within the
range of the training data, an idealized test is devised to stress
the model far beyond the long-term range of possible inputs.
Specifically, themodel was executed with quadruple precipitation
and a temperature increase of 5 degrees Celsius from the training
set. Only one simulation was performed for each basin, using the
TCNNmodel with highest NSE value from the ensemble run.

The extreme scenario investigated here is unrealistic even
in light of climate change. However, if the ML model were
not stable, this extreme scenario, far outside the realm of
the training data, should cause the model to “blow up” or
generate negative flow rates. However, if our model can still
produce acceptable results under such an extreme scenario,
we have greater confidence that it will generate reasonable
projection results under the RCP8.5 scenario. Results from a
single representative basin are depicted in Figure 3. Although
only one basin in shown here, the results are analogous in other
basins (not shown). As expected, the projected streamflow is
generally much larger than historical, with much higher flood
peaks. In addition, the high flow period is longer under this test
as a result of precipitation accumulation, and low flow periods
produce consistently higher streamflow. The regression line from
the scatter plot is Qp = 4.001 × Qh (R2 = 0.74), where Qp is
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FIGURE 3 | A depiction of the streamflow response under idealized extreme forcing showing (top) time series of flow and (bottom) historical streamflow vs. projected

streamflow.

projection streamflow and Qh is the historical streamflow. Thus
the 4× increase in precipitation produces approximately a 4×
increase in streamflow. However, this simple linear factor appears
to underestimate flows on the low flow days and overestimate
flows during high flow days, again indicative of nonlinearity in
the streamflow dynamics.

3.3. Model Sensitivity to Input Variables
As discussed earlier, the input variables for our full model are
precipitation, temperature, and solar radiation. Although input
fields beyond precipitation can improve model performance by
capturing significant physical relationships, they also increase
the complexity of the model, potentially leading to a wider
spread among trained models. To test the importance of these
variables for streamflow prediction three reduced models were
compared, consisting of precipitation solely (p), precipitation
and temperature (pt), and precipitation and solar radiation (ps).

When comparing the performance of reduced models and the
full model, the 15-model ensemble was again used to avoid noise
from the initial state.

The overall performance of ps and pt models is again assessed
using box plots of NSE values. Figure 4 shows the result of
the ensemble comparison. It is apparent that for some basins
temperature boosts predictability, while for others solar radiation
is more important. There are only three basins where the best
pst model is better than the best ps or pt model [11264500(SN),
11266500(SN), and 11381500(NC)], and in each of these cases
the improvement with all three variables is modest. In each
basin, the dominant variable does reflect the geographic features
of the basin. Basins where temperature significantly improves
performance are 10343500 (SN), 11264500 (SN), 11266500 (SN),
11451100 (NC), 11522500 (NC), 11176400 (BA), and 11224500
(CC) which include three Sierra Nevada basins, two Northern
California basins, and one Bay Area basin. Basins where solar
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radiation improves performance are 10258500 (SC), 10259000
(SC), 11143000 (CC), 11253310 (CC), 11180500 (BA), 11284400
(SN), and 11475560 (NC)—except for the last two, these are
located in coastal areas or in the inland desert of Southern
California. These results suggest that, to a close approximately,
we can divide the basins into three categories using these reduced
models: those where temperature is important (generally in
mountainous regions), those where solar radiation is important
(generally near coastlines), and those where temperature and
solar radiation offer no significant benefit to predictability.

The physical explanation underlying the performance of
the reduced models is related to the climatological properties
of these different basins. For instance, in the basins of the
Sierra Nevadas and Northern California, accumulation and
melt of wintertime snowpack generally plays an important role
in driving streamflow. However, the inclusion of temperature
in these mountainous regions does not necessarily guarantee
a performance improvement. For instance, temperature does
not improve the model of 11528700 (NC), where snow is
a major driver for streamflow; nonetheless, the inclusion of
temperature also does not significantly degrade performance.
Further, in basins where temperature improves performance we
also generally see that inclusion of solar radiation does provide
some improvement over the models only using precipitation—
this suggests that the ML model is potentially identifying the
relationship between solar radiation and temperature, or is
instead using solar radiation to estimate snow melt rates.

