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Multi-source precipitation merging has been used for improving global precipitation

estimation accuracy. However, current merging techniques heavily rely on gauge-

based precipitation and/or streamflow observations, which may contain substantial

uncertainties over data-poor regions. This study provides a triple collocation (TC)

based framework for merging multi-source precipitation products without the access

of high-quality ground observations. In this framework, the error variances of the

precipitation products are statistically estimated using TC, which are further employed

in parameterizing a least-square-based precipitation merging framework. As validated

against high-quality gauge observations collected over Europe, we demonstrate that

TC can accurately estimate the relative errors of different precipitation products,

which leads to robust multi-source precipitation merging. Results also demonstrate

that the TC merged product significantly outperforms the parent products, which is

noteworthy—given the strong skills of the reanalyzed (ERA-Interim) precipitation product

over Europe. Since TC analysis does not rely on high-quality gauge observations, the

proposed TC-based merging framework can be applied globally, and is expected to

significantly contribute precipitation data merging over data-poor regions, e.g., Africa

and South America.

Keywords: precipitation merging, error estimation, triple collocation, least square, detection skills

1. INTRODUCTION

Precipitation is the key driving force of global hydrological cycle (Eltahir and Bras, 1996). Remotely
sensed (RS) and reanalyzed global precipitation products are increasing available (e.g., Huffman
et al., 1997; Dee et al., 2011; Ashouri et al., 2015; Funk et al., 2015), whichmay improve hydrological
modeling accuracy over data-poor regions. However, inter-comparison studies suggest substantial
inconsistency between different precipitation products, which is related to their input and model
structural errors (Sun et al., 2018). Consequently, an optimal precipitation product may be achieved
by merging all available precipitation products.

Statistically, the optimal merge of different precipitation products requires their error
information, e.g., highly accurate products should receive larger weights during merging, and vice
versa. The relative weights of different precipitation products are typically calculated using rain
gauges and spatially interpolated to unobserved locations (e.g., Shrestha et al., 2011; Funk et al.,
2015; Golian et al., 2015; Beck et al., 2019). The gauge-based approach ignores the uncertainty of
rain gauges or precipitation networks (Villarini et al., 2008). As demonstrated in Dong and Crow
(2018), observation errors can strongly bias the in-situ-based error metrics. As a result, spatially
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interpolating precipitation error statistics may contain
substantial uncertainties over data-poor regions, e.g., Africa and
South America (Chen et al., 2008).

Alternatively, precipitation products can be merged using a
rainfall-runoff modeling framework (e.g., Chiang et al., 2007;
Gebregiorgis and Hossain, 2011; Jiang et al., 2014; Hazra
et al., 2019). In these studies, multi-source precipitation data
are merged using randomly generated weights. The merged
precipitation that leads to the most accurate streamflow estimates
are considered as the optimally merged precipitation product.
Although this hydrological modeling based approach does
not rely on high-quality precipitation references, it is affected
by hydrological model parameter and structural uncertainties
(Beven and Binley, 1992; Renard et al., 2010; Crow et al., 2018).
Additionally, this approach is limited to regions with high-quality
streamflow observations.

Recently, triple collocation (TC) analysis (Stoffelen, 1998)
has been proposed to estimate precipitation error without the
reliance of gauge observations (Alemohammad et al., 2015;
Massari et al., 2017; Li et al., 2018). Based on three noisy but
independent measurements of a variable, TC analysis can solve
for their error statistics using a set of linear equations. The
robustness and the accuracy of TC in precipitation error analysis
has been verified using high-density precipitation networks (e.g.,
Massari et al., 2017; Li et al., 2018; Dong et al., 2019b). These
findings suggest that TC is ideal for precipitation merging—
given accurate precipitation errors can be estimated globally
without any access of high-quality in-situ observations. However,
TC-based statistical tools have not been considered for current
precipitation merging analyses.

This study aims to provide a framework that can optimally
and objectively merge multi-source precipitation products using
TC-based precipitation error information. The merged product
is evaluated using spatially intensive gauge networks collected
over Europe. The relative accuracy gain of the proposed
merging framework is also demonstrated using independent
gauge observations.

