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Concepts of spatial navigation rest on the idea of landmarks, which are immobile
features or objects in the environment. However, behaviorally relevant objects or
fellow humans are often mobile. This raises the question of how the presence of
human agents influences spatial exploration and knowledge acquisition. Here, we
investigate exploration and performance in subsequent spatial tasks within a
virtual environment containing numerous human avatars. In the exploration
phase, agents had a locally limited effect on navigation. They prompted
participants to revisit locations with agents during their initial exploration
without significantly altering overall exploration patterns or the extent of the
area covered. However, agents and buildings competed for visual attention.
When spatial recall was tested, pointing accuracy toward buildings improved
when participants directed their attention to the buildings and nearby agents. In
contrast, pointing accuracy for agents showed weaker performance and did not
benefit from visual attention directed toward the adjacent building. Contextual
agents and incongruent agent-environment pairings further enhanced pointing
accuracy, revealing that violations of expectations by agents can significantly
shape navigational knowledge acquisition. Overall, agents influenced spatial
exploration by directing attention locally, with the interaction between agent
salience and environmental features playing a key role in shaping navigational
knowledge acquisition.

KEYWORDS

spatial navigation, human agents, virtual reality, exploration-exploitation, social
facilitation

1 Introduction

Spatial navigation is essential for goal-oriented movement and active environmental
interaction (Epstein et al., 2017; Ito et al., 2015). In humans, regular engagement in spatial
navigation, whether studied through navigation done in the context of professional
activities (Griesbauer et al., 2022; Maguire et al., 2006; Woollett and Maguire, 2011),
targeted training (Choi et al., 2012), or virtual environments (West et al., 2017), is related to
the enhancement of cognitive functions, particularly memory and spatial awareness. This
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intricate link between spatial navigation and cognitive processes
highlights the crucial role of spatial navigation in developing and
organizing spatial knowledge.

The transformation of navigational experiences into spatial
knowledge begins with recognizing key environmental elements,
followed by their gradual integration into a cohesive reference
system (Ekstrom and Isham, 2017). When individuals explore
new surroundings freely, they can identify elements that aid their
orientation and harness them as building blocks for knowledge
construction, such as remembering shops when visiting a new town.
This process, known as landmark identification, is essential for
maintaining positional awareness and planning future pathways
(Janzen et al., 2006). Spatial knowledge encompasses recognizing
and recalling critical elements of the landscape, understanding their
spatial relationships, and the routes connecting them.

Despite extensive research on the role of static landmarks in
spatial cognition (Malanchini et al., 2020), the dynamic human
aspects influencing spatial exploration and knowledge acquisition
have yet to be fully explored. Often, humans are viewed primarily as
modifiers of navigational paths rather than as active contributors to
spatial knowledge acquisition (Bicanski and Burgess, 2020; Ekstrom
and Isham, 2017). This perspective overlooks the significant role
other individuals play in real-world spatial cognition. Encounters
with others can impact pedestrian dynamics (Dalton et al., 2019),
influence visual exploration (Gert et al., 2020), provide vital
information about the safety and usability of spaces (Bajorunaite
et al., 2022), affect the recall of locations (Kuehn et al., 2018), and
prompt a parallel social mapping of the environment (Schafer and
Schiller, 2018). Thus, incorporating other humans into navigation
research is essential for a deeper understanding of spatial cognition.

However, studying the influence of fellow humans on concrete
spatial knowledge faces the difficulties of maintaining a navigation
scenario of real-world scale in controlled environments. When
available, researchers often conduct retrospective studies using
real-world data, such as mobile phone and GPS data, which can
characterize human mobility patterns but lack the controlled
variables necessary for isolating specific factors mediating the
results (Pappalardo et al., 2015; Schläpfer et al., 2021). Moreover,
these studies do not link exploration patterns to the future
acquisition of spatial knowledge, hindering a comprehensive
understanding of cognitive processes derived from navigation
patterns. When moving to the other side of the spectrum,
laboratory setups tend to be bound to small-scale environments
and simplified tasks that lack the challenge of spatial scales of the real
world (Wiener et al., 2020). Participants are asked to use humans as
anchors inside a maze-like virtual reality (VR) or as landmarks in
visual flow experiments (Kuehn et al., 2018). Dalton et al. (2019)
point out that VR technologies in wayfinding research often exclude
the presence of others, thereby underestimating their importance.
They suggest that the mere presence of others (i.e., weak social cues),
even without active interaction, can help infer the importance of a
space within its environment, and actively call for more studies to be
done in this realm of research. Hence, it is acknowledged that
examining how the mere presence of others might impact
navigation and knowledge acquisition when humans are not
primary targets is essential but remains unstudied.

With this work, we raise the question of whether spatially
relevant information can be extracted from observing other

humans in the space around us. It is important to note that
humans do not inherently serve as fixed landmarks in natural
navigation, primarily due to their mobility, preventing them from
forming intrinsic associations with specific places. However, rather
than considering other humans as reliable reference points, we
explore the notion that their relevance within a given context can
be harnessed as a source of information to enhance spatial
knowledge. Essentially, it is not the presence of others per se that
aids in spatial cognition but rather how they interact with the
elements in their surroundings that could be relevant for spatial
exploration and knowledge acquisition. This prompts us to
investigate what minimal change in a human agent’s interaction
with the environment can elicit participants’ different behavioral
responses. We seek to understand whether these human elements
act as distractions, potentially diminishing the saliency of the
surrounding stimuli, or if, conversely, they contribute to
improved performance by anchoring individuals to a more vivid
mental representation of specific locations.

To address this complexity, we investigated how spatial knowledge
acquisition developed in a controlled one-square-kilometer VR
environment with human agents. The study incorporated human
agents at two levels: one in which the agent interacted with the
environment by holding an object relevant to the context, such as a
toolbox in front of a hardware store (i.e., Contextual agent), and
another in which the agent simply stood without interacting with any
objects around it (i.e., Acontextual agent). These agents were placed in
front of public buildings, such as stores, basketball courts, restaurants,
or residential buildings. For our first group of participants, all
contextual agents were placed in front of public buildings that
matched their object interaction. For the second group, we
disrupted this congruency to study the sole influence of the type of
agent and their building on the context in which they are situated,
under the hypothesis that having context-congruent agents will
enhance the participant’s ability to recall. Specifically, we propose
three hypotheses: 1) the Visit Hypothesis, which states that contextual
agents will influence participants’ exploration patterns by drawing
them back to previously visited locations; 2) the Dwell Hypothesis,
which posits that participants will allocate more visual attention to
contextually congruent agents compared to acontextual ones; and 3)
the Performance Hypothesis, which suggests that this increased
engagement will lead to improved performance in spatial
knowledge tasks, such as pointing accuracy. The aim of our study
is to explore the role of these human agents and their congruency with
context in spatial exploration and the development of
spatial knowledge.

2 Results

We examined the impact of human agents on spatial navigation
and knowledge acquisition in a virtual city named Westbrook,
consisting of 236 buildings. We identified 26 public buildings
(e.g., shops, basketball court) and 26 residential buildings as task-
relevant, marking them with street art. Additionally, there were
180 buildings without graffiti and four large buildings on the city’s
outskirts, which could serve as global landmarks given their
dimensions. We designed two categories of human agents:
contextual agents, who performed context-relevant actions (e.g.,
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holding a toolbox in front of a hardware store), and acontextual agents,
who held a resting position without interacting with objects. In the first
experiment, contextual agents were placed in public areas, displaying
actions congruent with the buildings, while acontextual agents were
positioned in front of residential buildings without interaction. In the
second experiment, both agent types were split evenly across public and
residential areas, disrupting the congruent pairs. Participants in both
experiments completed five 30-min exploration sessions, totaling
150 min. Additionally, to provide a baseline for comparison of the
exploration strategies, we used the control group from Schmidt et al.
(2023) who explored the same VR city (Westbrook) with the same
session lengths and numbers but no agents present. We investigated the
exploration phase by analyzing participants’ navigational coverage of the
city, their walking strategies, agent-induced bias in their exploration, and
their visual behavior during exploration. Finally, we tested their spatial
knowledge acquisition in a separate session using VR pointing tasks.

To establish comparability in spatial orientation abilities
between the participants of the experiments (experiment 1,
experiment 2, and control), participants completed the FRS
(Fragebogen Räumlicher Strategien) questionnaire, and their
scores were contrasted. There were no significant differences
between the groups at baseline on any of the three subscales
(global, survey, and cardinal), χ2(2, N � 67)≤ 1.68, p≥ 0.43.
Therefore, the groups were comparable in their assessment of
their use of spatial strategies before the start of the experiments.

