
Model-based approach for
specifying requirements of virtual
reality software products

Sai Anirudh Karre* and Y. Raghu Reddy

Software Engineering Research Center, International Institute of Information Technology Hyderabad,
Hyderabad, India

Introduction: Gathering requirements for developing virtual reality (VR) software
products is a labor-intensive process. It requires detailed elicitation of scene flow,
articles in the scene, action responses, custom behaviors, and timeline of events.
The slightest change in requirements will escalate the design and development
costs. While most VR practitioners depend on conventional software engineering
(SE) requirement-gathering techniques, there is a need for novel methods to
streamline VR software development. With severe software platform
fragmentation and hardware volatility, VR practitioners need assistance
specifying non-volatile requirements for a minimum viable VR software product.

Methods: To address this gap, we present virtual reality requirement specification
tool (VReqST), a model-based requirement specification tool for developing
virtual reality software products.

Results: Using VReqST, requirement analysts can specify the requirements for
both simple and complex multi-scene VR software products and virtual
environments (VEs).

Discussion: VReqST is customizable and competent in illustrating custom
requirements for new locomotion, colocation, teleportation algorithms, etc.
We worked with the VR community from the industry for adoption and
feedback. We revised and included the desired features based on inputs from
the VR community and gathered their observations on the overall impact of
VReqST in practice.

KEYWORDS

virtual reality, requirement specification, meta model, model-driven development,
software modeling, metaverse

1 Introduction

Virtual reality (VR) technology can potentially revolutionize the future of work. Several
big companies, including Meta, NVIDIA, Microsoft, Apple, and SAP, have already created
proofs-of-concept using immersive solutions for remote collaborative work and complex
task completion (Gramlich, 2022). These VR enterprise solutions have become essential in
various industries such as healthcare, manufacturing, training, IT, energy, and retail. They
provide application-specific domain practitioners with immersive experiences that help
them comprehend complex activities through simulations. In the post-pandemic era,
immersive solutions are increasingly embraced to enhance productivity in enterprise
industries by fostering innovation. This trend has also given rise to the “metaverse,”
three-dimensional virtual experience software that allows people to socialize, learn,

OPEN ACCESS

EDITED BY

Anna Kobusinska,
Poznań University of Technology, Poland

REVIEWED BY

Ruoyu Zhao,
Nanjing University of Aeronautics and
Astronautics, China
M. Shahid Anwar,
Gachon University, Republic of Korea
Jay Lofstead,
Sandia National Laboratories (DOE),
United States

*CORRESPONDENCE

Sai Anirudh Karre,
saianirudh.karri@research.iiit.ac.in

RECEIVED 27 July 2024
ACCEPTED 31 October 2024
PUBLISHED 03 December 2024

CITATION

Karre SA and Reddy YR (2024) Model-based
approach for specifying requirements of virtual
reality software products.
Front. Virtual Real. 5:1471579.
doi: 10.3389/frvir.2024.1471579

COPYRIGHT

©2024 Karre and Reddy. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Virtual Reality frontiersin.org01

TYPE Original Research
PUBLISHED 03 December 2024
DOI 10.3389/frvir.2024.1471579

https://www.frontiersin.org/articles/10.3389/frvir.2024.1471579/full
https://www.frontiersin.org/articles/10.3389/frvir.2024.1471579/full
https://www.frontiersin.org/articles/10.3389/frvir.2024.1471579/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frvir.2024.1471579&domain=pdf&date_stamp=2024-12-03
mailto:saianirudh.karri@research.iiit.ac.in
mailto:saianirudh.karri@research.iiit.ac.in
https://doi.org/10.3389/frvir.2024.1471579
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org/journals/virtual-reality#editorial-board
https://www.frontiersin.org/journals/virtual-reality#editorial-board
https://doi.org/10.3389/frvir.2024.1471579

collaborate, implement, work, play, and experience emotions
virtually using real-world metaphors. Despite the numerous
advantages, the overall VR product development process for
developing enterprise VR software is plagued by significant
technological and practitioner challenges. Recent studies by
Anwar et al. (2024) have also illustrated the quality of experience
in adapting, augmenting, and producing standards for immersive
environments. VR software product development has been observed
to employ different sets of practices compared to traditional
software product development (Karre et al., 2019), resulting in
the following challenges.

• Platform fragmentation: Almost all the VR software
development toolkits (SDK) do not prioritize portability
and cross-platform compatibility with respective head-
mounted devices (HMDs). This forces the VR community
to re-build their VR code for various HMDs (Group, 2019).

• Volatile hardware: The computational capabilities of existing
HMDs deteriorate relative to newer models due to platform
fragmentation. Thus necessitating frequent hardware
upgrades to leverage the features of the latest SDK features.
To stay relevant in the market, the VR community has to
either commit to a particular HMD-SDK version or
continually rebuild their VR products.

• Poor tool support: VR developer tools suffer from inadequate
tool support. The lack of standardized naming conventions in
these tools hinders a common understanding of the VR
domain. Consequently, most VR tools heavily rely on their
own unique VR model information. To mitigate confusion,
the VR community has gravitated toward using a select few
tools. However, the integration of VR products poses a
significant risk to the community due to portability issues
(Nebeling and Speicher, 2018).

• Multi-modality: VR is a multi-modal technology (Martin
et al., 2022) that necessitates thorough requirement
gathering in order to create realistic virtual environments.
Various modalities such as gestures, gaze, auditory stimuli
through haptic devices, kinesthetic feedback (related to
proprioception), temperature, pressure, and pain-sensing
are employed in VR to cater to different use cases. To
ensure the realism of VR software products, it is crucial
for requirement analysts to conduct comprehensive
requirement gathering.

• Risky assumptions: The development cost of a VR product can
significantly increase due to obscure and abstract prototype
designs. VR developers cannot make assumptions about the
VR scene with complete certainty. Unclear and hypothetical
use-case stories, articles, action responses, specific behaviors,
and timelines of events related to the VR scenes can result in
misleading outcomes. Consequently, this leads to wastage in
VR software development.

• Stakeholders: The VR developer community comprises
various stakeholders such as virtual environment (VE)
designers, VR developers, acoustic engineers, interaction
animators, usability practitioners, VE testers, and
maintenance engineers, among others, who may not be
aware of the traditional enterprise software development
methods. It is crucial to note that miscommunication
among these stakeholders or straying from the specified
requirements can result in substantial development setbacks
and the need for additional work.

The aforementioned factors can be alleviated by obtaining clear
and comprehensive specifications, thereby preventing the need for
rework and reducing the cost associated with development. It has
been noted that proficient requirement engineering methodologies
can result in enhanced software quality (Filho and Kochan, 2001).
Conversely, the process of eliciting requirements in virtual reality is
perceived as arduous and necessitates meticulous documentation
(Karre et al., 2023). Figure 1 illustrates an example of a VR bowling
alley game (Kandhari, 2023) in a UNITY development editor mode
to understand the underlying details required to elicit and specify
requirements for VR software. We can observe articles like pins,
balls, gutters, scoreboards, light sources, and walls populating in the
three-dimensional scene. Each article holds distinct VR-specific
properties like layout information, scale, material, gravity, mass,
audio, ray-casting, object on collision, object rigidity, light sources,
motion, rotation, occlusion, angular drag, object kinematic
properties, interpolation of an object, wobble effect of object, VR
participant locomotion, environment depth, scene rendering,
synchronous–asynchronous VR participant task-action responses,
control flow, and data flow of overall events. In comparison to two-
dimensional or three-dimensional graphics, the complexity of
requirements for VR software is significantly higher.
Consequently, the requirement engineering process for VR scenes
becomes multi-faceted and intricate. In order to facilitate the process

FIGURE 1
VR bowling alley game in a developer mode (UNITY Engine)—point-of-view 1 and 2.

Frontiers in Virtual Reality frontiersin.org02

Karre and Reddy 10.3389/frvir.2024.1471579

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1471579

of requirement engineering for the development of VR products, we
introduce a model-based tool called the virtual reality requirement
specification tool (VReqST). This tool adopts a model based
template approach, which means that it provides a structured
framework for capturing and organizing requirements for the VR
technology domain. It is designed to assist the VR community in
specifying requirements for the creation of enterprise VR software.