2. MATERIALS AND METHODS

2.1. Precipitation Data
As mentioned above, TC analysis requires three independent
precipitation products. Most of precipitation products
use ground-based observations for correcting systematic
errors. Therefore, it is challenging to obtain three strictly
independent precipitation products. Nonetheless, previous
studies demonstrate that soil moisture inverted, remotely sensed
and model estimated precipitation products contain relatively
independent precipitation errors, and can be used for TC analysis
(Massari et al., 2017; Dong et al., 2019b). Therefore, precipitation
products collected from these three categories were used for this
study. The independency assumption was also revisited in the
results section.

Based on land surface water balance, the SM2Rain
precipitation product (Brocca et al., 2014, 2015) inverses the daily
precipitation information from the Advanced Scatterometer
(ASCAT) soil moisture retrievals (Wagner et al., 1999). In this
study, we used the 0.25-degree daily SM2Rain product acquired

from http://hydrology.irpi.cnr.it/download-area/sm2rain-
data-sets/, which is available from 2007 to 2015 (denoted as
“SM2Rain”). A detailed description of the SM2Rain algorithm
can be found in Brocca et al. (2017).

The Remotely Sensed Information using Artificial Neural
Networks for Climate Data Record (PERSIANN-CDR, denoted
as “PER,” Ashouri et al., 2015) product was used as the second
independent precipitation in the TC analysis. In PER, daily
precipitation information is estimated using RS infrared data
and artificial neural networks (ANN), with a spatial resolution of
0.25 degree. The climatology of the PER estimates are adjusted
by the 2.5 degree monthly precipitation product from Global
Precipitation Climatology Project (GPCP) product.

The daily reanalyzed ERA-Interim product (denoted as
“ERA”; Dee et al., 2011) acquired from European Center
for Medium-Range Weather Forecasts (ECMWF) was used
as the third independent product for TC analysis. This 0.5
degree precipitation product is produced based on numerical
weather modeling, and hence, relatively independent with both
ground- and RS-based precipitation. The ERA product was
resampled onto 0.25 degree spatial grids using nearest neighbor
method (Beck et al., 2019).

The latest (version 19.0e), ground-based, daily, EOBS
precipitation (Cornes et al., 2018) was used for evaluating the
skills of the original and the merged product (https://www.ecad.
eu/download/ensembles/download.php). This EOBS dataset was
developed by statistically interpolating ∼15,000 ground rain
gauges over the Europe (Figure 1).

As mentioned above, the key goal of this study is to
provide a statistical framework that can optimally merge
multi-source precipitation products. Hence, our conclusions
are qualitatively insensitive to the choice of the precipitation
products—provided the TC assumptions are satisfied. However,
for cases that are interested in generating the state-of-the-art
precipitation estimates, parent products with latest versions
should be considered.

2.2. Triple Collocation Analysis
In TC analysis, the error variance of a geophysical variable can
be estimated using three noisy but independent measurements.
It should be noted that TC is most robust for anomaly error
characterization. This is because the climatology (mean seasonal
cycle) of a geophysical product contains limited degree of
freedom, and hence, climatology errors of different products can
be cross-correlated and violate the TC assumption (Draper et al.,
2013). Therefore, the goal of TC-based merging is to suppress the
precipitation anomaly, instead of climatology, errors.

For a given grid cell, TC relates the zero-mean precipitation
anomaly of a product (x) and the true signal (p) using a linear
additive error model:

x = αxp+ ǫx (1)

where ǫx is the random precipitation anomaly error (Dong and
Crow, 2018), with analogous equations for product y and z.

In the difference notation of TC analysis, one product is taken
as a reference, and the other two products are scaled to this
reference product to remove the dynamic range differences of
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FIGURE 1 | Spatial distribution of rain gauges used in EOBS.

different products (Draper et al., 2013). For example, taking x as
a reference, the original products are scaled as:

x∗ = x (2)

y∗ =
ax

ay
y (3)

z∗ =
ax

az
z (4)

where x∗, y∗, and z∗ are the scaled precipitation anomalies.
Assuming the errors of the three products are mutually
independent and orthogonal to the truth, the ratios of the scaling
parameters can be estimated as (Draper et al., 2013):

ax

ay
=

xTz

yTz
(5)

ax

az
=

xTy

zTy
(6)

After scaling, the error variances of the scaled products can be
estimated as:

e∗x =

〈

(

x∗ − y∗
)T (

x∗ − z∗
)

〉

(7)

e∗y =

〈

(

y∗ − x∗
)T (

y∗ − z∗
)

〉

(8)

e∗z =

〈

(

z∗ − x∗
)T (

z∗ − y∗
)

〉

(9)

where 〈.〉 represents the temporal average.
In addition to the error variances, TC can also estimate the

product-truth correlation (i.e., the Pearson correlation coefficient
between x and p), which is a widely used metric for precipitation
accuracy evaluation:

Rx =

√

Cx∗y∗

Cx∗x∗
(10)

where Rx is TC-estimated Pearson correlation coefficient
between x∗ and the true precipitation anomalies. The
product-truth correlations of y and z can be estimated using
analogous equations.