2.1 Assessment of the exploration phase

During the VR city experiment, we tracked participants’
exploration, including walking behavior, navigational coverage,
decision-point strategies, and visual behavior. This

FIGURE 1
Free exploration of Westbrook (a) Presents a heatmap that visualizes the spatial navigation data of all participants across the exploration phase. It
compiles movement across all sessions, with participant locations discretized to the nearest centimeter and averaged on a second-by-second basis after
removing the initial 2 s of each recording. We fitted a heatmap grid approximating a 1-cm resolution and created a color scale ranging from 0 to 10 visits,
highlighting areas of varied exploration intensity (b) ShowsWestbrook from above, overlaid with a graph structure we used to formalize navigational
data as decision units (c) Quantifies exploration through a map coverage ratio, calculated by dividing the number of unique nodes visited by the total
nodes in the city (d) Compiles these ratios on a cumulative basis, reflecting the participants’ expanding discovery of the city over time.
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comprehensive analysis revealed their navigational strategies and
engagement, highlighting the agents’ impact on their exploration.

2.1.1 Navigational coverage of the city
We quantified participants’ walking behavior in the virtual city

using a primal city graph (Neal, 2013) to analyze participants’ free
exploration patterns. In this graph, decision points (i.e., intersections
of walkable paths) were represented as nodes and paths connecting
them as edges. Participants’ navigational coordinates (see Figure 1a)
were assigned to the nearest graph element (see Figure 1b), defining
their exploration as movements from one graph element to another.
Out of 159 nodes, participants visited between 45 and 113 unique
nodes during each 30-min session (M = 87.06, SD = 16.49). We
calculated the coverage ratio by dividing the number of nodes visited
at least once by the total number of nodes.

To account for repeated measures, we implemented a linear
mixed-effects model (LMM) that considered intrasubject variability
and generated individual intercepts for each participant. This model
predicted the individual session coverage ratio as a function of the
session, the experimental group (control versus city with agents),
and their interaction. Using the first session as a baseline, we
observed significant cumulative increases in navigational coverage
with each subsequent session. Starting from an individual coverage
of roughly half the city (as shown by the mean of the blue curves in
Figures 1c, d), the LMM analysis explained a substantial portion of
the variance in navigational coverage, with marginal R2

m � 0.18
(variance explained by fixed effects) and conditional R2

c � 0.70
(variance explained by both fixed and random effects),
emphasizing the role of session-based learning while accounting
for individual differences. The coefficients indicate changes relative
to session 1(η2p � .40), with positive values signifying an increase:
βSession 2 � 0.03 (SE = 0.01, t � 2.48, p � 0.01), βSession 3 � 0.07 (SE =
0.01, t � 6.54, p< .001), βSession 4 � 0.09 (SE = 0.01, t � 8.53,
p< .001), and βSession 5 � 0.12 (SE = 0.01, t � 11.49, p< .001).

The effect of the experiment group (agents versus control) on the
coverage ratio was not statistically significant (βExperiment � −0.02,
SE = 0.02, t � −0.72, p � 0.48). Additionally, interactions between
the session and experiment group were also not significant:
βSession i:Experiment ≤ − 0.04, p≥ .07. This demonstrated that as
sessions advanced, participants covered more ground within the
same timeframe, achieving this equally in both a city with agents and
one devoid of them.

In order to estimate if the participants were differentially
accumulating unique decision points in the city as the sessions
progressed, we calculated a cumulative coverage ratio, accumulating
the number of uniquely visited nodes as the sessions advanced. A
LMM with participants as random effects was used to predict the
cumulative coverage ratio as a function of session, experiment
group, and their interaction (R2

m � 0.74, R2
c � 0.91). This analysis

showed a significant progression, with participants covering more of
the city in each subsequent session (see Figure 1d). Starting from the
same initial coverage ratio mean (M = 0.49), significant cumulative
increments in navigational coverage were observed in each session
(η2p � .91): βSession 2 � 0.19 (SE = 0.01, t � 24.71, p< .001), βSession 3 �
0.27 (SE = 0.01, t � 35.80, p< .001), βSession 4 � 0.31 (SE = 0.01,
t � 40.75, p< .001), and βSession 5 � 0.33 (SE = 0.01, t � 43.48,
p< .001). The effect of the experiment group on the coverage
ratio was not statistically significant (βExperiment � −0.02,

p � 0.48). Additionally, interactions between the session and
experiment group were also not significant:
βSession i:Experiment ≤ 0.02, p≥ .33. After the fifth session, the end of
the exploration, the cumulative number of unique nodes visited
(M = 0.83, SD = 0.04) indicated that most participants had seen the
majority of the city. These findings suggest that the presence of an
agent did not significantly influence the navigational coverage
of the city.

2.1.2 Exploration strategies on decision points:
Exploratory vs. conservative behavior

To examine participants’ walking strategies, we analyzed
whether they tended to choose paths they had previously visited
more frequently (conservative) or if they favored less-traveled routes
(explorative). We defined discrete navigational decisions as
movements from one node to another and quantified them using
a strategy matrix (see Figures 2a,b). A linear mixed-effects model
was fitted to the data to examine differences in decision numbers
based on session, strategy (conservative vs explorative), and
experiment (control vs city with agents), with random intercepts
for participants to account for the nested data structure. The model’s
fixed effects (R2

m � 0.49, R2
c � 0.83) indicated that the average

number of decisions across all factors was β0 � 73.14 (SE = 4.02,
t � 18.20, p< .001). The analysis showed significant increases in
decisions as participants gained experience in Westbrook, with
increases evident from the first session onward (η2p � .69): βSession 2 �
30.17 (SE = 2.49, t � 12.11, p< .001), βSession 3 � 51.23 (SE = 2.49,
t � 20.57, p< .001), βSession 4 � 67.49 (SE = 2.49, t � 27.09, p< .001),
βSession 5 � 80.32 (SE = 2.49, t � 32.24, p< .001). The difference in
decisions between conservative and exploratory strategies was
significant, β � 75.52 (SE = 3.52, t � 21.44, p< .001, η2p � .14).
The interaction between session and strategy was significant
(η2p � .46), showing that decision increases per session were
lower for the exploratory strategy compared to the conservative
one: βSession 2:Strategy1 � −44.70 (SE = 4.98, t � −8.97, p< .001),
βSession 3:Strategy1 � −67.66 (SE = 4.98, t � −13.58, p< .001),
βSession 4:Strategy1 � −86.02 (SE = 4.98, t � −17.26, p< .001),
βSession 5:Strategy1 � −102.37 (SE = 4.98, t � −20.55, p< .001). No
significant difference in decision numbers was observed between
the two experiments (βExperiment � −3.95, SE = 7.40, t � −0.53,
p � 0.84), indicating that the presence or absence of agents did
not markedly influence decision-making strategies. Both behaviors
increased as sessions progressed. Initially, participants prioritized
exploratory behavior, but as they gained experience, they integrated
conservative behavior, effectively combining both strategies (see
Figure 2c), regardless of agent presence. This strategy adaptation,
where exploratory decisions remained stable while conservative
decisions increased, occurred without significant influence from
agents, suggesting that the global exploration strategy is
unaffected by human agents.

2.1.3 Agent-induced bias on walking strategies
In order to test our Visit Hypothesis, we evaluated the impact of

agents on participants’ exploratory behavior; we analyzed decision
points where participants could choose between a path with an agent
and one without, assuming that agents might elicit visits. Data from
these points were compared with a control group from Schmidt et al.
(2023), who explored the same VR city (Westbrook) without agents
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(see Figure 3a). We used identical decision points in both scenarios.
We applied a linear mixed-effects model to assess visit counts,
accounting for session and experiment type (control vs city with
agents) with random intercepts for participants (R2

m � 0.41,
R2
c � 0.82). Results indicated a significant increase in visit counts

across sessions (η2p � .71) compared to session 1. Specifically, visit
counts in session 2 were, on average, 14.84 points higher
(βSession 2 � 14.84, p< 0.001), and this effect continued to grow in
subsequent sessions, culminating in a 38.55 point increase by session
5 (βSession 5 � 38.55, p< 0.001). However, the overall difference
between the experiment types was not significant
(βExperiment � −2.15, p � 0.50), suggesting that the presence of
agents did not universally affect visit counts across all sessions.
Notably, the interaction between session and experiment type was
significant in session 5 (βSession 5:Experiment � 5.47, p � 0.008,
η2p � .01), showing a greater increase in visits in the city with
agents group. To further explore the influence of agents, we
calculated the likelihood of participants adopting exploratory
versus conservative strategies. This was done by dividing the
number of choices for each strategy cell (i.e., above and below
the diagonal; see Figure 3b) by the total number of decisions made,
as recorded in the mirrored cells of the strategy matrix. For instance,
we summed the number of times a participant chose to move to a
place they had visited only once over a place they had not visited (cell
[1,0], conservative behavior) with the number of times they chose to
go to a place they had never been over a place they had visited once
(cell [0,1], explorative behavior), and divided each count by that
total of decisions made in both cells (sum of the count in both [1,0]
and [0,1] cells). This indicator showed a clear distinction between

the behavior of participants in the city with agents and that of the
control group. Within the first exploration session, participants in
the city with agents had an average proportion of conservative
behavior ofM = 0.47 (SD = 0.16) compared toM = 0.20 (SD = 0.09)
in the control data, while the explorative behavior was M = 0.53
(SD = 0.16) for the city with agents andM = 0.80 (SD = 0.09) for the
control data. This indicates that agents prompt more local
conservative behavior, reducing exploratory actions during
participants’ initial city exposure. These findings provide partial
support for the Visit Hypothesis, suggesting that while agents
influence local return patterns, their effect on overall visit counts
is session-dependent rather than universal.