2 Materials and methods

2.1 Virtual reality domain model template

Why is a model-based understanding of the VR technology
domain required?—a virtual reality software system strives to induce
targeted behavior in an organism (predominantly a human or an
animal) using artificial sensory simulation (LaValle, 2020). VR
hardware and software have evolved independently, causing
disparity in the overall evolution of VR as a domain.
Consequently, it has become difficult for VR practitioners to
build portable and cross-platform VR products. Several attempts
have been made to standardize VR as a domain through standards
like Virtual Reality Modeling Language (VRML) by W3C (1997),
(COLLAborative Design Activity (COLLADA) by Sony Computer
Entertainment Inc. (2004), O3D by Google Inc. (2010), Filmbox
(FBX), GL Transmission Format (glTF), and OpenXR. These
standards have failed due to the lack of interoperability support
between VR software and VR hardware (Brennesholtz, 2017).
Following are few detailed insights into these prominent
standards and the reasons for their adoption failure.

VRML (W3C, 1997) is a file format for describing three-
dimensional (3D) interactive vector graphics, designed
particularly for the web. It allows the creation of 3D scenes and
objects to be viewed in a web browser or a standalone VRML
browser, called a “player.” VRML files can be created and edited
using various 3D modeling software and can include textures,
lighting, physics properties, animations, and behaviors. VRML
has been replaced by X3D (ISO/IEC 19775-1) as the standard for
3D web graphics.

O3D was a web-based 3D graphics application programming
interface (API) developed by Google as an alternative to Flash and
other 3D technologies. It was designed to enable the creation and
display of interactive 3D graphics in web browsers without the need
for additional plugins or software. O3D provided a JavaScript API
for creating and manipulating 3D scenes, objects, and animations
and supported features such as lighting, texturing, and physics. O3D
was intended to make it easier for web developers to create and share
3D content and to provide a more immersive and interactive web
experience for users.

COLLADA is a royalty-free, XML-based file format for 3D
digital assets. It was developed by the Khronos Group, an
industry consortium focused on the creation of open standards
for 3D graphics, and is used for exchanging 3D models and scenes
between different applications and platforms. COLLADA supports a
wide range of 3D modeling features, including geometry, textures,
lighting, animations, and physics. It is designed to be platform-
independent and can be used to exchange 3D assets between
different operating systems, hardware platforms, and software

applications. COLLADA files can be exported and imported
using a variety of 3D modeling tools, game engines, and other
software programs, making it a popular choice for interoperability in
the 3D graphics industry. COLLADA is often used for creating and
sharing 3D models and scenes for use in real-time 3D applications,
such as games, simulations, and virtual reality experiences. It is also
used in the film and television industry for creating 3D visual effects
and animations.

Despite initial interest and support, all these standards failed to
gain widespread adoption due to several challenges, as
discussed below:

• Limited browser support: At the time of VRML’s and O3D’s
introduction, few web browsers supported the format, making
it difficult for users to view and interact with VRML content.

• Complexity: COLLADA is a complex and powerful file format
that supports a wide range of 3D modeling features. This
complexity can make it difficult for some users and developers
to work with and can lead to issues with interoperability
between different applications and platforms.

• Performance issues: VRML and O3D files could be large and
complex, leading to slow loading times and poor performance
on many systems.

• Lack of standardization: VRML lacked a clear and consistent
set of standards, making it difficult for developers to create
consistent and reliable content.

• Limited authoring tools: There were few user-friendly tools
available for creating VRML content, making it difficult for
non-technical users to create and share their own 3D models.

• Competition: VRML faces competition from other
technologies such as Flash and Java 3D, while O3D
competes with WebGL, Three.js, and Unity. Similarly,
COLLADA faces competition from other 3D file formats,
such as FBX and glTF, which offer similar capabilities and
have gained wider adoption, further reducing the appeal of
VRML, O3D, and COLLADA.

• Limited use cases: VRML and O3D were primarily used for
creating 3Dmodels and environments for the web and did not
have a wide range of other applications, limiting its appeal.

• Lack of community and developer support: COLLADA and
O3D did not have strong community or developer support,
making it difficult for the technology to gain momentum and
attract a critical mass of users and developers.

On other end, formats like FBX and glTF and have gained wide
popularity due to their proprietary in nature.

FBX is a proprietary file format used for exchanging 3D digital
assets between different applications and platforms. It was
developed by Kaydara and owned by Autodesk Inc., which was
used for exchanging 3D models, animations, and other assets
between different 3D modeling tools, game engines, and other
software programs. FBX supports a wide range of 3D modeling
features, including geometry, textures, lighting, animations, and
physics. It is designed to be platform-independent and can be
used to exchange 3D assets between different operating systems,
hardware platforms, and software applications. FBX files can be
exported and imported using a variety of 3D modeling tools, game
engines, and other software programs, making it a popular choice for

Frontiers in Virtual Reality frontiersin.org03

Karre and Reddy 10.3389/frvir.2024.1471579

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1471579

interoperability in the 3D graphics industry. It is often used for
creating and sharing 3D models and scenes for use in real-time 3D
applications, such as games, simulations, and virtual reality
experiences. It is also used in the film and television industry for
creating 3D visual effects and animations. As it is a proprietary
format, it is not open to the public. Thus, users must have a license to
use the FBX software development toolkit and underlying tools for
working with this format. However, FBX is widely supported by
many 3D modeling tools and game engines and is a popular choice
for interoperability in the 3D graphics industry.

glTF, on the other hand, is an open, royalty-free file format for
3D digital assets. It was developed by the Khronos Group, an
industry consortium focused on the creation of open standards
for 3D graphics, and is used for exchanging 3D models and scenes
between different applications and platforms. glTF is designed to be
lightweight and efficient, with a focus on real-time 3D applications,
such as games, simulations, and virtual reality experiences. It
supports a wide range of 3D modeling features, including
geometry, textures, lighting, animations, and physics, and is
designed to be platform-independent and easy to use. glTF is an
open standard, which means that it is freely available to the public
and can be used and implemented by anyone. It is supported by a
wide range of 3D modeling tools, game engines, and other software
programs and is becoming an increasingly popular choice for
interoperability in the 3D graphics industry. glTF is often
compared to other 3D file formats, such as COLLADA and FBX,
which offer similar capabilities. However, glTF has several
advantages over these formats, including its lightweight and
efficient design, its focus on real-time 3D applications, and its
open and royalty-free status. As a result, glTF is gaining
popularity as a modern and flexible file format for exchanging
3D assets between different applications and platforms.

In contrast, despite being proprietary (in the case of FBX) and
open, royalty-free (in the case of glTF), they are not widely
acceptable due to volatility in their underlying meta-model of the
virtual reality technology domain. For example, consider a human
with little or no awareness of the interference (LaValle, 2020). Such a
human, through a software system, aspires to simulate a real-world
environment as an immersive three-dimensional (3D) environment,
primarily using 3D computer-generated graphics. Various human
sensory aspects like auditory, haptic (through force), olfactory,
vision, human motor, proprioception (body position and
movement), and cognitive capacities are experienced through this
system. Immersion and presence are ideal states of a VR software
system but are not necessary prerequisites for engagement and
interaction. Despite the increase in the computation power of VR
hardware, VR software systems do not adequately achieve realism
through underlying VR software. VR hardware and VR software
have evolved independently, leading to severe platform
fragmentation. Such challenges still continue with FBX and glTF
standards. Recently, attempts have been made to support
interoperability between VR software and hardware using
OpenXR standard APIs (Group, 2019).