2.3. Precipitation Merging
As mentioned above, the proposed merging procedure is to
suppress the precipitation anomaly errors, which is done by
weighted averaging the scaled precipitation anomalies (i.e., x∗, y∗,
and z∗). Based on the TC estimates, a least-square-based optimal
merging can be formulated as:

m∗ = x∗wx + y∗wy + z∗wz (11)

where m∗ is the merged precipitation anomaly, and wx, wy, and
wz are the weights of the three products in precipitation merging.
Following Yilmaz et al. (2012), the least-square solutions of the
merging weights are calculated as:

wx =
e∗ye

∗
z

e∗xe
∗
y + e∗ye

∗
z + e∗xe

∗
z

(12)

wy =
e∗xe

∗
z

e∗xe
∗
y + e∗ye

∗
z + e∗xe

∗
z

(13)

wz =
e∗xe

∗
y

e∗xe
∗
y + e∗ye

∗
z + e∗xe

∗
z

(14)

After adding a reference climatology to m∗, the multi-source
merged precipitation time series was achieved (denoted as M1).
The GPCP climatology was typically used as the reference
climatology. However, to ensure our results are independent with
gauge observations during the product validation step, we used
ERA climatology as the reference climatology for simplicity.

Note that such merging procedure may falsely increase
the precipitation occurrence. Hence, a second merged product
(denoted as M2) was generated by removing precipitation events
on days that reference precipitation is below the rain/no-rain
threshold (taken as 1 mm/day in this study) from M1. Likewise,
gauge-based rain/no-rain estimates were commonly used as the
reference (Beck et al., 2019). However, to avoid any potential
dependency of the merged and EOBS precipitation during
validation, we used ERA dataset as the rain/no-rain reference in
this study.

2.4. Gauge-Based Precipitation Evaluation
We first evaluated the accuracy of different products using their
Pearson correlation coefficient with gauge-based EOBS data. The
correlation metric directly reflects the overall accuracy of the
precipitation products, which decreases with increased (total)
error of a product.

The skill of a precipitation dataset in capturing the extreme
events is crucial for hydrological applications. Hence, the biases
of different products at the 85th and 95th EOBS observed
precipitation percentiles were also considered.

Finally, widely used rain/no-rain detection metrics were used
to evaluate the rain/no-rain detection skills of the merged
product. The rain/no-rain consistency of a product and gauge-
based precipitation time series are defined in Table 1. Based on
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TABLE 1 | Contingency table for comparing the rain/no-rain detected by

precipitation gauge and products.

EOBS ≥ threshold EOBS < threshold

Product ≥ threshold A B

Product < threshold C D

The rain/no-rain threshold value is 1 mm/day.

these consistency estimates, the fraction of actual rainfall events
captured by a product can be estimated using the probability of
detection (POD):

POD =
A

A+ C
. (15)

The tendency of a product for falsely reporting the precipitation
events is captured by false-alarm-ratio (FAR):

FAR =
B

A+ B
. (16)

Finally, the overall detection skill relative random binary
sequences was measured using Heidke skill score (HSS):

HSS =
2(AD− BC)

(A+ C)(C + D)+ (A+ B)(B+ D)
. (17)

3. RESULTS

3.1. Evaluation of TC Analysis
As shown above, different precipitation anomalies are merged
according to their error statistics. Therefore, this section
evaluates the accuracy and the robustness of the TC-based
error estimates. According to the TC results, ERA has the
highest product-truth correlation, relative to SM2Rain and
PER (Figures 2a–c). Compared with ERA, SM2Rain and PER
show stronger spatial variability in the precipitation accuracy.
For instance, both SM2Rain and PER show the tendency
of decreased precipitation estimation accuracy with increased
latitude. In contrast, the accuracy of ERA is relatively spatially
homogeneous. As expected, the precipitation anomaly error
variance is reversely correlated with product-truth correlation.
Hence, the precipitation anomaly errors (Figures 2d–f) provide
same relative performance estimates of these three products. The
relative accuracy of the three products is generally consistent with
the amount of information being ingested in their precipitation
estimation. For instance, SM2Rain mainly relies on ASCAT
soil moisture retrievals. In contrast, ERA and PER use multi-
source remote sensing and ground observations to constrain their
precipitation estimates.