2.1.4 Assessment of visual behavior during
exploration: Investigating dwell time on agents
and buildings

According to our Dwell Hypothesis, we expected participants to
allocate more visual attention to contextually meaningful agents
within the environment. To characterize what participants focused
on in the city, we quantified their visual behavior by summing the
cumulative time spent gazing at each object, termed dwell time. We
hypothesized that participants would have higher dwell times for
contextual agents and public buildings compared to acontextual
agents and residential buildings, assuming contextual agents
congruent with their surroundings would attract the most attention.

The data revealed distinct patterns in the attention participants
allocated to different types of objects in the city. Notably, general
residential houses across the city were observed for a shorter
duration compared to our experimental buildings, with

FIGURE 2
Exploration strategy quantification (a) This panel illustrates the translation of continuous movement into quantifiable behavioral units. Movement
coordinates, denoted by beige dots, are assigned to the closest node or edge centroid. Nodes, represented by blue circles, are positioned at decision
points and are interconnected by black lines (edges). A conservative decision occurs when participants return to a frequently visited node, whereas an
explorative decision is made when a less frequented node is chosen (b) This panel introduces a strategy matrix designed to analyze navigational
choices. The matrix evaluates the path chosen by a participant (displayed on the y-axis) against all other possible paths at a decision point (x-axis). For
instance, upon exiting node 157 (as seen on Panel A), the participant’s choice of node 156 (with two previous visits) is compared against nodes 155 and 158,
which had 5 and 0 visits, respectively. The matrix is structured such that rows indicate visits to the selected node (in this case, 156) and columns to the
unselected nodes (in this case, 155 and 158). Entries in the matrix at positions [2,0] and [2,5] increment by one, reflecting the selection of node 156 over
alternatives. This matrix visually encodes decision-making patterns: counts above the diagonal suggest conservative decisions, and those below indicate
exploratory actions (c) This panel synthesizes decision-making trends by displaying the average sum of decisions, categorized by strategy, by all
participants across our two experiments and the control group in a single session.
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participants spending on average approximately 6.68 s (M = 6.68,
SD = 6.69) gazing at these buildings. This is in contrast to the longer
viewing times for our public task buildings (M = 11.82, SD = 8.48)
and residential task buildings (M = 11.66, SD = 8.29), which
attracted more sustained attention from participants.
Furthermore, global landmarks within the city garnered
significantly longer dwell times, with participants spending an
average of 16.27 s (M = 16.27, SD = 10.69) focusing on these
prominent features, nearly three times the average dwell time of
general buildings. In terms of agents, contextual agents were
observed for an average of 3.63 s (M = 3.63, SD = 3.74), while
acontextual agents attracted slightly less attention, with an average

dwell time of 2.66 s (M = 2.66, SD = 2.78). These findings indicate
that our experimental manipulations effectively captured
participants’ gaze in the expected order for both buildings
and agents.

We further analyzed how each experimental factor influenced
visual attention. On average, participants spent more time looking at
contextual agents (M = 3.39, SD = 3.49) compared to acontextual
agents (M = 2.73, SD = 2.91, see Figure 4a). Contextual agents also
seemed to distract participants from focusing on the area behind
them, as buildings with contextual agents had lower dwell times
(M = 12.42, SD = 8.13, see Figure 4e) compared to those with
acontextual agents (M = 13.28, SD = 9.27) see Figure 4b. These

FIGURE 3
Agent-induced bias in exploration patterns (a) The figure compares decision-making in virtual environments with and without agent presence. It
contrasts our experimental data against a control from Schmidt et al. (2021). Panel A shows the average visit count to agent locations in our experiment
(black) and the visits to those same points in the control (grey) (b) The probability of participants opting for paths where agents are located, classifying
decisions as conservative when going towards the agent was the more familiar path, and exploratory when choosing the agent path was the less
frequented route. We only show the first two sessions as the difference disappears afterward.
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results underscore the adversarial relationship between agents and
building attention, where increased focus on contextual agents
corresponded with decreased attention to the buildings
behind them.

Regarding building type, dwell time on the agent was not
significantly affected by the surrounding area, as agents in public
areas (M = 3.07, SD = 3.07) and residential areas (M = 3.03, SD =
3.37, see Figure 4c) received similar attention. However, participants
spent more time gazing at residential buildings (M = 13.39, SD =
9.01) compared to public buildings (M = 12.32, SD = 8.42, see
Figure 4f). These results imply that incongruent agents divert focus
from surroundings, as indicated by the anti-correlation in dwell
times between agents and buildings.

Examining congruency (see Figure 4d), participants looked at
incongruent agents (M = 3.23, SD = 3.48, see Figure 4d) for longer
periods compared to congruent agents (M = 2.60, SD = 2.44). This
pattern was opposite for building gazing time, with participants
spending more time looking at buildings and surroundings when the
agent matched the context in which it was placed (M = 12.92, SD =
7.65) compared to when the agent did not match the surroundings
(M = 12.83, SD = 9.15, see Figure 4g). These results imply that when
faced with incongruent agents, participants redirect their focus away
from the surroundings, as evidenced by the anti-correlation in dwell
times between agents and buildings in the congruency factor.

To account for the high inter-individual variability and the
nested structure of the data, we employed a linear mixed-effects
model to predict dwell time on agents, with subjects as a random
effect. The fixed effects included the context (residential vs public),
agent type level (acontextual vs contextual), the congruency of the
agent with their surroundings (not congruent vs congruent), and the
interaction between agent type and context. The results (R2

m � 0.03,
R2
c � 0.36) indicated that participants gazed at agents for a

significantly shorter period in residential contexts
(βBuilding � −0.41, SE � 0.08, t � −5.30, p< 0.001, η2p � .0026).
Additionally, participants spent more time gazing at contextual
agents compared to acontextual agents (βAgent � 1.32, SE � 0.08,
t � 16.94, p< 0.001, η2p � .03). The congruency between the agent
and its context also had a significant effect, with participants gazing
at congruent agents for a shorter duration (βCongruency � −0.58,
SE � 0.13, t � −4.59, p< 0.001, η2p � .0034). Moreover, the
interaction between context and agent action level was significant
(β � −0.76, SE � 0.16, t � −4.88, p< 0.001, η2p � .0022), suggesting
that the longest dwell times were observed for contextual agents in
residential settings. The findings reveal that residential contextual
agents capture the most attention, especially when they clash with
their surroundings.

We fitted an analogous linear mixed-effects model for the dwell
time on buildings (R2

m � 0.014, R2
c � 0.089). We found that

FIGURE 4
Dwell times across sessions: This figure presents the dwell time, defined as the cumulative sumof fixations on specific objects during the exploration
phase, measured in seconds. The bar graph shows the interplay of two factors, building and agent category (a) Illustrates the average dwell times for four
distinct building and agent type combinations. Each bar represents a unique combination: public buildings with contextual agents, public buildings with
acontextual agents, residential buildings with contextual agents, and residential buildings with acontextual agents. The height of each bar indicates
the average dwell time, reflecting the relative visual attention each combination received. To the right, we examine one factor at a time for dwell time on
the agent on the top (b–d), and on buildings on the bottom (e–g).
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participants gazed at buildings for a significantly shorter period in
residential contexts (β � −2.02, SE � 0.25, t � −8.19, p< 0.001,
η2p � .0067). Additionally, participants spent less time gazing at
buildings with contextual agents compared to those with
acontextual agents (β � −1.44, SE � 0.25, t � −5.83, p< 0.001,
η2p � .0034). The congruency between the agent and the building
also had a significant effect, with participants gazing at buildings
with congruent agents for a longer duration (β � 3.07, SE � 0.39,
t � 7.77, p< 0.001, η2p � .01). Moreover, the interaction between
context and agent type was significant (β � −1.61, SE � 0.49,
t � −3.26, p � 0.001, η2p � .0011), indicating that the shortest
dwell times were observed for buildings with contextual agents in
residential settings. These findings support the Dwell Hypothesis,
demonstrating that visual attention is modulated by both agent
contextuality and environmental congruency. Specifically,
contextual agents attracted more gaze time compared to
acontextual agents, confirming that contextually meaningful
elements elicit longer dwell times. However, the competitive
relationship between agents and their surroundings suggests that
when agents match their environment, attention shifts toward the
broader spatial context rather than the agent itself. This highlights
the dynamic interplay between agent presence and scene integration
in guiding visual attention.