OpenXR is an open standard for virtual reality and augmented
reality devices, developed by the Khronos Group, an industry
consortium focused on the creation of open standards for 3D
graphics. It provides a common, cross-platform API for accessing
and controlling VR and AR devices, allowing developers to create

applications that can run on a wide range of devices without the need
for custom integration. It was initially designed to simplify the
development and deployment of VR and AR applications by
providing a single, unified API that can be used across different
devices and platforms. This allows developers to create applications
that can run on a wide range of devices without the need to write
custom code for each device or platform. OpenXR is an open
standard, which means that it is freely available to the public and
can be used and implemented by anyone. It is supported by a wide
range of VR and AR device manufacturers, software companies, and
other organizations and is becoming an increasingly popular choice
for cross-platform development in the VR and AR industry.
OpenXR is still in the process of being developed and is not yet
a final, stable standard. However, it is expected to be released in the
near future and is already being used by some developers and
organizations for cross-platform VR and AR development.

2.2 Attributes for VR software development

Overall, the available standards are either in draft or require
more comprehensive usage/feedback within the VR practitioner
community. Various commercial VR providers proposed and
practiced variants of the VR conceptual model. These models are
open-ended and do not permit interoperability to meet the
necessities of a bare-minimum VR software system. At a
minimum, a VR software system should depict components like
scenes, scene objects, cameras, action responses, and behavior
outcomes. However, the existing conceptual models do not
provide common control and data flow to facilitate constructing
a bare-minimumVR software system. Thus, we address the problem
by formulating the following research questions:

RQ: What constitutes a meta-model of a bare minimum VR
software system?

Conceptualizing a meta-model for VR systems requires a
thorough understanding of VR as a domain in addition to
understanding VR systems in application domains like healthcare
and banking. We made an unsuccessful attempt by conducting a
systematic literature review to understand what constitutes a bare-
minimum VR software system. The results were obsolete and no
longer significant to comprehend contemporary VR software
systems. Most of the primary and secondary studies conducted
by Levy and Bjelland (1994) and Sherman and Craig (2003)
suggested superficial information on the workings of a typical VR
software system. Most secondary studies present VR from an
application point of view with no precise details on the
underlying aspects of VR as a domain. We found studies that
explain VR as a software system applied in various fields like
education, tourism, simulation, healthcare, and design
applications with no underlying information about using the
constructs of a bare-minimum VR software system. Given the
limited academic literature, we adopted the Socio-Technical
Grounded Theory (STGT) approach (Hoda, 2021) to investigate
components of bare-minimum VR software systems.

STGT is a modern version of traditional sociological Grounded
Theory methodology, specifically designed for software engineering

Frontiers in Virtual Reality frontiersin.org04

Karre and Reddy 10.3389/frvir.2024.1471579

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1471579

and other socio-technical domains. It is based on over 15 years of
experience and combines socio-technical principles with grounded
theory methods to explore the intersection of technology and
society. STGT is intended to provide increased clarity and
flexibility in its methodological steps and procedures (Hoda,
2021). It is an iterative and incremental research method using
available resources with abductive reasoning for theory
development. As per the STGT approach, the following
particulars represent the boundaries of our work:

• Domain and actors: VR is our domain, and the VR
practitioners who take part in VR software development
are considered the actors. In this study, VR designers,
developers, acoustic engineers, VFX artists, VR testers, UX
engineers, release engineers, etc., are considered VR
practitioners.

• Phenomenon: A meta-model for VR, illustrating a bare-
minimum VR software system

• Data/tools/techniques: Qualitative data collected through
informal interviews, VR SDKs, and VR standards.

• Researcher: This study is reviewed and managed by VR
experts who act as researchers.

Below are the detailed steps that are required to be applied to
conduct the STGT in practice:

• Define the socio-technical research context: This involves
understanding the phenomenon being studied, the domain
and actors involved, the researcher’s role, and the nature of the
collected data.

• Conduct basic data collection: Data are collected through
various methods, such as observations, interviews, and
document reviews, focusing on the socio-technical aspects
of the research context.

• Analyze data: The collected data are analyzed using inductive
and deductive reasoning, identifying themes, patterns, and
concepts related to the research question.

• Develop emergent or structured theory: A theory should be
developed based on the analyzed data, using either an
emergent or structured approach, depending on the nature
of the research question and the data collected.

• Iterate and refine: The previous steps should be repeated,
refining the theory and updating the analysis as new data are
collected and analyzed.

• Report findings: The findings should be documented and
reported, ensuring that the research process and the
developed theory are transparent and accessible to others.

Based on the STGT approach, we defined our research context
as follows.

Research context: The proprietary standards failed to create
cross-platform support for VR software, driving the VR
technology domain into a platform-dependent system.

We relied on the following resources to gather the data needed to
establish the theory for constructing a meta-model for VR software
systems: informal interviews, reviewing VR SDKs, and reviewing VR

standards. These are detailed below to understand the criteria of our
data collection approach.

2.2.1 Informal interviews
We conducted informal interviews with developer communities

of UNITY Technologies, Epic Games, Khronos Group (OpenXR),
and the VR/AR Association (UK/APAC) for nearly 6 months
(October 2021 to April 2022). These interviews aimed to
understand practitioners’ perspectives of a bare-minimum VR
software system in practice. Participants with a minimum of
5 years of VR development experience were considered for
interviews. In total, 39 VR practitioners participated. The
following questions were the basis for the informal interviews.

• What do you consider the desired elements of a meta-model
for a VR software system?

• Do current VR development tools explain elements of a bare-
minimum VR software system?

• Did you build any supporting tools for VR? If yes, how did
they gather meta-information about a bare-minimum
VR system?

2.2.2 VR SDK selection
Our interactions with VR practitioners led us to review widely

used VR SDKs like UNITY3D (2022), Unreal Game Engine (2022),
CryEngine Cry (2021), AframeJS (2022), and Amazon Lumberyard
(2022). We examined SDK source code, underlying classes, and
white papers. All other non-technical proprietary materials are
excluded from examination.

2.2.3 VR standards’ selection
Interactions with VR practitioners led us to explore VR

standards in detail. We considered prior standards—VRML
(W3C, 1997; X3D, 1997), WebXR, and O3D (Google Inc., 2010),
and prevailing standards—OpenXR (Group, 2019) and IEEE VR/
AR Working Group for our study. Additionally, we examined peer-
reviewed publications to understand the components of a meta-
model for a bare-minimum VR software system.

We used the open coding method (Strauss and Corbin, 1967) to
annotate the interview transcripts, VR standard documentation, and
VR SDK documentation with essential details. Our annotation
criteria are to check for the presence of elements that explain the
constructs of a bare-minimum VR software system and depict the
control and data flow among them. These annotations are linked
with generalized codes, which have the same meaning as our
annotation criteria. These codes are further generalized into
common labeled concepts. The researcher has the flexibility to
define the concept labels. The concepts are ordered into a
category goal for our study. Figure 2 explains a few examples of
open codes linking overall concepts and categories to provide an
overall understanding of a bare-minimum VR software system.

Based on the codes generated using open coding, we used
Abduction Reasoning (Hoda, 2021) to theorize a meta-model for
a bare minimum VR software system. Abductive reasoning helps
researchers conduct data analysis through different means such as
hunches, clues, metaphors or analogies, symptoms, patterns, and
explanations. This approach opens various avenues for creative
thinking and theory development. Following are the data points

Frontiers in Virtual Reality frontiersin.org05

Karre and Reddy 10.3389/frvir.2024.1471579

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1471579

and observations captured to depict bare-minimum concepts that
are found to constitute a VR software system. These concepts are the
building blocks of a meta-model understanding of a VR
software system.

• Scene: A 3D environment or space with (un)limited
dimensions in terms of length, breadth, and height with
elements operating together as a whole in their respective
parts. It is referred to as a “play area” in VR SDKs and “virtual
operating space” in most VR standards.

• Article: A 3D object with specific dimensions, state, and
physical properties, including material type, texture, and
color. It also has other properties like Pixel/Voxel type,
CanCastShadow, IsRigidObject, IsCollidiable, CanRotate,
and IsLuminous. These objects are engaged as static or
interactable with the character within a given scene.

• Action: Any engagement between two or more articles leads to
interaction, causing a known/unknown outcome. The engagement
may be internal and external to objects within the prescribed scene.

• Audio: This element is associated with the scene and article. A
scene may or may not have background audio. An article may
or may not give rise to audio internally or externally due to an
action by another article within the prescribed scene.