Figure 3 provides gauge-based (EOBS estimated) ERA,
SM2Rain and PER product-truth correlation, which is used for
evaluating the TC results shown in Figure 2. As shown in section
2.2, the variance of the precipitation error is complicated by
its dynamic range differences (i.e., the α values), which cannot
be independently estimated using only gauge data. Hence, only
product-truth correlation results are considered in Figure 3.

Relative to TC estimates, EOBS-based ERA skills contain
significantly higher spatial variability—comparing Figures 2a,
3a. Additionally, EOBS-based product-truth correlation is
generally lower than TC estimates, particularly over regions that
rain gauge density is relatively sparse (see Figure 1). Similar
spatial differences of TC and EOBS estimates are also shown in
the SM2Rain and PER results (Figures 3b,c).

These findings are entirely consistent with the analytical
error propagation analysis shown in Dong and Crow (2018).
They demonstrate that random errors typically bias product-
truth correlation estimates low. Such random error impacts are
implicitly handled in TC, but not considered in EOBS results.
Hence, the inconsistency of TC and EOBS results are likely
attributable to the spatial variability of EOBS accuracy due
to its rain gauge density distribution (Figure 1). Additionally,
the mutual consistency of TC and EOBS results is also
partly determined by the spatial variability of the product-
truth correlations. For instance, the product-truth correlation
of ERA contains limited spatial variability (Figure 2a). As
a result, any EOBS observation error will strongly affect
the spatial distribution of product-truth correlation estimates,
and by extension, the consistency between TC and EOBS
results. In contrast, SM2Rain has strong spatial variability in
product-truth correlation. Consequently, its spatial distribution
is relatively less sensitive to the EOBS observation error
impacts. Despite the unavoidable EOBS error impacts, the
general consistency between TC- and EOBS-based product-truth
correlation estimates is demonstrated (Figures 3d–f).

3.2. The Added Value of TC-Based
Precipitation Merging
Based on the precipitation error estimated using TC
(Figures 2d–f), we merged all the original precipitation
anomalies using Equation (11). The reference precipitation
climatology (ERA climatology in this case) was then added to the
merged anomalies to achieve the merged precipitation product
(M1). We also set M1 precipitation to the rain/no-rain threshold
(1 mm/day) on days that ERA is below this threshold, which
leads to the M2 product. Generally, M1 andM2 have very similar
correlations with EOBS (Table 2). This suggests that the removal
of false precipitation events in M2 has negligible impacts on the
overall correlation metric (Table 2).

Relative to the best parent product (i.e., ERA in this case),
both M1 and M2 demonstrate significantly (paired t-test, at p =

0.05 confidence level, Table 2) improved correlations with EOBS.
Given the strong skills of ERA in precipitation estimation over
Europe, such accuracy gain is noteworthy.

It is known that capturing the extreme precipitation events
is a challenge for remote-sensing and reanalyzed products.
Figure 4 compares the biases of different products at the 85th and
95th percentiles of EOBS observations. SM2Rain demonstrates
largest dry biases for the extreme precipitations (Figures 4c,d).
SM2Rain estimates precipitation by inverting soil moisture
retrievals. Consequently, it is insensitive to precipitation when
surface soil is saturated. Therefore, SM2Rain has largest dry bias
for extreme events, compared to other products. On average,
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FIGURE 2 | TC estimated product-truth correlation (R, first row) and standard deviation of precipitation error (E, mm/day, second row) of ERA (a,d), SM2Rain (b,e),

and PER (c,f) precipitation anomalies.

FIGURE 3 | EOBS-based product-truth correlation of ERA, SM2Rain, and PER (a–c). The comparison of EOBS- and TC-based product-truth correlation estimates

are shown in (d–f). Colors in (d–f) denotes the number of data points within a 0.05 [-] × 0.05 [-] grid.

TABLE 2 | The EOBS evaluated product-truth correlations of TC-merged and

ERA precipitation products.