2.2 Testing for spatial knowledge acquisition

We assessed participants’ spatial knowledge acquisition using
pointing tasks. In the Pointing to Buildings task, participants were
given screenshots of target buildings, while in the Pointing to Agents
task, they received screenshots of agents against a grey background.
Participants were asked to point toward the target. Accuracy was
measured by calculating the angular difference between their
pointing direction and the direction to the center of the target
building or agent. This angular error served as the performance
indicator, with a perfect score yielding zero degrees of error and
higher values indicating greater inaccuracy.

2.2.1 Pointing to buildings
According to our Performance Hypothesis, participants would

have more accurate pointing for public buildings, especially when
targets had active contextually congruent agent-building pairs. We
applied a linear mixed-effects model to predict pointing errors,
incorporating fixed and random effects. The random effects
accounted for the test location of the pointing task (28 distinct
locations with repeated measures). The fixed effects included the
type of building, type of agent, congruency pairs, and the interaction
between agent and building (R2

m � 0.02, R2
c � 0.56). The analysis

revealed that pointing accuracy was significantly better, with lower
errors in public buildings (β � −5.51, SE � 1.69, t � −3.28, p< .001,
η2p � .0.0088). Contextual agents significantly improved pointing
accuracy compared to acontextual agents (β � −7.17, SE � 1.72,
t � −4.17, p< .001, η2p � .0179). The congruency of agent actions
also played a crucial role, with incongruent pairs (where agent
actions did not match the context) leading to better performance
than congruent pairs (β � 6.88, SE � 1.97, t � 3.50, p< .001,
η2p � .0122). Additionally, the interaction between agent and
building type was non-significant, indicating that the main factor

captured the relevant information regarding performance (β � 4.03,
SE � 2.45, t � 1.64, p � .101). These results provide support for the
Performance Hypothesis, suggesting that contextual agents aid
spatial knowledge acquisition.

After the linear mixed-effects analysis, we examined the
estimated marginal means (EMM) to clarify how different factors
influenced pointing accuracy. Public buildings (EMM � 47.4,
SE � 2.81) resulted in significantly lower errors than residential
buildings (EMM � 50.9, SE � 2.94). acontextual agents were
associated with higher errors (EMM � 51.7, SE � 2.93) compared
to contextual agents (EMM � 46.6, SE � 2.82). The interaction
between agent and building type revealed that in residential
contexts, acontextual agents resulted in the highest errors
(EMM � 54.5, SE � 3.03), while contextual agents in residential
contexts showed lower errors (EMM � 46.8, SE � 2.77). In public
contexts, acontextual agents had higher errors (EMM � 49.2,
SE � 2.75), while contextual agents in public buildings showed
the lowest errors (EMM � 45.8, SE � 2.81). The congruency of
agent actions also played a key role, with incongruent pairs
performing better than congruent pairs. Specifically, incongruent
pairs had lower errors (EMM � 45.7, SE � 2.81) compared to
congruent pairs (EMM � 52.6, SE � 3.14). The findings
emphasize that contextually incongruent agents improve pointing
accuracy, reducing errors and equalizing performance across
building types (see Figure 5a).

2.2.2 Pointing to agents
According to our Performance Hypothesis, participants would

demonstrate lower pointing errors for the locations of contextual
agents, particularly those positioned in front of public buildings. To
test this hypothesis, we employed a linear mixed-effects model
similar to the one used for analyzing pointing-to-building
performance. The model included crossed random effects for
subjects and the starting locations of the pointing tasks, covering
28 distinct locations. The analysis revealed (R2

m � 0.01, R2
c � 0.49) a

significant main effect for the building type (β � 4.41, SE � 2.12,
t � 2.08, p � .038, η2 � .0022). However, the interaction between
context and agent action was non-significant (β � −0.21, SE � 3.22,
t � −0.06, p � .949).

Consistent with the Performance Hypothesis, participants
exhibited lower pointing errors for contextual agents
(EMM � 53.7, SE � 3.06) compared to acontextual agents
(EMM � 57.2, SE � 3.02), indicating that contextual agents were
better remembered. However, contrary to expectations, pointing
errors were greater for public buildings (EMM � 56.6, SE � 3.04)
compared to residential buildings (EMM � 54.3, SE � 3.03). These
findings suggest that while agent contextuality played a role in
reducing pointing errors, the expected facilitative effect of public
buildings did not emerge. Instead, participants demonstrated better
recall of agents at residential locations, suggesting that memory
encoding may have been influenced by other environmental or
attentional factors beyond public-private distinctions see Figure 5b.

2.2.3 Accuracy differences between pointing to
buildings and pointing to agents

We expected participants to be less precise when pointing to
agent stimuli compared to building stimuli. To investigate this, we
first assessed whether participants exhibited significantly lower
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precision when pointing to agents. This was achieved by fitting a
two-crossed random effects model (i.e., ID and pointing location)
and predicting pointing error with the type of stimuli (agent vs
building) as the sole predictor. The analysis revealed (R2

m � 0.008,
R2
c � 0.51) that participants were indeed significantly less precise

when pointing to agent stimuli (β � −7.74, SE � 0.98, p< .001,
η2 � .0079) compared to their performance in the pointing-to-
building task. The estimated marginal means showed that
participants had higher pointing errors for agent stimuli
(EMM � 54.4, SE � 2.55) compared to building stimuli
(EMM � 46.7, SE � 2.53). This clear difference is illustrated in
Figure 5c, where the average performance indicates that
participants could recall the precise locations of buildings more
accurately than human agents. The data reveal that while building
locations were recalled more accurately, agents may have served as a
salient feature, enhancing the overall spatial recall even if their
precise positions were less accurately remembered.

2.2.4 Inclusion of gaze as a predictor of
performance

To assess whether the time spent looking at both agents and
buildings would significantly predict participants’ performance, we
incorporated the dwell time in seconds each participant spent gazing
at the agents and buildings as fixed effects in the pointing-to-
building and pointing-to-agent tasks (see Figure 6). For the
pointing-to-building task, the results showed (R2

m � 0.007,
R2
c � 0.144) that only the dwell time on buildings significantly

predicted performance (β � −0.18, SE � 0.05, t � −3.62, p< .001,
η2 � .0012), while the dwell time on agents did not have a significant
effect (β � −0.27, SE � 0.15, t � −1.79, p � .073). To assess the

robustness of our findings, we conducted a sensitivity analysis
using bootstrap resampling (1,000 iterations). The results
confirmed that all significant predictors in the model retained
their effects, with bootstrap confidence intervals not crossing
zero. Conversely, predictors that were non-significant in the
original model had confidence intervals that included zero,
indicating greater uncertainty in their effects. This alignment
between the bootstrap and model-based results suggests that our
findings are stable and not unduly influenced by sample
variability as can be seen on Table 1. The type of agent
(contextual vs acontextual) remained a significant predictor,
with contextual agents leading to better performance
(β � −6.79, SE � 1.74, t � −3.91, p< .001, η2 � .0016). The type
of building also remained significant (β � −5.71, SE � 1.68,
t � −3.41, p< .001, η2 � .0010). Additionally, the congruency
between the agents and the building showed a significant
effect (R2

m � 0.007, R2
c � 0.144) revealed that neither the dwell

time on agents (β � −0.47, SE � 0.24, t � −1.72, p � .086) nor the
dwell time on buildings (β � −0.002, SE � 0.09, t � −0.02,
p � .981) were significant predictors of performance. However,
building type, with the opposite pattern as in pointing to
buildings (i.e., residential locations being better remembered,
β � 4.35, SE � 1.53, t � 2.60, p � .009, η2p � 0.0012) with no other
significant effects.