• Behavior: The action’s outcome and the object’s transformation
within the prescribed scene.

• Viewsource: An initial viewpoint of a person trying to
experience the scene. It is called a camera in VR SDKs and
viewpoint in VR standards.

• Timeline: All the possible events are categorized into
synchronous and asynchronous events that are based on a
trigger, i.e., due to external stimuli. There is a possibility of
non-trigger-based synchronous and asynchronous events that
are within the article and will not be based on a trigger, i.e., not
due to external stimuli.

The culmination of the above concepts varies between various
VR standards and VR SDKs based on their levels of abstraction and

nomenclature. However, the overall concepts described above
represent the bare-minimum set to construct a VR software
system, and they can be consistently observed across various VR
standards and VR SDKs in different forms. To understand how
SDKs perceive the same underlying meta-model elements
differently, we present examples using WebXR APIs and
AFrameJS VR scenes. Figure 3A shows a WebXR scene
presenting no-audio 3D environment with a centered view-
source. The scene features cube articles placed at a particular
height, which change color when clicked but otherwise exhibit no
interaction. Figure 3B shows an AFrameJS scene presenting a no-
audio 3D environment with a centered view-source. In this scene,
articles of varying sizes are placed at a distance and exhibit a change
in terms of their dimension in response to any external intervention,
with no actions taking place. These two scenes are different and are
built using different VR SDKs. These two SDKs work under different
meta-model concepts and code templates. The WebXR-based scene
is obsolete as prevailing browsers no longer support this standard.
The AFrameJS based scene is supported by JavaScript-based
browsers only (Chrome, Firefox, etc.). These two scenes are built
for the web and are not compatible with high-end head-mounted-
device consumption. One of the SDKs, WebXR, is now deprecated,
thus limiting the portability of all WebXR scenes and causing
platform fragmentation. Such gaps can be avoided if they are
built using a shared underlying meta-model of VR. Considering
these observations, we provide our steps toward developing a role-
based model template that represents a shared meta-model for a VR
software system.

2.3 Virtual reality software system
meta model

The Unified Modeling Language is a programming language
with an independent notion for specifying, visualizing, constructing,
and documenting systems. It is an Object Management Group
(OMG) standard language for object-oriented modeling. The

FIGURE 2
Common codes from interview study.

Frontiers in Virtual Reality frontiersin.org06

Karre and Reddy 10.3389/frvir.2024.1471579

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1471579

UML infrastructure is defined as a four-layer architecture, as shown
in Figure 4.

• Level M3 (meta–meta-model layer) defines a language for
specifying meta-models. The meta-object facility is an
example of a meta–meta-model.

• Level M2 (meta-model layer) contains models that specify
modeling languages. The UML meta-model and the common
warehouse meta-model (CWM) are examples of meta-models.

• Level M1 (model layer) contains models that describe
semantic domains. The model layer consists of models
expressed in languages specified by M2 meta-models.

• Level M0 (user data) consists of object configuration specified
by the models at level M1.

The UML was designed primarily as a notation for modeling a
single application, and its use to model application families is

problematic. The role-based meta-modeling language (RBML) is
a UML-based language extension that supports rigorous
specification of patterns that characterize a family of design
models proposed (Kim et al., 2003). As RBML uses UML syntax,
UML tools can be used to create RBML specifications. A RBML
specification consists of a set of role models that describe pattern
properties from different perspectives with additional details. A
variant of the RBML that facilitates the generation of compliant
models from pattern descriptions is used in this work. Template
diagrams rather than role models are used to specify families of
models. The UML models are obtained from template diagrams by
binding the template parameters to actual values.

A Role represents a specific set of responsibilities, behaviors, or
functions within a system or model. It defines expected behaviors
and interactions without specifying the concrete implementation.
Roles are typically more abstract and focus on the purpose or
function an entity fulfills in a given context. In contrast, A
Template is a predefined structure or pattern that can be reused
and instantiated multiple times. It provides a blueprint for creating
consistent instances of a particular element or component.
Templates are more concrete and focus on the structure and
attributes of an entity. In practice, we can use both roles and
templates as part of a meta-model, where roles help define the
abstract behaviors and interactions between entities and templates to
provide concrete implementations or structures for those roles. For
example, a Developer role represents the responsibilities and
interactions of a developer in the process, and
DeveloperTemplate defines the specific attributes and structures
of a developer entity in the system. This combination allows the
model to represent both the dynamic and behavioral aspects (with
roles) and the static and structural aspects (with templates) of the
system. As the focus is on illustrating static and structural aspects of
a VR software system, as part of our work, we use the notion of
templates to describe the meta-model of the VR technology domain.

Figure 5 illustrates an example of a class diagram using RBML
specifications to describe a meta-model system that authorizes a
requestor by identifying the desired operation from the authorizing
repository. Here, |Requestor, |Authorizer, and |AuthRepository
are class templates. |Requestor carries an attribute called |reqId as

FIGURE 3
Example VR scene built using WebXR APIs and AFrameJS. (A) A WebXR scene with a centered-view source. (B) A AframeJS scene with a centered-
view source.

FIGURE 4
UML four-layered meta-model architecture.

Frontiers in Virtual Reality frontiersin.org07

Karre and Reddy 10.3389/frvir.2024.1471579

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1471579

part of the class attribute template. |Authorizer carries an attribute
function called |Operation with parameters |reqID and |params*;
in other words, any additional domain specification parameter is
allowed with a multiplicity of one to many along with instantiation
multiplicity through do_|Operation as part of its attribute
template. |AuthRepository class template carries |authreqId
and |authoperId as part of the attribute template and
|checkAuth with parameters |reqId and |operId as part of the
operation template. The |Requestor and |Authorizer class
templates are associated with the association template called
|accesses with multiplicity parameters such as |m and |n, where
|m.lower > � 0 and |n.lower > � 0. |Authorizer and
|AuthRepository class templates are associated with an
association template called |checksWith with multiplicity
parameters such as |x and one, where |x.lower > � 0. The
meta-model (M2) in Figure 5 will aid technology domain-
specific software practitioners to adopt and execute the required
authorization workflow in underlying applications based on their
model instances (M1) to eventually develop application
object models (M0).

Based on role-based meta-modeling language, we present a
role-based model template to illustrate meta-model for Virtual
Reality as the technology domain. Figure 6 presents the role-
based model template class diagram of a bare-minimum VR
software system. Template elements are marked with the “|”
symbol. As shown in Figure 6, |Scene, |Viewsource, |Time,
|Behavior, |Physics, |Requestor, |Article, |Audio, |State, and
|Action are called the class templates. Each class template consists
of two sections, namely, the attribute template and the operation
template. For example, the |Audio class template has |sourcetype,
|noise, |init, and |inext as parts of the attribute template section and
|runsound, |syncsound, and |asyncsound are listed as parts of the

association template section. Each association template is defined with
a cardinality [1..*], i.e., one to many with |param* as unlimited
parameters. Each role model template class is linked with UML-based
relationship specifications with association definitions like |acesses,
|Impartswith, |RendersInto, |Syncwith, and |Validateswith. The
virtual software system is invoked by a |Requestor class template.
|Audio, |Action, and |Scene class templates are initiated
synchronously to load underlying |Article(s) with their |State and
respective |Behavior(s) through a |ViewSource onto |Scene.
|ViewSource initiates all other class templates asynchronously
with |Time.

Figure 7 illustrates the UML four-layered meta-model
architecture, deduced by considering the model template for the
VR technology domain in Figure 6.

• Level M3 (meta–meta-model layer) defines a language for
specifying meta models, i.e., RBML meta-object factory. It
helps us illustrate class templates, attribute templates,
operation templates, association templates, multiplicity
parameters, and instantiation multiplicity.

• Level M2 (meta-model layer) contains models that specify VR
software system meta-models. It describes the class templates,
attributes, associations, and multiplicity parameters related to
the VR technology domain.

• Level M1 (model layer): Using the meta-model, we create tools
associated with the VR technology domain, like software
development toolkits, domain specification languages, and
productivity tools for the VR community to ease design,
testing, coding, and release.