The physical processes driving streamflow in the coastal
basins are significantly different than those of the mountains.
Namely, coastal basins do not experience significant temperature
variations as a result of temperature regulation by the ocean.
Further, because the ocean provides a ready source of moisture,
air remains close to saturation. In accordance with the Penman-
Monteith equation, evaporation from these basins will be driven
primarily by radiative forcing, in agreement with our results.
Among the central coast basins, the one exception that shows
improved performance with temperature, but no significant
improvement from solar radiation is 11224500 (CC). Although
this basin is on the Central Coast, it is far from the coastline
and so subject to larger temperature swings and lower relative
humidity. The relatively high-altitude coastal ranges in this basin
do produce occasional snow accumulation, but it is unlikely that
snow dynamics plays a role here.

For those basins where inclusion of solar radiation and
temperature produce worse model performance (i.e., the three
Southern California basins), we hypothesize that the ML model
is either identifying non-existent physical relationships between
these variables and streamflow in the training data, or that the
increased model complexity is making it more difficult for the
model to converge to an optimal configuration. The truth is
likely a combination of both of these factors, as for all three SC
basins the “best performing” pst model is not significantly worse
than the median p-only model, but is clearly worse than the best
p-only model.

In conclusion, the reduced models explored here are helpful
for giving insight into the processes that are most relevant for
each basin, and thus the relevant causative relationships. Here

snowpack dynamics and coastal meteorology have emerged as
two obvious geographical features important for determining
model behavior. Given this behavior agrees with our physical
understanding of the system, we have further evidence to suggest
that the models are behaving credibly.

3.4. Model Sensitivity to Time Window Size
The input time window size is an important hyperparameter for
our model, and one that is intrinsically connected to the physical
processes driving streamflow. However, a time window that is
too large can reduce model performance and slow training time.
Some past studies set the time window size based on the results
from a purely statistical analysis of autocorrelation or partial
correlation (Yaseen et al., 2016; Peng et al., 2017). In this study,
we estimate the time window size from an understanding of the
physical properties of each region. For streamflow prediction and
projection, the response time for precipitation, groundwater and
snowpack can range from several hours to months, and a proper
time window size should capture all necessary features and avoid
redundant information. The seasonality of the streamflow varies
regionally and depends on the climatic characteristics and the
contribution of snow/ice, and anthropologenic interventions. An
investigation of monthly global steamflow (Dettinger and Diaz,
2000) indicated that lags between the peak precipitation and
peak steamflow peaks up to 11 months, while 0–3 months was
the typical value. In this study we explore 100, 180, and 365
days as different window sizes. The 365-day window corresponds
to an entire water year, and so should capture all potential
physical processes except for long-term withdrawals or variations
in groundwater. The 100-day window captures a typical season
length and the 180-day window is in between these two. Figure 5
shows the ensemble performance results comparing models with
different time window sizes.

What stands out in Figure 5 is the monotonic tendencies
in most basins. There are increasing tendencies with the time
window size for basins 11224500 (CC), 10343500 (SN), 11264500
(SN), and 11266500 (SN), while 11162500 (BA), 11176400
(BA), 11253310 (CC), 11475560 (NC), and 11528700 (NC)
show decreasing tendencies. An increasing tendency implies
the presence of slow processes governing streamflow, whereas
a decreasing tendency implies upstream processes are fast and
there is no significant benefit in using a larger window size. In
fact, we can again classify basins into two categories by their
monotonic tendencies. Similar with the previous interpretation
of different predictors, these results are likely to be related to
physical factors, especially snowpack—particularly because of
its long response time. In general, the basins with increasing
tendencies are in mountainous area like Sierra Nevada and the
Coastal Ranges while basins with decreasing tendencies are in
Northern California, the Bay Area, and the Central Coast, which
are closer to the Pacific. Mountainous areas tend to have more
snowpack due to their higher elevation and thus streamflow
there is more likely influenced by snowpack. For coastal areas,
snowpack does not play a role in streamflow dynamics, and since
the temperature is more stable relative to inland areas, the impact
from snowpack will also be weaker than that in inland basins.
Therefore, snowpack should be the primary factor driving the
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FIGURE 4 | Ensemble prediction comparison for all basins with different reduced TCNN models.