Comparing the results from the two tasks, it becomes evident
that there is an inverse relationship between the ability to locate
agents and buildings, as both compete for attention. Contextual
agents improved the recall of their locations, yet the presence of
public buildings appeared to detract from the ability to remember
the agent. Therefore, while agents may serve as useful proxies for

FIGURE 5
Analysis of pointing accuracy across experimental conditions. This figure illustrates the absolute pointing angular error, a measure of spatial recall
accuracy whose lower values indicate better performance, with data points representing themean error rates and error bars indicating standard errors (a)
pointing to buildings: This plot delineates participants’ pointing accuracy to buildings paired with contextual and acontextual agents (b) Pointing to
Agents: Here, participants’ accuracy in pointing to agents is compared, with a focus on the agent’s activity level and the type of building (c)
Aggregated Task Performance: This plot displays overall performance across both building and agent pointing tasks.
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recalling target locations, their own positions are not necessarily
better remembered in relation to their surroundings.

3 Discussion

This study explored the impact of human agents on spatial
navigation and knowledge acquisition within a controlled virtual
reality city environment. Our findings suggest that while the
presence of agents influenced spatial exploration, this effect was

relatively minor, as the overall exploration strategy remained largely
unchanged. Nonetheless, agents increased the likelihood of
participants revisiting the buildings where they were located
upon first exploration of the environment. In these spaces,
participants paid more visual attention to agents that did not
match their surroundings, indicating a context-dependent
perception of these agents. During exploration, agents and
buildings competed for attention, shaping how spatial
information was processed. When testing spatial knowledge,
pointing accuracy for buildings benefited from both the buildings

FIGURE 6
Accuracy prediction models: The estimates for the five effects and one interaction are displayed using one standard error as error bars. The linear
mixed models were computed employing a structure of two crossed-random effects, which accounted for the pointing place (i.e., the 28 pointing
locations) and the incorporation of repeated measures. The red line denotes no difference amongst the levels of the factor. Instances marked by three
asterisks indicate significance levels falling below 0.001, while two asterisks indicate significance below 0.01. The upper panel represents the same
results as the first two lines of the lower panel but zoomed in.

TABLE 1 Bootstrap Confidence Intervals for Model Estimates. The table presents the 95% confidence intervals obtained from bootstrap resampling
(1,000 iterations).

Predictor Lower 95% CI Upper 95% CI Estimate

Intercept 52.303 56.111 54.180

Dwell time on task Building −0.272 −0.077 −0.180

Dwell time on agent −0.558 0.009 −0.270

Building (Residential vs Public) −8.852 −2.404 −5.710

Agent category (Acontextual vs Contextual) −9.887 −3.427 −6.790

Congruency (Incongruent vs Congruent) 3.595 10.877 7.240

Interaction Location × Agent −1.121 8.025 3.520
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and the agents, suggesting a synergistic effect where agents enhanced
the salience of building locations. However, this benefit did not
extend to pointing accuracy for agents, where accuracy did not
improve when the agent was located at a more salient building.
Additionally, contextual incongruence played a crucial role in
enhancing pointing accuracy, highlighting non-linear effects that
further underscore the complexity of how the presence of others can
shape salience. Overall, it can be concluded that the presence of
agents and their integration into the environment significantly shape
how spatial information is remembered and, to a lesser extent, how
the space is explored.

3.1 Limitations

A key limitation of this study is that the agents, including those
classified as “contextual,” remained static, which does not reflect the
dynamic interactions typical of real-world scenarios. Additionally,
the fixed positions of the agents throughout the study may have
obscured more subtle changes in participant behavior that could
occur with moving or varying agent locations. This lack of
movement may limit the generalizability of our findings to real-
life situations where the presence and behavior of others are more
variable. However, we maintained this static feature to ensure
consistency between the two agent categories, allowing us to
investigate how even minimal actions, such as holding an object,
can influence participant behavior and performance. Through this
design, we identified a minimal level of experimental manipulation
that exerts a differential impact by human agents without
introducing the inherent eye movement biases that a moving
group might create.

It is necessary to note that people’s interactions with agents can
differ based on the agent’s group size, and our study focused solely
on single agents. We excluded groups because previous research
shows that individuals are more inclined to approach single agents
(Bonsch et al., 2018), and crowded spaces may deter pedestrians,
causing navigation avoidance (Dickinson et al., 2019; Li et al., 2019).
Our experiment, with 56 agents per square kilometer, likely stayed
below the discomfort threshold. Therefore, our findings suggest that
lower agent densities can be utilized to study navigation behaviors
without inducing avoidance, providing insights into optimal crowd
levels for effective spatial navigation.

The virtual environment, though extensive, cannot fully replicate
the complexity and nuances of real-world navigation and interactions,
particularly concerning general movement flow. In real-world
environments, a multitude of factors contribute to how individuals
navigate and perceive spaces, including moving objects, varying light
conditions, and the presence of other moving entities. While controlled
and consistent, the static nature of our virtual environment lacks these
dynamic elements that typically influence human behavior. This
limitation means that our study did not capture certain interactive
and responsive behaviors, which are naturally triggered by a dynamic
environment. However, we deliberately opted against including
dynamic environmental elements for two primary reasons: first, to
optimize the sample rate, as additional movement could burden the
system and reduce the reliability of data capture; second, to avoid
introducing confounding variables that might draw visual attention and
skew our eye-tracking analysis.

Lastly, it is worth considering whether the presence of agents in
our study, particularly in incongruent conditions, influenced
participants’ sense of being within the virtual environment and
their perceived reality of the environment, as described by (Slater,
2009). Variations in agent-context alignment may have
unintentionally modulated these aspects of presence. Since this
was not the focus of our study, we did not assess these potential
effects; however, future research should explore whether such factors
influence spatial learning.

3.2 Agent impact on spatial exploration

To understand participants’ broader navigational behavior, we
analyzed their spatial coverage and decision-making strategies,
contrasting participants who explored the city with (our
experiments) and without agents [control group from (Schmidt
et al., 2023)]. We developed a behaviorally-based method to
quantify the exploration trade-off through a primal graph that
captures decision-level spatial navigation dynamics in the virtual
city environment. The results demonstrated that as participants
became more familiar with the environment, they progressively
explored more of the city with each session. Notably, participants
showed consistent patterns in both the total area covered and the
balance between exploratory and conservative behavior, regardless of
whether agents were present. Our findings align with previous research
on exploration-exploitation dynamics. For instance, Choi et al. (2012)
observed that participants switched from long, unpredictable search
movements (Levy flights) when uncertain to shorter, deliberate paths
(Brownian walks) as they gained confidence. Similarly (Dickinson
et al., 2019; Li et al., 2019), demonstrated that various optimal foraging
strategies, from ballistic to Brownian motion, emerge based on the
experience with the environment. In concordance with these free
exploration studies, our study found that participants’ strategies
evolved in response to their growing familiarity with the VR city,
balancing exploration and exploitation with agents not interfering in
this process.

By analyzing participants’ navigational decisions, specifically
their tendencies between revisiting known locations and
exploring new paths, we identified an enhanced likelihood of
revisiting behavior unique to the first session, where participants
were significantly more likely to move in the direction of agents.
These results provide partial support for the Visit Hypothesis,
indicating that while agents initially biased participants’
revisitation behavior, their influence diminished over time.
Specifically, in the first session, participants were more likely to
move in the direction of agents, suggesting that agents can
momentarily shape navigation choices. However, this effect did
not persist across sessions, as broader spatial exploration
strategies remained stable regardless of agent presence. This
highlights that agents primarily exert a localized influence on
movement patterns rather than systematically altering long-term
exploration behavior. Globally, participants maintained a consistent
exploration rate, characterized by a mix of exploratory and
conservative decisions, across all sessions. This consistency
reinforces the idea that agents exert a localized impact on
navigation, affecting behavior at specific decision points without
altering the overall approach to exploring the environment.
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3.3 Visual exploration of the environment

When participants explored areas with agents, they preferred
visually engaging with contextual agents over acontextual ones
despite all agents being static. This aligns with theories indicating
that stimuli with higher informational density demand more
cognitive processing, making them more salient (Henderson
2007; Summerfield and Egner 2009; Wolfe 2020). Such stimuli
are perceived as more salient particularly when they contain
elements relevant to the task at hand or the environment’s
narrative (Harel et al., 2014; Miller et al., 2014). Previous studies
have found that, whether consciously or not, people map their
surroundings in terms of future action planning (Bach et al., 2014;
Bonner and Epstein, 2017; Ohm et al., 2014). This tendency extends
to situations involving other people, where the presence of a person
in a position to interact with objects can lead observers to adopt that
person’s spatial perspective (Tversky and Hard, 2009). Thus, one
could argue that contextual agents holding objects and displaying
varied body positions garner longer dwell times because they hint at
navigational affordances; that is, they prime the participants for
possible actionable routes. Consequently, contextual agents would
have higher informational value for participants navigating a city
since they hint at contextual elements that could be acted upon.