• Level M0 (end-user application): This layer presents the end-
user applications developed using the tools developed by the
VR community.

FIGURE 5
RBML class diagram of the model template for requestor authorization workflow.

Frontiers in Virtual Reality frontiersin.org08

Karre and Reddy 10.3389/frvir.2024.1471579

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1471579

To understand the instantiation of the VR meta-model into
the VR application, we bring an example that provides bindings
between the meta-model and its related application using a
virtual reality soccer training application developed by Rezzil
Inc. Figure 8 provides us a VR scene where the soccer trainee is
required to perform a task called “Kick.” Table 1 provides the
bindings for a test case to verify the action:kick and the response
audio:splash associated with article:ball. The example bindings
can be used as part of a novel VR test case generator tool. This
table provides a correlation between the meta-model attributes
and potential test-case generator application-specific attributes
for a VR soccer training application instance. Using the test-case
application specification, a custom test-case generator tool can
be developed to generate test cases for a game like VR
applications.

2.4 Extending VR meta-model to domain-
specific and context-specific applications

The role-based model template for a bare-minimum VR
software system can be extended to an application centered on a
domain or to a context within a given domain. In the context of
software applications, a domain refers to the specific field or area of
expertise that the software program is designed to serve. It represents
the concepts, processes, and rules that define the problem space the
software program aims to solve. Application domains vary widely,
ranging from healthcare and finance to gaming and social media.
Domains are often associated with specific industries or business
processes and may involve specialized terminology and workflows.
Software developers use domain models to represent these domains
and create tailored software solutions to meet their needs. By

FIGURE 6
Role-based model template of a bare-minimum VR software system.

Frontiers in Virtual Reality frontiersin.org09

Karre and Reddy 10.3389/frvir.2024.1471579

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1471579

understanding the domain, developers can design context-specific
applications and effectively address the challenges users face in that
field. As shown in Figure 9, we can visualize the top–down stack of
layers using the VR model template for domain- and context-
specific applications by extending underlying attributes from
bare-minimum attributes to domain- and context-specific
attributes.

For better illustration, let us consider that x represents the bare-
minimum attributes of the VR model template called V0, where
V0(x) represents the collection of bare-minimum attributes that
belong to the VRmodel template. Now, y represents the customized
attributes with an extended role-based model template called V1,
where V1(y) represents the collection of extended attributes
belonging to the extended VR model template. Thus, as per
Equation 1, the collection of bare-minimum attributes from the
VR model template and customized attributes together now
constitutes the overall extended role-based model template.

V0 x() ∪ V1 y() � V01. (1)

For example, |material is one of the bare-minimum attributes of
the |Article class in the VR model template from Figure 6, which
belongs to V0(x). This is a bare-minimum attribute as it is generic
across all the VR developer engines. However, customized attributes
like |roughness are not considered bare-minimum properties of a
|material; they are unique to specific VR engines and belong toV1(y),
extending the bare-minimum model template. In contrast to the
domain-specific model templates V2, these are further extended by
including domain-specific attributes represented by z, where V2(z) is
the collection of all such domain-specific attributes that belong to the
domain-specific VR model template, as shown in Equation 2.

V0 x() ∪ V1 y()() ∪ V2 z() � V012. (2)

For example, consider the pharmacology domain in healthcare,
where a domain-specific practitioner (pharmacologist) uses various
chemicals to develop, identify, and test the drugs to cure, treat, and

FIGURE 7
UML four-layered meta-model architecture for the virtual
reality domain.

FIGURE 8
VR soccer training application by Rezzil Inc.

TABLE 1 Example bindings for a test-case of kicking the ball using the
template class.

Meta-model parameter Application-specific element

|Action Kick

|Audio Splash

|Article Ball

|Action::|kinematic Kick::kinematic

|Action::|motion Kick::motion

|Action::|syncEvent Kick::syncEvent

|Audio::|init Splash::init

|Audio::|syncsound Splash::syncsound

|Impartswith impartswith

|accesses accesses

|x *

1 1

|m *

Frontiers in Virtual Reality frontiersin.org10

Karre and Reddy 10.3389/frvir.2024.1471579

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1471579

prevent diseases. A microcentrifuge is one of the many apparatus
they rely on to spin down and separate chemical particles in small
volumes of liquid samples. Consider a pharmacology domain-
specific VR scene developed to train pharmacologists; a pre-
curated domain-specific article, such as |microcentrifuge, will be
equipped with |material properties that are unique to the
pharmacology domain. Similarly, the |microcentrifuge can be
used for different context-specific use cases, such as the
molecular separation of cell organelles (like various nuclei, DNA,
or RNA), phenol extraction, and studying the effects of drugs on
various biological systems. Suppose a VR training scene is developed
for pharmacologists for such context-specific applications Vc. In
that case, VR practitioners must rely on context-specific knowledge
and standard operating procedures to design the VR application. In
such cases, context-specific attributes will be included as part of VR
application development, which is still an extension of the domain-
specific model template. As shown in Equation 3, if Vc is a context-
specific application, it constitutes model attributes ofV012, which are
from domain-specific model template and combination of various
contexts, i.e., Vc1, Vc2, Vc3 . . .Vcn. Here, n can represent an infinite
number of contexts for a given application domain.

Vc � V012 + Vc1 + Vc2 +/ . + Vcn where 0< n<∞ . (3)
Figure 10 illustrates this example by presenting the model

attributes in layers. This figure shows that |material is a bare-
minimum model attribute (V0), |roughness is a custom model

attribute related to the VR technology domain (V01), and
|microcentrifuge is a pharmacology domain-specific model
attribute (V012), which is a sub-domain of the healthcare
domain. |picomicrocentrifuge is a context-specific model
attribute (Vc1) that belongs to a specific use case of
pharmacology experiments, which inherits the properties of
|microcentrifuge but maintains distinctive properties in practice.

FIGURE 9
Visualizing top–down stack layers on extending the VR meta-model.

FIGURE 10
Visualizing example of extending the VR meta-model to the
healthcare (Pharmacology) application domain.

Frontiers in Virtual Reality frontiersin.org11

Karre and Reddy 10.3389/frvir.2024.1471579

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1471579

Thus, it is a unique context-specific model attribute within the
pharmacology domain. Thus, a role-based model template for a VR
software system can be extended to a customizable, VR technology
domain-centered model template. It can be extended further to a
domain-specific application and a context-specific applications
within a given application domain.

Figure 11 illustrates an example of a sphere game object. In
Figure 11i, the sphere shows bare-minimum properties, including
dimension, color, and illumination. In Figure 11ii, the sphere shows
variations in the roughness property, which is not a bare-minimum
attribute. In Figure 11iii, the sphere illustrates a domain-specific
game object, such as volley ball and basketball, with variations in
both sphere dimension and roughness. In Figure 11iv, a context-
specific game object is shown, representing various balls used in the
game of cricket. Thus, a role-basedmodel template for a VR software
system can be extended into a customizable, VR technology domain-
centered model template. It can be extended further to a domain-
specific application and a context-specific application within a given
application domain.

2.5 Model-based requirement specification
for virtual reality software

2.5.1 VR authoring tools
An authoring tool is a software application or platform that

enables users to create content in a cohesive and interactive
format, including text, code, graphics, audio, and video. These
tools simplify content creation, making it accessible even to those
without advanced technical skills. In the context of the virtual
reality technology domain, VR authoring tools are explicitly
created to develop interactive and immersive virtual reality
content. They enable users to develop VR experiences without
requiring extensive programming knowledge. They offer an
intuitive user interface, integration of multimedia assets,
support for a wide range of VR devices, collaborative features
across various VR developer engines, and integration support to
external software like learning management systems to host VR
content. Sometimes, VR authoring tools cater to different
expertise levels, offering pre-made interactions and scenes for
non-specialists or customizable content for specialists.
Unfortunately, most VR authoring tools do not incorporate
authoring capabilities as an integral feature in the VR

developer tools. Due to serious platform fragmentation issues
within the VR technology domain, individual VR practitioners
develop custom plugins to streamline the VR content to modify
and distribute across distinct VR developer engines. Examples of
VR authoring tools include AirVu Authoring Tool, LearnBrite,
Storyflow, and CenarioVR. These tools cater to various
industries, such as education, healthcare, manufacturing, and
customer service, providing customizable solutions predominantly
for developing immersive VR training modules. It is pretty rare to
observe a VR authoring tool that conventional VR practitioners
can use as a general-purpose tool. This is primarily because the
artifacts generated from such VR authoring tools may not work
across different VR developer engines and do not support multiple
VR devices.