direction of the tendency. Another factor not explored here that
may affect the tendency is the groundwater response time—this
may play a role in central coast basins such as 11143000 (CC)
and 11224500 (CC), which respond positively to increased time
window size.

4. PROJECTED STREAMFLOW

The best models from the ensemble run for each basin are
now employed with remapped and rescaled LOCA data to

produce our projection dataset. As described in section 2.2,
we first apply TempestRemap to obtain mean forcing data for
irregular basins from the gridded LOCA product. Then both
future and historical forcing from LOCA are rescaled (bias
corrected) based on the historical observations before being
used to drive the ML model. Tables S6–S8 show the mean daily
precipitation, temperature and solar radiation from NLDAS and
the four climate models employed. Figures S7–S9 also show the
climatological daily mean of these variables. Generally CanESM2,
CNRMCM5, and HadGEM2ES suggest a future wetter climate
with more precipitation, while MIROC5 tends to produce similar
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FIGURE 5 | Ensemble prediction comparison for all basins with different window sizes.

or less precipitation for these basins. Essentially all the basins are
projected to experience higher daily temperatures, but the change
in solar radiation is small. Figures 6, 7 show climatological
daily streamflow with historical and under the future projection
with RCP8.5 forcing. The daily streamflow projection dataset
produced in this manner is available at Duan et al. (2020) with
the units of millimeters per day. Within the database, each file
has the name as the format of “nnnnnnnn-model-scenario.csv.”
The first eight digits are HUC8 identifiers for each basin, followed
by the climate model name, and then the scenario (either
“hist” or “RCP8.5”).

4.1. Analysis of the Projected Streamflow
Since the historical forcing from different climate models
are corrected to match observations (as discussed in section
2.2), historical streamflow exhibits nearly the same pattern
and magnitude with forcings from different climate models
(Figure 6). Compared with USGS observation, the flows tend
to match fairly well except in a few SC and SN basins,
where a clear magnitude difference at the flow peak emerges.
For 10258500(SC) and 10259200(SC), even with the NLDAS
forcing data the TCNN underestimates the peak, so we can
conclude that the TCNN simply does not identify a relationship
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FIGURE 6 | Historical climatological daily streamflow from USGS and four climate models.

between forcing and streamflow during these high flow events.
Looking at the SN basins, Figure 2 shows that the TCNN
model achieves an NSE score around 0.9 for 11264500(SN)
and 11266500(SN), so in this case the differences are likely
due to differences between the forcing from NLDAS vs. LOCA.
Namely, we can deduce that for these basins the Gaussian bias
correction (2) still produces a forcing which is still somewhat
inconsistent with historical forcing. For 11264500(SN) and
11266500(SN) the primary source of this error appears to be
wintertime and springtime temperatures, which are intimately
connected to precipitation phase and snowpack melt rate;
when the LOCA temperatures and radiation are replaced with
NLDAS temperatures and radiation (while retaining the LOCA
precipitation) the correct streamflow curves are recovered
(Figure S13).

To assess the magnitude of future change, we examine the
projected flow duration curve (FDC) vs. the historical FDC from
the same climate model. Figure 8, Figures S14–S16 show the
projected future and historical FDCs with four different climate
models. When the projected streamflow curve is above the

historical curve, the ML model indicates that higher streamflow
rates become more probable. It is perhaps not surprising that
since precipitation increases across almost all basins, almost
all of the basins show increasing streamflow. The projections
also generally indicate that the peak flow rate will be higher,
potentially indicative of an increased probability of flooding
(although the degree to which this is possible is a subject
for future investigation). Note that the multimodel CMIP5
ensemble does produce some disagreement: For instance, under
the MIROC5 projection, the FDC curves for historical and
projection match closely for the most basins. As noted earlier, the
MIROC5 model is considered the most unlike the other CMIP5
models in this investigation, tending to produce precipitation
amounts that are relatively constant over time.