Furthermore, our analysis revealed that the longest gaze times
were directed toward contextual agents that mismatched their
surroundings. This finding can be understood through the
framework of spatial schema, which are structured bodies of
prior knowledge used to navigate and interpret environments
(Farzanfar et al., 2023). When these agents clashed with their
background, it likely elicited an expectancy violation (Burgoon,
2015), prompting participants to engage in a longer visual search
to reconcile this disparity. Interestingly, this heightened attention to
incongruent agents in residential settings could also reflect an innate
tendency to monitor unexpected behaviors in familiar
environments, similar to how individuals remain vigilant in their
own neighborhoods. Together, these results support the notion that
agents are perceived contextually, and participants showed signs of
trying to integrate them into the space they inhabit. These findings
align with the Dwell Hypothesis, confirming that participants
allocated more visual attention to elements with higher
contextual relevance.

Regarding building gazing, our participants spent more time
inspecting residential buildings than public buildings. This finding
contradicts previous research, which generally suggests that people
tend to spend longer looking at public buildings like restaurants,
stores, and landmarks due to their visual complexity and social
relevance (Rounds et al., 2020). Eye-tracking research has
consistently found that functional and visually salient landmarks,
such as public buildings, are more likely to be used for navigation
and remembered longer Farran et al., 2016; Walter et al., 2022.
However, our participants’ preference for residential buildings
suggests a potential contextual influence. In our study, all task-
relevant buildings had graffiti, which may have caused the extended
gaze time. Additionally, all task-relevant residential buildings had an
agent in front of them, which could have garnered more viewing
time. Finally, it might be the case that since the residential buildings
were more similar to each other, participants required more time to
tell them apart. While one gaze at a doughnut shop can already

provide a clear memory cue, a gaze at a standard residential house
might need more time to gather a cue that would help differentiate it
from neighboring buildings.

3.4 Effect of agents on spatial knowledge
acquisition

Our study provides significant insights into the role of human
agents in spatial knowledge acquisition, particularly regarding
pointing accuracy. The consistent finding across both pointing-
to-agent and pointing-to-building tasks is that contextual agents
significantly enhance performance. This aligns with previous
research indicating that social targets and interactive cues
improve navigational accuracy and spatial encoding. For instance,
Kuehn et al. (2018) demonstrated that participants exhibited
reduced positional errors when navigating with a person as a
target, suggesting that social targets facilitate spatial encoding by
enhancing the processing of both body-based and environment-
based cues. Similarly, Gunalp et al. (2019) found that including an
avatar in spatial perspective-taking tasks improved performance
compared to abstract directional cues, underscoring the importance
of social and interactive aspects in aiding mental simulation
processes required for spatial tasks. More specifically, the
pronounced effect of contextual agents on spatial knowledge
acquisition may be attributed not only to increased visual
engagement but also to the cognitive implications of perceived
action. Previous studies have shown that even the suggestion of
action in still images can enhance spatial processing (Tversky and
Hard, 2009). In our study, when those actions were incongruent with
the surroundings, performance was further enhanced, likely because
reconciling the mismatch strengthened the memory cues for the
location. This suggests that by implying potential actions, contextual
agents encourage participants to process spatial information from
multiple perspectives, thereby enhancing their overall spatial
understanding and memory. These findings provide strong
support for the Performance Hypothesis, demonstrating that
agents embedded in a meaningful narrative context enhance
spatial recall and improve accuracy in pointing tasks.

A notable finding from our study was the overall higher
precision in pointing to buildings compared to agents. This
indicates that while human agents can enhance spatial recall,
participants generally exhibited greater accuracy when recalling
traditionally static buildings. This could be attributed to
buildings’ more stable and distinctive features, which provide
consistent spatial cues. In contrast, agents, being potential
sources of movement, may introduce variability in spatial
memory. The differential impact of agents on pointing accuracy
to buildings and agents highlights the importance of contextual
relevance in spatial knowledge acquisition. Contextual agents,
particularly those performing contextually incongruent actions,
appear to be strong spatial anchors for their surroundings but
are not remembered as landmarks. This aligns with the idea that
while faces naturally attract attention (Gert et al., 2020), their
mobility reduces their usefulness as fixed spatial references.
Instead, their presence may shape how participants engage with
and encode the surrounding environment, particularly
static landmarks.
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3.5 Implications for spatial
navigation systems

These findings have significant implications for the design of
spatial navigation systems. Incorporating human contextually
relevant cues such as contextual agents can enhance spatial recall
and bias navigation efficiency. This aligns with the broader literature
on wayfinding, which emphasizes the importance of functional
landmarks and visual salience (Franke and Schweikart, 2017;
Ohm et al., 2014). By leveraging contextual agents and ensuring
their actions are contextually relevant, navigation systems can
provide more effective spatial cues, aiding users in more
accurately recalling and navigating environments. Additionally,
intentionally contrasting agents with the environment could
improve the memory of a location as it might contradict
expectations. In summary, our study underscores the critical role
of human agents in shaping spatial knowledge acquisition.
Contextual agents enhance pointing accuracy and spatial recall,
mainly when they are incongruent. These findings contribute to a
deeper understanding of how human elements within an
environment can be effective navigational aids, providing
valuable insights for developing more intuitive and effective
spatial navigation systems.

3.6 Conclusion

This study explored the impact of human agents on spatial
navigation and knowledge acquisition within a virtual city. Our
findings show evidence that human agents, particularly those
portraying actions, locally influence navigational behavior and
enhance spatial recall. Contextual agents drew more visual
attention and served as effective spatial cues, improving
participants’ ability to recall specific locations. Interestingly,
agents that were incongruent with their surroundings further
enhanced spatial memory, suggesting that expectancy violations
prompt spatial knowledge acquisition. These results underscore
the importance of incorporating human elements into virtual
environments to better understand their role in spatial cognition.
The insights gained from this study have potential applications in
designing more intuitive spatial navigation systems and enhancing
training programs for environments where human interaction is a
critical component.

4 Methods

4.1 Participants

We recruited 70 participants, distributing them equally across
two experiments (35 per experiment). Participants were required to
have normal or corrected-to-normal vision and to attend five 30-
min sessions, plus one final 60-min test session in a VR
environment. Sessions were scheduled at intervals ranging from
4 hours to 3 days. However, attrition occurred due to sickness or
missed appointments, resulting in 10 participants being unable to
complete the required schedule and 15 participants being excluded
due to technical failures, like interruption of files. Additionally, three

participants withdrew due to motion sickness. The final sample
included 21 participants (12 females, Mage � 25.33 years,
SDage � 7.66) for the first experiment and 21 participants
(11 females, Mage � 22.31 years, SDage � 2.80) for the second
experiment. All participants provided written informed consent.
Compensation was given in the form of “participant hours,” a
common requirement within the study programs at the
University of Osnabrück, where the ethics committee approved
the study following the ethical standards of the Institutional and
National Research Committees.

4.2 VR environment: Westbrook

The virtual environment, known as Westbrook see Figure 7b,
was developed using Unity LTS 2019.4.27f1, as described by Schmidt
et al. (2023). The virtual city covers an area of approximately 1 km2

and is inspired by the layout of the Swiss city Baulmes. It features
236 buildings, including 26 public buildings (i.e., shops, basketball
courts), 26 residential buildings marked with graffiti, and
180 regular buildings devoid of graffiti. Additionally, four large
buildings are strategically placed at the city’s periphery. The
buildings with graffiti were designated as task buildings in both
our experiment and the experiment by Schmidt et al. (2023) and are
distributed roughly equally throughout the city. Mesh colliders were
applied to all objects to facilitate the tracking of participants’ visual
behavior through 3D eye vector projection onto the environment. In
Unity, a collider is an invisible component that defines the physical
boundaries of an object, allowing the physics engine to detect
interactions with it. One can imagine it as an invisible skin
covering the surface of objects, enabling precise collision
detection without affecting their visual representation. This
approach ensured that gaze data could be accurately mapped
onto the complex surfaces of the virtual world, allowing for
precise analysis of visual attention.