2.5.2 VR requirement specification tool
Requirement specification tools help manage, organize, and

document software requirements throughout the development of
software products. Their primary goal is to ensure that all
stakeholders involved in a software project have a clear
understanding of the requirements and that the final product
aligns with the initial vision. Such tools are required to support
the requirement creation, provide traceability, enable
collaboration, manage changes, prioritize requirements, and
offer version control of requirements, among other features.
In the context of the virtual reality technology domain, there
is no dedicated requirement specification tool that meets these
domain-specific needs. Due to the lack of VR-centered
requirement specification tools, the VR community is heavily
relying on conventional approaches like software requirement
specification templates and task tree-based requirement
specification templates.

As shown in Table 2, we illustrate the differences between
authoring and requirement specification tools. In brief, authoring
tools are for authoring and organizing content based on
requirements, while requirement specification tools are for
managing and tracking requirements throughout development.
Furthermore, the authoring tools focus on clarity and conciseness,
while requirement specification tools provide a more
comprehensive approach to the management of requirements.
As there is a need for such comprehension in the VR technology
domain, we developed a model-based requirement specification
tool. In the following subsection, we provide more details about

FIGURE 11
Visualizing example of extending the VR meta-model to sphere game-object (these images are generated by AI). (i) A sphere with bare-minimum
properties. (ii) A sphere with variations of roughness property. (iii) A domain specific game object, volley ball and a basket ball. (iv) A context specific game
object, types of cricket game balls.

Frontiers in Virtual Reality frontiersin.org12

Karre and Reddy 10.3389/frvir.2024.1471579

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1471579

our novel requirement specification tool that can help
requirement analysts specify requirements with higher
precision and clarity.

2.5.3 Why use a model-based requirement
specification tool for VR?

From our previous systematic literature review (Karre et al.,
2024) on understanding requirement engineering methods for
VR products in practice, we observed that most VR practitioners
relied on approaches like conventional functional systematic
specification documentation, common scene definition
framework, and mental model techniques to specify
requirements for VR products. We observed from our
literature review (Karre et al., 2024) that due to a lack of
understanding about VR as a domain within the VR
community, novel tools are not practiced or adopted. Thus,
we envisioned developing a tool that works on the
foundations of a meta-model of a VR technology domain. The
practical benefits of model-based tools (Gonzalez-Perez and
Henderson-Sellers, 2008) motivated us to build a model-based
requirement specification tool for VR software. These benefits
are as follows:

• They reduce ambiguity and misinterpretation compared to
natural language specifications

• They provide better traceability between different levels of
requirements and system components, making it easier to
track how changes in one area impact others.

• Models can facilitate better communication between
stakeholders, including non-technical team members.

• The elements and constraints of the model can be more readily
validated against stakeholder needs and system constraints,
often through simulation or formal verification techniques.

• Model elements can often be reused across projects,
potentially saving time and effort in future
development efforts.

• As systems become more complex, model-based approaches
can help manage and analyze intricate relationships and
behaviors that might be difficult to capture with traditional
text-based specifications (Arshad et al., 2023).

2.6 VReqST—to specify VR requirements

The VReqST, i.e., “virtual reality requirement specification tool,”
is developed for requirement analysts of the VR community to

specify requirements using a role-based model template of the VR
software system (Karre et al., 2022). VReqST will aid requirement
analysts in describing scene properties, article properties, and action
responses between these articles in the given scene, along with their
state change and custom behaviors (like algorithms and logic
interpretation) that are to be executed in a defined timeline. Our
first iteration for VReqST was oriented toward a formal-
specification language with pre-defined code constructs. We
exchanged our early ideas with requirement analysts from the
VR community through various platforms. Based on the
feedback from the VR community, we simplified them into a
model template tool instead of evolving it into a formal-
specification language. In contrast, VReqST behaves as an
informal form of a specification language. In the following sub-
sections, we present the details about different model template(s),
their underlying validator(s), the architecture, tool overview, and
workflow of VReqST.

2.7 Model template and its validator

As mentioned in the previous section, model templates are
extensions of model concepts defined as part of the role-based
model template for VR software systems (Karre et al., 2022). These
model concepts are scenes, articles, action responses, behaviors,
and timelines. Each model concept constitutes model attributes
that act as properties of the respective model concept. Table 3
provides the mapping of model concepts and their model
attributes. In the case of VReqST, we represent each model
concept as a model template file. They are represented in the
JavaScript Object Notation (JSON) format. The model template
file contains model attributes, a minimum set required to capture
requirements for VR software products, as shown in Table 3. For
example, the model template file of the model concept called
“Article” contains one of the model attributes called
“IsKinematic”—a physics property of the article that can
execute motion when an external force is applied. The scope of
this attribute is Boolean, i.e., it can only hold either value “1” or “0,”
where “1” signifies that the respective article holds kinematic
physics property, whereas “0” signifies that the respective article
does not hold kinematic physics property.

All such validation rules for model attributes for a given model
template are defined as part of the underlying validator. Each model
template file (scene, article, action response, and timeline) has a
distinct validator file to validate the datatype and scope of the model
attributes, as shown in Figure 13. These validator files are also

TABLE 2 Comparison between authoring tools and requirement specification tools.

Feature Authoring tools Requirement specification tools

Focus Implement the requirements into design, mockups, or workflows Specify, track, and maintain requirements

Target audience Designers, developers, and subject matter experts Project managers, technical stakeholders, and customers

Key functions Structured workflows, attribute assignment, and requirement hierarchy Traceability, change management, version control, and specification

Use cases Early stage of design and development Throughout the development process

VR tool examples AirVu Authoring Tool, LearnBrite, Storyflow, and CenarioVR Task tree templates and conventional SRS templates

Frontiers in Virtual Reality frontiersin.org13

Karre and Reddy 10.3389/frvir.2024.1471579

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1471579

represented in the JSON format. The model template files and their
corresponding validator files are available as part of our
documentation (Karre, 2024a). Table 3 provides details of the
default naming convention for the model template file and
validator files for the respective model concept. The requirement
analysts can rely on VReqST documentation to specify requirements
in the model template file while eliciting requirements from their
stakeholders. These model template files will aid requirement
analysts in probing the requirements more accurately.

2.8 VReqST overview

VReqST is a web-based tool built using the
Mongo–ExpressJS–ReactJS–NodeJS (MERN) technology stack,
i.e., a ReactJS framework is for client-end web page rendering,
ExpressJS framework and NodeJS for server-end setup, and
MongoDB as a database to store the data. Figure 12 illustrates
the architecture of the VReqST tool. The source code, tool demo,
documentation, and sample requirement specification examples are
available as part of our resources (Karre, 2024a). Requirement
analysts of VR products are the target users of VReqST. This

web-based tool is designed to aid requirement analysts in
capturing requirements instantly and refer to them effortlessly.
This will eventually ease the work of VR designers and
developers by streamlining the development of VR software
products and enabling swift traceability to the original requirements.

As shown in Figure 13, there are two sections in the VReqST
tool, namely, authoring wizard and validator engine. Requirement
analysts interact only with the authoring wizard while specifying
VR software product specifications, whereas the validator engine
runs in the background. As shown in Figure 13, the requirement
analysts are required to start with scene-related details, i.e., the
scene model template is the first stage of the VR requirement
specification. Once the required model attributes of the scene
model template are composed, the specification is validated
using the scene validator. Upon successful validation, the
requirement analyst can compose an article model template, a
second stage of the VR requirement specification. All the
dependent scene model attributes are carried forward to the
article model template. The article model attributes are
validated using the article validator. Upon successful validation,
scene- and article-related model attributes are carried forward to
the following stage, i.e., action response, the third stage of VR

TABLE 3 VReqST model concepts with corresponding model attributes.