Although most basins see an increase in flow rate, basins
10343500 (SN), 11264500 (SN), and 11266500 (SN) are notable
exceptions. For these three basins, the future FDC curves
are sometimes below the historical curves (this is even more
obvious with MIROC5 forcing). For basins 11264500 (SN)
and 1266500 (SN) lower flow rates become more probable
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FIGURE 7 | Projection climatological daily streamflow from four climate models.

but the maximum flow rate decreases. These three basins are
all in the Sierra Nevada area—10343500 (SN) in the Tahoe
National Forest and the other two in Yosemite. Examining
Figures 6, 7, these three basins exhibit significant differences
in the character of their flow compared with other basins.
Namely, the climatological streamflow for these basins shows
a peak in late Spring and Summer, while other basins are
peaked in the winter season. Since we have shown earlier
that streamflow in these basins are driven by snow dynamics,
differences in streamflow are likely due to the impact of a
slow snowmelt process. Notably, this is in accord with our
previous discussion in sections 3.3, 3.4, where these basins are
temperature dominant and benefit from longer time window
sizes. These projection results lend further evidence to the
claim that streamflow in these basins is highly dependent
on snowmelt.

The change in the peak flow timing for each basin was also
investigated. The peak time is defined as the day of maximal
flow rate for the year, measured in days since the beginning
of a water year (set to October 1st in our study). Figure 9
shows the peak time for each basin in historical and projection

years with MIROC5 forcing. Peak timing figures with forcings
from other climate models can be found in Figures S17–S19.
Although there is generally no significant change in peak timing
for most basins, the Sierra Nevada basins are again outliers.
Namely, there is a statistically significant shift to earlier peak
times in these snowpack-dominated basins. Although it is not
always the case for all the climate models, the projected lead
of peak time associated with decrease of streamflow in the
future again captures the unique hydrology dynamics in the
Sierra Nevadas.

4.2. Understanding Nonlinearity in the
Projection
To better understand the nonlinearity of the streamflow
response to forcing under climate change, we consider a
decomposition of the response according to its predictors.
Specifically, the impact of precipitation alone on the projected
streamflow can be isolated by holding the temperature and
solar radiation at historical values while using the future
projected precipitation. An analogous approach can then
be employed for temperature and solar radiation. By then
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FIGURE 8 | Flow duration curve with CanESM2 forcing over both historical and future (projection) periods.

subtracting the historical streamflow time series from each of
these streamflow projections, we obtain 1Qp, 1Qt , 1Qs, the
change in streamflow from precipitation alone, temperature
alone, and solar radiation alone. These are contrasted against
1Qpts, which denotes the change in streamflow from all
three factors. From the first-order Taylor series expansion we
then have

1Qpts =1Qp + 1Qt + 1Qs + r

=1Qlinear + r
(7)

for some residual r that captures the influence of high-order
terms. The linear response is defined as summation of three

individual responses. To reduce noise from daily variations
in streamflow, the monthly averaged streamflow is used for
comparison. In Figure 10, we plot 1Qpts vs. 1Qlinear , with the
R2 value in the title. A fully linear response would be expected to
lay along the y = x line.

As seen in Figure 10, almost all basins show a nearly linear
response to the input variables, except for basin 10343500(SN),
11264500 (SN), and 11266400(SN)—all in the Sierra Nevada
mountains. From our discussion in sections 3.3, 3.4, these SN
basins are temperature dominated and require a longer time
window size to correctly capture streamflow, indicating the
interplay between precipitation and temperature in governing
snow processes.
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FIGURE 9 | Day of peak flow for each basin with MIROC5 forcing.