Navigation within the city is confined to visible paths and streets
defined by a custom navigation mesh, with restricted access to areas
blocked by fences or other physical barriers. Conventional
orientation cues such as street names, house numbers, and solar
positioning were deliberately excluded to enhance the navigational
challenge. Participants controlled their translational movement up
to a maximum speed of 5 m/h using a joystick, while rotational
movements were facilitated by physical rotation on a swivel chair.

4.3 The human agents

The inclusion of 56 human agents from the Adobe Mixamo
collection (Mixamo, 2008) was designed to explore the impact of
human elements on spatial learning. Agents were divided into two
groups: 28 (14 males and 14 females) in the contextual agent group
and an equal number in the acontextual agent group. Contextual
agents were equipped with items and body postures that
underscored the significance of specific buildings—such as a
sandwich at a sandwich shop or a toolbox at a tool store (see
Figure 8a). Conversely, acontextual agents, matched in skin tone,
hair color, and gender with the contextual group, were depicted in a
relaxed standing pose see Figure 8b), enhancing environmental
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realism without engaging in explicit, building-specific activities. All
agents were static and non-responsive to the participants.

In the first experiment, contextual agents were designed to be
positioned in public buildings to reflect the thematic context of
their surroundings. Specifically, contextual agents were
positioned in front of the 26 street art-marked public
buildings and two larger buildings. For instance, a
construction worker wielding a shovel was situated at a
construction site among 26 public buildings, along with two
thematic global landmarks (i.e., a church-goer with a bible at
a church and another construction worker at a castle under
construction). Conversely, acontextual agents were stationed
in neutral stances within the 26 residential areas and at two
additional larger buildings (i.e., a silo and a windmill).

In the second experiment, we changed the setup by
redistributing contextual and acontextual agents across public
and residential areas, intentionally breaking the congruency
established in the first experiment. This shuffle placed half of the
contextual agents in non-matching public buildings and the other
half in residential settings. Similarly, acontextual agents were also re
positioned, with half now found in public spaces and the remaining
half in residential areas. This reconfiguration aimed to probe the
effects of agent-building incongruency on spatial learning,
challenging the direct association between agents and
specific buildings.

4.4 Experimental procedure

The experiments were divided into two main phases: the
exploration and task assessment phases. The exploration phase
consisted of five sessions, each lasting 30 min, resulting in
150 min of free exploration (see Figure 9). The task assessment
phase was the sixth session, during which participants performed a
pointing task. Sessions were spaced with intervals ranging from a
minimum of 4 hours to a maximum of 3 days.

In the initial session, participants received a comprehensive
overview of the experiment and provided written informed
consent. They then completed the “Fragebogen Räumlicher
Strategien” (FRS) questionnaire to assess their spatial orientation
abilities (Münzer and Hölscher, 2011). Subsequently, participants
were familiarized with the VR environment in a neutral VR room. In
this room, they practiced controlling their lateral movements by
rotating in a swivel chair and regulating their forward movement
using the joystick on their VIVE controller. The exploration phase
within the actual city began once participants confirmed their
understanding of the movement mechanics.

During the exploration phase, participants were instructed to
freely explore the virtual city for 30 min, imagining they were getting
acquainted with a real city they would be tested on by the end of the
experiment. In contrast with Schmidt et al. (2023), we did not
instruct them to look for street art specifically marked houses, but

FIGURE 7
Overview of the virtual reality environment (a) Experimental setup, highlighting the use of a swivel chair for lateral navigation and a joystick on the
VIVE controller for forward movement (b) First-person immersive view available to participants (c) Aerial view of the virtual city.
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rather to just try to pay attention to the city’s layout. The sessions
were divided into three 10-min segments, and a 9-point eye-tracking
calibration and validation were performed at the start of each
segment to ensure measurement accuracy, maintaining a visual
tracking error of less than one degree.

Participants performed a pointing task within the VR environment
in the assessment session from a first-person perspective. Within the
task, participants were teleported to 28 predetermined locations inside
Westbrook. At each location, they were presented with a target at the
center of their visual field and instructed to point directly at the center of

FIGURE 8
Human Agents (a) Contextual human agent (b) Acontextual human agent.

FIGURE 9
Experimental design and procedure: Panel A illustrates our 2 × 2 experimental design, featuring acontextual/contextual agent types and public/
residential buildings, which were assigned differently in the two experiments. Panel B outlines the exploration phase procedure, where participants first
filled out the FRS questionnaire and then completed five 30-min sessions of unguided exploration within the virtual city of Westbrook. Panel C describes
the assessment phase during a sixth session, where participants completed pointing tasks within the VR city. (A) Experimental Design. (B) Exploration
phase. (C) Assesment phase.
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the target. In experiment 1, the targets were solely buildings
(i.e., pointing-to-building). In contrast, in experiment 2, we included
a test that displayed only the agent against a gray background
(i.e., pointing-to-agent). To account for the sequence effect, the task
order was strategically randomized, with one-half of the participants
starting with the pointing-to-agent task followed by the pointing-to-
building task and the other completing the tasks in reverse order.
Finally, all participants completed three self-assessment questionnaires
that inquired about their perception of each agent, their social
tendencies in real life, and the realism level of the VR. The
questionnaire data has not been analyzed in this work.

4.5 Experimental setup

The exploration and task assessment sessions were conducted
with a desktop computer with an Intel (R) Xeon (R) W-2133 CPU,
16 GB RAM, and a Nvidia RTX 2080 Ti graphics card. The VR
environment was rendered with a HTC Vive Pro Eye head-mounted
display (HMD) setup with a refresh rate of 90 Hz and horizontal and
vertical field of view of 106° and 110°, respectively. We used four
SteamVR Base Stations 2.0, an HTC VIVE body tracker 2.0, and
Valve Index controllers to monitor participants’ positions within the
environment. This combined setup achieved sub-millimeter
precision in capturing the head, body, and eye positions, as well
as rotation and orientation.

4.6 Spatial task

Participants performed pointing tasks in VR from a first-person
perspective. In the pointing-to-building task, they were teleported to
28 unique locations within the city, each serving as a distinct
reference point. The sequence of these locations was randomized
for each participant to prevent order effects. To further minimize
systematic biases, participants’ orientations after teleportation were
also randomized, ensuring that they did not always begin facing the
same direction. At each location, participants pointed repeatedly
toward one of 56 potential targets, represented by static images of
buildings, with agents positioned in front of them. These images
were captured perpendicularly at a height of 1.80 m to ensure
consistency in visual presentation.

The trials began with a visual and auditory cue: a 25 ms green
circular loading bar at the screen’s center accompanied by a
beep. The target image appeared at the upper center of the
screen, with a green dashed laser beam providing a visual guide
for pointing. Participants indicated their direction by pressing a
trigger button on their controllers. Each trial was timed for 30 s,
automatically concluding if a direction was not indicated within this
period. Performance was assessed by measuring the angular
difference between the participant’s pointing direction and the
precise center vector of the target location.

In the initial experiment, participants completed 336 trials,
pointing at 12 unique targets from each of the 28 reference
locations. The reduction in the number of trials in the second
experiment, where participants completed only 224 trials,
pointing at eight distinct targets from each location, was
necessitated by the additional pointing-to-agents task. In both

experiments, the trials were balanced to ensure an even
distribution of target types: 50% directed participants to public
locations and 50% to residential areas.

4.7 Pointing to agents task

This task was fundamentally equivalent to the pointing-to-
building but specifically focused on agents as the target. The
targets featured centered screenshots of individual agents set
against a grey backdrop, captured perpendicularly at a height of
1.80 m. Participants undertook 224 trials and were instructed to
point at eight unique agent targets from each of the 28 reference
locations. The task mirrored the structure of the building task in
terms of target placement, visual and auditory cues, and time
constraints to maintain consistency in the testing conditions.
Additionally, the sequence of these pointing locations was
randomized for each participant, with the goal of avoiding order
effects and preserving the integrity of the experimental data.

4.8 “Fragebogen Räumlicher Strategien”
(FRS) questionnaire

The “Fragebogen Räumlicher Strategien” [FRS; Münzer and
Hölscher (2011)] questionnaire is a 7-point Likert scale that asks the
participants to estimate their spatial orientation abilities in three areas of
spatial knowledge in real-world scenarios. First, the global sub-scale
consisted of 10 items (α � 0.89) inquiring about the subject’s ability to
navigate routes from an egocentric perspective. The survey sub-scale
incorporates seven items (α � 0.87) focused on the subject’s ability for
mental mapping from an allocentric perspective. The cardinal sub-scale
comprises two items (α � 0.80) that query the ability to point toward
cardinal points. The FRS measures participants’ likelihood to apply
spatial strategies related to egocentric/global knowledge, survey
knowledge, or cardinal directions, respectively.