Product Median 5th percentile 95th percentile

M1 0.71 0.41 0.80

M2 0.71 0.42 0.80

ERA 0.68 0.40 0.77

Reported values are the median, 5th and 95th percentile of product-truth correlations

sampled from the entire study region.

the dry bias of M2 for extreme events has similar spatial
patterns with ERA and PER. This is expected, since all the
original products are biased low for extreme events, and

least-squared based merging is not designed for adjusting such
conditional biases.

3.3. Detection Errors of TC-Based Merging
Relative to M2, the POD of M1 is averagely 10% higher—
suggesting M1 is more accurate in detecting the occurrence of
precipitation events (Figures 5a,b). However, the FAR of M1 is
approximately twice as high as M1 (Figures 5c,d). As a result,
the overall detection score (HSS) of M1 is 0.2 to 0.3 [-] lower
than M2.

Figure 6 further investigates the differences of M1 and
M2 detection skills. As shown in Figure 6, the percentage
of rain days observed by EOBS is generally below 40%.
However, the rain-day percentage of M1 is 30–40% higher
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FIGURE 4 | The biases of ERA (a,b), SM2Rain (c,d), PER (e,f), and M2 (g,h) at 85 and 95th percentile of EOBS precipitation observation.

than EOBS. Therefore, M1 has a higher POD due to the
strong positive bias in precipitation occurrence detection.
After removing the false precipitation events from M1
using ERA, M2 shows more realistic rain-day percentages
(Figure 6c), which leads to improved precipitation detection
skills (Figure 5f).

4. DISCUSSIONS AND CONCLUSION

Optimal multi-source precipitation merging requires their error
statistics, which are typically calculated using gauge data
(e.g., Beck et al., 2019). However, gauge observation errors
tend to bias the error statistics of different products (Dong
and Crow, 2018; Dong et al., 2019b) and lead to sub-
optimally merged precipitation datasets. The impacts of gauge
observation error increase with decreased gauge density, and
hence, the traditional merging techniques are expected to contain
substantial uncertainties over data-poor regions, e.g., Africa and
South America (Dong et al., 2019a).

To address this issue, this study proposed to use TC analysis
for precipitation error estimation and data merging. In TC
analysis, precipitation error statistics were estimated using three

noisy but independent products, without any reliance on high-
quality reference precipitation datasets. These TC-based error
estimates were then used for parameterizing a least-square
framework, which can statistically minimize the precipitation
anomaly errors.

Based on the high-density gauge-based precipitation
observations (EOBS), we first evaluated the TC-based
precipitation error estimates. It is known that the observation
errors of EOBS will unavoidably degrade the mutual
consistency of TC- and EOBS-based precipitation error
statistics. Nonetheless, a general consistency between TC- and
EOBS-based evaluation results was still demonstrated. The
TC-based precipitation merging also constantly outperformed
the best parent product, i.e., ERA in this case. Note that ERA
is known to have strong skills in precipitation estimation over
Europe (Massari et al., 2017), and strongly outperforms other RS
precipitation products (Figures 2, 3). Hence, any improvement
relative to ERA is noteworthy.

However, a caveat of TC-based merging should be

acknowledged. This type of merging is sensitive to false
precipitation events of the original products. Consequently, the
merged product is likely to contain relative high false alarm
ratio (FAR)—see the M1 detection skills in Figure 5. However,
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FIGURE 5 | The detection skills of the merged products (a,b: POD; c,d: FAR; e,f: HSS). The left and right column represent merged precipitation without and with

ERA-based false precipitation removal, respectively.

FIGURE 6 | Percentage of rain days estimated using EOBS (a), M1 (b), and M2 (c) dataset.

we demonstrated that this issue can be easily addressed by
removing false precipitation events using a reference product.
As mentioned above, to ensure the independency of merged
and gauge-based precipitation during validation, ERA was
used for removing false rainfall events. At the global scale,
gauge observations can be used for more accurate rain/no-rain
determination (Beck et al., 2019).

It should be noted that the proposed TC-based merging
framework is statistically optimal for independent products.
However, it can be easily extended to optimally merge cross-
correlated precipitation products. As demonstrated in Gruber
et al. (2016), quadruple collocation (QC) can simultaneously
estimate the error variance and inter-product error covariance of
the input products. Based on these error statistics, the optimal
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weights of each product can be solved in analogous to Equations
(12) to (14). Such QC-based merging may further benefit current
multi-source precipitation framework for optimally combining
independent and cross-correlated precipitation products (e.g.,
Beck et al., 2017, 2019).
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