5. CONCLUSIONS AND FUTURE WORK

In this study, we have designed and analyzed a general temporal
convolutional neural network for streamflow projection in
California. Causal convolution is used to maintain physical
causation. The input consists of precipitation, temperature, and
solar radiation over a particular past window size. In prediction
mode, the TCNNmodel is compared with other commonly used
ML models based on ensemble performance so as to eliminate
random effects from initializing the training. The results of this
intercomparison indicate there are some important temporal
features that ANNs struggle to capture, in contrast to TCNNs and

other recurrent neural networks (LSTMs and GRUs). Compared
with other recurrent networks, the TCNN model is faster and
more stable under training. Overall, the TCNN produces better
agreement both on average and in the high-flow regime, whereas
the LSTM was better in the low-flow regime. Like these other
networks, the TCNN model can also be generalized to other
basins while maintaining the same architecture.

To demonstrate model stability under extreme forcing,
an idealized test with quadruple precipitation and 5 Celsius
higher temperature is implemented to verify whether the model
produces reasonable results when tested with data outside the
training regime. A qualitative analysis and linear regression of
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FIGURE 10 | Full response and linear response for all basins with CanESM2 forcing.

projected streamflow against historical precipitation suggests our
model produces physically acceptable results for projection.

We have also observed that the TCNN model can
build different functional relationships for different basins,
as demonstrated through the examination of reduced
models, models with different time window sizes, and the
nonlinear response of the model to input variables. With
this understanding of the “under the hood” workings of
the ML model, we can distinguish different geographic
features across basins. This classification ability suggests
our model can simulate physical processes with causal
convolution as a constraint. In regions where snowpack is
relevant, we conclude that temperature should be included
as a model covariate; whereas in coastal regions, solar

radiation should be included. Including both variables was
not observed to significantly improve model performance
in any basin. Also, in regions where snowpack is relevant, a
longer time window size is desirable for model performance
(here we tested a 365-day window), whereas in other
regions a shorter time window of 100-days produced
better results.

Under the RCP8.5 scenario, the nonlinearity of the streamflow
response was examined by decomposing the response into
three modes by the predictors. By inspecting the linear
response and full response, we observed that most basins
exhibit a linear response from precipitation, temperature,
and solar radiation, except for the basins in Sierra Nevada.
The nonlinearity is likely associated with snowpack, which
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is a physical feature that is sensitive to both precipitation
and temperature.

Model results for future projections and historical hindcasts
were compared to understand the changing character of the
streamflow. Generally streamflow in most basins increases
through the end of the century, except for the Sierra Nevada
basins. Peak flow time remained statistically indistinguishable
among most basins, except the Sierra Nevada basins which
showed a shift to earlier dates under some models. These
results further indicate that the snow dynamics in the Sierra
Nevada is important for correctly capturing streamflow in
these basins.

The idealized test here mainly deals with the problem
of model stability under extrapolation. In terms of ensuring
the model produces physically plausible results under extreme
forcings, we need to compare with a physically based model
with the same extreme forcing. This problem has been saved
for our future work. Also, to better understand the ML model
and ensure its credibility for producing future projections,
we intend to next cross-validate our projection datasets with
a physically-based model over the same time period. Model
credibility can also be enhanced through alternative designs
that explicitly include physically-based conservation laws. For
instance, subsurface flow or evaporation are not produced as
outputs, and so validation of the water budget is impossible.
With a more complicated design, ML models could predict
streamflow, evaporation and groundwater, and be constrained
via an appropriate physically-based conservation law. Such
constraints would further enable physical interpretation of the
model results. Finally, we wish to determine if the TCNN
can be used to interpolate predictors to higher temporal
resolution, for use (for instance) in physically-based models.
The ML model could also be used to examine model
performance when the strict causation is relaxed (namely,
if future streamflow could provide a better estimate of
present streamflow).
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