4.9 Movement tracking in the city

4.9.1 Navigational tracking
To analyze participant trajectories and their exploration

decisions, we created a data-driven graph based on their actual
trajectories while exploring the virtual city. Thus, this graph reflects
only the paths and areas that participants walked through,
constituted by the streets (edges) and crossings or decision points
(nodes) that participants walked through. We first generated a
heatmap of participants’ movement to transition from raw
sequential coordinates to spatial data. This heatmap accounted
for the number of times a participant stood at a specific cell
within a defined 4 m × 4 m grid on top of the city map. This
heatmap was then turned into a binary image, where cells visited at
least once were assigned a value of one and cells without visits a value
of zero. The resulting image clearly outlined the walkable paths and
connections within the city. We filled isolated holes within the
streets to ensure the algorithm generating the graph did not create
extraneous nodes in these areas. We then generated a skeleton from
the binary image, reducing the city’s representation to a one-pixel
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width while preserving its topography and connectivity. This
skeleton was the foundation for identifying the graph’s nodes
and edges. Using the external Python library “sknw,” we
generated a NetworkX graph from the city skeleton image. Nodes
were numbered sequentially, and edges were named based on the
nodes they connected (see Figure 2a). For example, edge [76,60]
connected nodes 76 and 60. Some manual adjustments, such as
adding an edge, were necessary to perfect the graph. Each pixel in the
skeleton was recognized as belonging to a node or an edge. This
information was later used to plot the graph and calculate distances
to identify the graph elements visited by participants during
their sessions.

To analyze exploration strategies, we developed an algorithm
that converts participants’ coordinates data into a sequence of
visited nodes and edges. This process involved mapping the
coordinates to the skeleton heatmap’s 4 m × 4 m cells and
determining the closest graph element using the Euclidean
distance formula. The algorithm tracked transitions between
edges and nodes, recording each visited element. This record
included the time of entry, graph element type (node/edge), and
number of visits to the graph with a, well as the available paths
from the node of origin and their respective number of previous
visits to the possible elements available from that position. We
adjusted the nodes’ radii to match the width of the corresponding
streets. This adjustment ensured accurate detection of
participant presence at nodes, preventing unnoticed
transitions between edges. Overlapping node radii in areas
with several short streets were resolved by assigning
participant positions to the nearest node centroid.

4.9.2 Navigational pattern classification:
Strategy matrix

We condensed participants’ decisions at nodes into a strategy
matrix to analyze their exploration patterns. The strategy matrix was
organized with the number of visits to the chosen node on the rows
and the number of visits to the not-chosen nodes on the columns.
Each decision was recorded in the row corresponding to the number
of previous visits to the selected path. We added one to each column
corresponding to the number of prior visits on the other available
paths from that decision point that were not selected. For instance, if
a participant was at a node that had three direct neighbors, visited
zero, five, and two times, and chose to move in the direction of the
node visited two times, we would add a count of one to the positions
[0,2] and [5,2]. This represents that the participant moved to a node
with two visits over the options that had been visited zero and five
times (see Figure 2b). Decisions above the diagonal line in the
strategy matrix were considered conservative, indicating that
participants preferred nodes they had visited more frequently in
the previous example, the one added at [0,2]. In contrast, decisions
below the diagonal line were considered exploratory, as participants
chose nodes with fewer visits compared to their neighboring nodes,
in the example above the one added at [5,2]. Decisions exactly on the
diagonal were neutral, as both the chosen and the adjacent nodes
had the same number of previous visits. This method allowed us to
quantify and compare participants’ exploratory and conservative
tendencies as they navigated the virtual city, providing insight into
their spatial decision-making processes as they gained experience
inside Westbrook.

4.9.3 Eye-tracking preprocessing and classification
We applied a velocity-based algorithm that classified continuous

eye movements into gazes and saccades and corrected the resulting
gazes for the participants’ movement in the 3D environment, as
developed by (Nolte et al., 2024). In preparation for this algorithm,
we preprocessed the data by excluding portions detected as invalid
(e.g., blinks). In cases where more than one collider hit was detected
within the same sample, we retained the closest hit to the participant,
except for background colliders, such as leaves or fences, in which
case we kept the second closest hit. As a last step, we dropped
duplicated samples and applied a 5-point median filter to the gaze
coordinates. The algorithm calculates the median velocity of eye
movements within a time window (in our case, a 10-s window).
Samples exceeding this velocity threshold are identified as saccades,
while those falling below the threshold are classified as gazes. To
ensure accuracy, we applied outlier detection based on median
absolute deviation to correct for gaze events with anomalous
durations (i.e., exceeding three median absolute deviations).
Dwell time was defined as the cumulative time a subject spent
gazing at a specific object within the city across all sessions. We
computed the dwell time for each subject-object pair during their
entire exploration period within the Westbrook environment.

4.10 Data analysis

Given the hierarchical structure of our data, we employed Linear
Mixed-Effects Models for our analysis. The modeling was done
using R 4.3.2 with the lmer() function from the lme4 package.
We used Restricted Maximum Likelihood for estimation and the
nloptwrap optimizer (Bates et al., 2015). This approach allows us
to handle the nested structure of our data, with random effects to
account for within-subject variability. Fixed effects with two levels
were effect-coded to ensure the betas reflect the differences between
these levels, using the first level of each pair as the base for
comparison.

4.10.1 Exploration phase analysis: Navigational
coverage of the city

To analyze participants’ free exploration patterns, we quantified
their walking behavior through the virtual city using a primal city
graph Neal (2013). The coverage ratio, defined as the proportion of
unique nodes visited during each session, was modeled using a linear
mixed-effects approach. The model included fixed effects for the
session, experiment, and interactions, with planned contrast testing
for each session against the first. Random intercepts for participants
were included to account for repeated measures within subjects. The
model formula for the individual session coverage ratio was (see
Equation 1):

Individual Ratio ~ Session × Experiment + 1|participant( ) (1)

The same structure was used to test for the cumulative ratio of
visited nodes, in which we kept track of how many unique decision
points each participant had visited, accumulating them between
sessions. The model formula for the cumulative coverage ratio was
(see Equation 2):

Cumulative Ratio ~ Session × Experiment + 1|participant( ) (2)
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4.10.2 Walking strategies: Exploratory vs
conservative navigational behavior

To investigate the extent to which participants used conservative
or exploratory walking strategies, we modeled the number of
decisions at each node. A linear mixed-effects model (see
Equation 3) was used with the session, strategy (conservative vs
exploratory), and experiment as fixed effects and random intercepts
for participants.

Number of decisions ~ Session × Strategy + Experiment

+ 1|participant( ) (3)

4.10.3 Visual behavior during exploration
We quantified participants’ visual behavior by summing the

cumulative time spent gazing at objects (dwell time) during the
entire exploration phase. Separate models predicted dwell time
on agents (see Equation 4) and buildings (see Equation 5), with
fixed effects for agent type (acontextual vs contextual), context
effect (residential vs public), the congruency of the agent with
their surroundings (not congruent vs congruent), and their
interactions, including random effects for participants with the
following formulas:

Dwell Timeagent ~ 1 + Building Category × Agent Category

+ 1|participant( ) + 1|pointing location( ) (4)
Dwell Timebuilding ~ 1 + Building × Agent Category + Congruence

+ 1|participant( ) + 1|pointing location( )

(5)

4.10.4 Pointing task: Pointing to buildings
We assessed spatial knowledge using pointing tasks, calculating

the angular error as the performance indicator. Two separate linear
mixed-effects models (see Equations 6, 7) predicted pointing error
based on building type (residential vs public), agent type
(acontextual vs contextual), the congruency of the agents with
their surroundings, dwell time on agents, dwell time on
buildings, and the interaction of agent and building type.
Random effects for participants and pointing locations were
included in each model:

Pointing Errorbuilding ~ 1 + Building Category × Agent Category

+ Congruency + Dwell Timebuilding + Dwell Timeagent

+ 1|participant( ) + 1|pointing location( )

(6)
Pointing Erroragent ~ 1 + Building Category × Agent Category

+Dwell Timeagent + Dwell Timebuilding + 1|participant( )

+ 1|pointing location( ) (7)

4.10.5 Comparing pointing accuracy
between tasks

To compare accuracy between pointing to buildings and
pointing to agents, we used a model with the type of stimuli
(agent vs building) as the fixed effect and participants and
pointing locations as random effects (see Equation 8):

Pointing Error ~ 1 + Test + 1|participant( ) + 1|pointing location( )

(8)
Following model fitting, we performed likelihood ratio tests

to compare each model against a null model containing only
the intercept, evaluating the added predictive power of
our factors.
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