Model concepts Model template file Validator file Model attributes

Scene scene.json svalid.json _scenename, _sid,_slabel, _playarea, #pid, #length_playarea,

#breadth_playarea, #height_playarea, #comment,

#x_scenecenter, #y_scenecenter, #z_scenecenter,

_camera, IsSceneObject, trackingorigin, _initialcamerapos,

_viewport, _clippingplane, _horizon, _dof, _skybox,

_controllers, _gravity, _interaction, _nestedscene, _audio,

_timeline, _Opttxt1,usertype, uplayarea, initialupos,

uplayareacenter

Article article.json artvalid.json _objectname, _sid,_slabel, _IsHidden, _enumcount, _Is3DObject,

HasChild, shape, dimension, IsText, IsText3D, CastShadow,

ReceiveShadow, ContributeGlobalIlumination, IsIlluminate,

Transform_initialpos, Transform_initialrotation,

Transform_objectscale, repeattransfrom, XRGrabInteractable,

XRInteractionMaskLayer, TrackPosition,TrackRotation,

Throw_Detach, forcegravity,velocity, angularvelocity,

Smoothing_duration, attachtransform, hasmass, dragfriction,

angulardrag, Isgravityenable, IsKinematic, CanInterpolate,

CollisionPolling, aud_hasaudio, aud_type, aud_src, aud_volume,

aud_PlayInloop, aud_IsSurround, aud_Dopplerlevel, aud_spread,

aud_mindist, aud_maxdist,_Opttxt1, @context_img_source

Action response actres.json arvalid.json actresid, sourceObj, targetObj, IsCollision, response, comment,

Syncronous, repeatactionfor

Timeline timeline.json tvalid.json animate_trigSync, tsyncid, tsOntriggertrue, SyncObjList,
tSyncNote,

animate_nontrigSync, ntsyncid,ntsOntriggerfalse, ntSyncObjList,

ntSyncNote, animate_trigAsync, tasyncid, taOntriggertrue,

AsyncObjList, tAsyncNote, animate_nontrigAsync, ntasyncid,

ntaOntriggerfalse, ntAsyncObjList, ntAsyncNote, routine,

routeid, starttime, endtime, order

Frontiers in Virtual Reality frontiersin.org14

Karre and Reddy 10.3389/frvir.2024.1471579

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1471579

requirement specifications. The requirement analyst must define
all possible action responses between articles that are listed as part
of the article model template in the second stage. Along with all
possible action responses, the state of an article and its initial, final,
and transition states are to be defined. After completing the action
response model template, all the scene, article, and action response
attributes are carried into the customer behavior editor. This is the
fourth stage of authoring VR requirement specifications. The
custom behavior editor in VReqST will help requirement
analysts define behaviors using logic and conditional constructs.
For example, in the case of VR games, scoring criteria can be
codified as part of this stage. In the case of VR simulation scenes,
custom algorithms like co-location or locomotion can be codified.
The codified code constructs are validated based on the behavior
validator. After authoring behaviors, the requirement analysts are
required to present the overall specifications in a timeline. This is
the final stage of the VR requirement specification. The attributes
defined in all the previous stages can be presented as asynchronous
and synchronous events. A timeline validator validates the
attributes associated with the timeline model template. After
completing all the stages, a final specification file combining all
the model attributes will be published. This final specification is
now available for designers and developers to initiate VR software
product development. All the stages in VReqST are linear and

cannot be skipped, i.e., the specification will start with a scene,
article, action response, behavior, and timeline. We may not be
able to specify articles directly without specifying scene
information. We can navigate back to the respective stage if
validation of a given stage is complete. We shall go through the
detailed validation workflow of VReqST in the following
subsection.

2.9 VReqST validation workflow

Figure 14 illustrates an overall validation workflow of
specifications of the model template using the respective
validator. This section is divided into two parts: validation of
model template files and validation of the custom behavior editor.

2.9.1 Model template validation
Figure 14A provides detailed steps for validating the model

template file. There are four model templates in VReqST. This
applies to the scene, article, action response, and timeline model
template files; the steps for validating the model template file are
as follows.

• Step 1: The requirement analyst accesses the authoring
wizard and chooses a fillable model template (scene,
article, action response, or timeline). This fillable model
template contains all the model attributes. The
requirement analyst must choose the validate option upon
filling in all the required details for model attributes in a
given model template file.

• Step 2: The validate button will convert the filled
model template file into an abstract syntax tree with all the
model attributes. The validator file contains the validation
rules and validates the model attributes in the abstract
syntax tree.

• Step 3: If the validation is successful, the final model template
is processed by the specification processor, where all the
previous step’s model attributes are carried forward and
linked to support traceability. The finalized specifications
are presented to the requirement analyst. If the validation
fails, model attributes are to be revised per the validator logic
in the authoring wizard.

2.9.2 Custom behavior editor validation
Figure 14B provides detailed steps for validating the custom

behavior editor. As shown in Figure 13, stages 1, 2, 3, and 5 are
fillable model template files validated against respective validator
files. However, stage 4 in the authoring wizard contains a custom
behavior editor that allows requirement analysts to write custom
behaviors on articles and their action responses. These behaviors are
business rules with expected output for the corresponding output.
These business rules are use-case-based and vary from product to
product. The steps involved in validating the behaviors are stated
as follows.

• Step 1: The requirement analyst uses the WRITE wizard to
describe the behaviors using inbuilt code constructs like IF, IF-
ELSE, SWITCH, FOR, WHILE, DO, and DO-WHILE. The

FIGURE 12
VReqST architecture.

Frontiers in Virtual Reality frontiersin.org15

Karre and Reddy 10.3389/frvir.2024.1471579

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1471579

syntax of these code constructs does not follow any
specific programming language but follows a simplified
version, as prescribed in our documentation (Karre, 2024a).

The scene, article, and action response model attributes are
made available as part of the WRITE wizard to
specify behaviors.

FIGURE 13
Overview of VReqST author journey.

FIGURE 14
(A) Validation workflow of the model template in VReqST tool, (B) Customer behavior editor in VReqST tool.

Frontiers in Virtual Reality frontiersin.org16

Karre and Reddy 10.3389/frvir.2024.1471579

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1471579

• Step 2: If the behavior logic is specified according to the
prescribed code construct, the behavior logic is valid. The
valid behavior logic is listed in the READ and PUBLISH
wizard of the custom behavior editor. The READ wizard will
help requirement analysts review the written behavior logic. Out
of all the specified behaviors, the requirement analyst can pick
and choose the desired behaviors to be included in the final
specification. The PUBLISHwizard will help achieve this task. If
the behavior logic is invalid, it is required to be specified again as
per the prescribed code constructs defined as part of our
documentation (Karre, 2024a).

• Step 3: The published behaviors are converted into base-64 as
multi-line code snippets cannot be stored in JSON object files.
All the chosen behaviors from the PUBLISH wizard are
ordered under a single behavior file and are stored in
the database.

• Step 4: All the previous step’s model attributes are
carried forward and linked with the published behavior file
to support traceability. This step is carried forward into the
timeline model template, which is the final step of the
VReqST tool.

2.10 Understanding behavior and state
in VReqST

For example, to author “Behavior,” assume that we are building
a tic-tac-toe game in VR with two articles, circle (O) and cross (X). If
three of any one of these articles form a straight line (vertical,
horizontal, and diagonal) in a tic-tac-toe game, the player with the
respective article is deemed the winner. To author this behavior in
stage 4, we use the code snippet below using a CASE condition, and
everything in bold is the pre-defined code construct from
behave.json. The text in italics are articles from article.json, and
the rest is in the free-form text, which is not validated. The code
snippet construct in bold is validated using behave.json.

1: CASE # Circle OR Cross = true #
2: C1: forms straight vertical line = player:winner;
3: C2: forms straight horizontal line = player:winner;
4: C3: forms straight diagonal line = player:winner;
5: C4: player: next_step;
6: !

The requirement analysts can specify behaviors using in-built
code constructs. These code constructs do not follow
existing programming standards but are custom-made for
VReqST. They follow an inbuilt syntax that is simplified and
easy for a non-developer to use. After considering the feedback
from the VR community and considering that requirement
analysts are full-scale developers, we designed them as low-
code tools.

Similarly, “State” transition can be specified by defining state
parameters like initial and final states based on transition parameters
like event and target. For example, to describe the state transition of
sun-rise in VReqST, the requirement is to specify that while the sun
rises, the sun rays should cast a shadow and transition snow to water
in a specified time counter.

Listing 1 Example: State template.

{

“state”: [

{

“id”: “sunrise2013”,

“name”: “Sun Rise in New York”,

“initial”: “dark horizon”,

“transition”: [

{

“object”: [“Sun”,“trees”],

“event”: “rising”,

“target”: “sun ray cast shadow on all

assests from east to west”

},{

“object”: [“Sun”,”Snow”],

“event”: “rising”,

“target”: “turn the snow into water

gradually after 35 seconds”

}

],

“final”: “Display sunrise with cast shadow

on trees and snow converted to water

after 50 seconds”

}

]

}

2.11 VReqST features

Following are a few significant features of the VReqST tool that
are provisioned for requirement analysts to embrace based on the
sophistication of their VR software product:

• Bare minimum model template and attributes: VReqST
provides bare minimum model attributes related to specific
model concepts by default. These default model attributes are
illustrated in Table 3. The underlying validator file for the
respective model template file constitutes validation rules
associated with these bare-minimum attributes. The
requirement analysts can use these default model template
attributes to author simple VR software products.

• Implement new model template and attributes: The requirement
analysts can include new model attributes without altering the
bare-minimum model attributes for a given model concept. For
every newly implemented model attribute in the model template
file, a validation logic should exist in its validator file. For example,
if a new attribute called “color” [inspired by OpenXR standard
specification (Group, 2019)—XrColor4f structure] is added to
scene.json, its validation rule for variables (r, g, b, a) with datatype
as (float, float, float, float) and non-nullable should be included as
part of svalid.json.Thus, supporting newmodel attributes extends
the scope of capturing requirement specifications for VR. The
steps to update these files are available as part of our
documentation (Karre, 2024a).

• Managing specifications: The step-by-step process of
managing projects in VReqST and detailed screen-flow are

Frontiers in Virtual Reality frontiersin.org17

Karre and Reddy 10.3389/frvir.2024.1471579

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1471579

available in supporting documentation (Karre, 2024a).
Requirement analysts can rely on this document to manage
their VR requirement specification projects. Requirement
analysts can author requirement specifications for multiple
VR products through a project management page. Each
project follows the specification workflow mentioned as
part of Figures 13, 14. Requirement analysts can write,
save, edit, re-edit, and delete the authored requirement
specifications of their respective VR products.

2.11.1 Example specifications
We used VReqST to specify requirements for two VR

applications to understand the capabilities and shortcomings. We
specified detailed requirements for a VR bowling alley game and a
VR virtual art gallery that uses a limitless locomotion algorithm
called PragPal (Mittal et al., 2022). We developed these VR scenes
using the UNITY game engine (version 2022.2.16), compatible with
the Oculus Meta Quest 2 head-mounted device.

2.11.2 VR bowling alley game
A VR bowling alley game is a virtual facility where bowling is

played. It is a multiplayer game that follows all the bowling alley rules.
The game scene is played under a 30 ft (length) × 30 ft (breadth) ×
30 ft (height) virtual play area. The game contains a bowling ball, ten
pins, a pinsetter for setting the pins in a frame, an alley lane, and a
gutter that acts as a boundary for the alley lane. The game is controlled
by a control desk that registers the parties, registers bowlers, and
manages the party assignment to the game lanes. There are ten games
for each party player. The scores are displayed on the scoreboard. The
player from a party who scores the highest in all ten games wins. We
authored and shared the VR bowling alley game specifications with
the VR developer to design and develop the game. The final working
game (Kandhari, 2023) and the sample specifications are available as
part of our resources (Karre, 2024b).

2.11.3 VR virtual art gallery
The VR virtual art gallery is an endless corridor comprising two

walls running parallel to each other. The end users walk through the
gallery to explore the art exhibits on these walls and progress in the
forward direction. Under the influence of an underlying locomotion
algorithm, the users’ path becomes virtually limitless in a limited physical
space; in other words, within a fixed physical play area, the user can
navigate freely in a virtual play area. We authored the requirement
specifications of this virtual art gallery and the underlying limitless
locomotion algorithm using the VReqST to study the capabilities of
specifying algorithms using the behavior step. The final working game
(Mittal et al., 2022) and the sample specifications are available as part of
our resources (Karre, 2024b). This validation helped us conduct a unit
test of VReqST and demonstrate its capabilities of specifying custom
features and algorithms for a given VR scene.

3 Results

3.1 Validating VReqST in practice

How do we validate a requirement specification method?
Software requirements are not static and evolve throughout the

software development lifecycle. As the project progresses, new
requirements may arise due to changing user needs, technological
advancements, and stakeholder feedback. As a result, software
development teams must be agile and adaptable in managing and
accommodating these evolving requirements. Conversely,
requirement specifications are vital in ensuring that software
products meet the desired functionalities, performance, and quality
standards during this evolution process. Requirement specifications
serve as a guiding framework for the software development team
during requirement evolution. These specifications comprehend the
software’s intended behavior and enable the software practitioners to
make informed design decisions and develop solutions that align with
the specified requirements. By adhering to these specifications,
software development teams can create reliable, efficient products
that meet their users’ expectations. The consistency, completeness,
and correctness of requirement (R) specification (S) can only be
validated and verified under the context of a given domain (D)
(Gervasi and Nuseibeh, 2000). As shown in Equation 4, given the
assumption that the machine will perform as instructed by the
specification and that our model of the domain faithfully predicts
how the real world will behave (Gervasi and Nuseibeh, 2000),

S ∪ D ∈ R. (4)
These observations holds true even for VR software systems and

their VR practitioner community. However, the critical difference is
that the evolution of VR requirements is very difficult to track and
supervise unless there is a structured approach to comprehending VR
as a technology domain. VReqST aims to address this gap. VReqST is
developed to specify, maintain, track, andmanage the evolution of VR
software product requirements more precisely. Considering this as
our motivation, we reached out to the VR community to understand
howVReqST can disrupt this evolution and aid the VR community in
easing overall VR product development. In the following sub-sections,
we present our attempts to validate the adoption and impact of
VReqST in practice.

3.2 VR community adoption and feedback

We reached out to the VR community from the industry
through various channels, like LinkedIn, VR/AR meetups, online
VR summits, Discord XR Connect, the Khronos Group, Deloitte
Digital, and UNITY Unite Expo (2022 and 2023), to promote
VReqST for validation, adoption, and feedback. We clearly
defined our evaluation study’s objectives, ensuring they are
specific, measurable, achievable, relevant, and time-bound. This
ensures we receive a clear direction for our validation and helps
incrementally improve the tool for wider adoption. We reached
more than 500 practitioners from the VR community, of which only
101 participants have shown to deploy the tool in-house for
validation. Of these participants, 53 have actively participated in
iterations and helped us revise and improve the tool over time. These
participants include business analysts, VR product managers, VR
program managers, VR quality engineers, and VR developers. This
multi-year empirical study was conducted between October
2022 and January 2024. The steps followed by the practitioners
who have shown interest in implementing and validating VReqST in
practice are as follows.

Frontiers in Virtual Reality frontiersin.org18

Karre and Reddy 10.3389/frvir.2024.1471579

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1471579

• First, we shared the official VReqST documentation and
installation steps to help participants integrate the tool into
their regular processes and understand its intended use
(Karre, 2024a).

• We have made every effort to deploy VReqST in a way that
integrates seamlessly with their existing processes and scales
effectively with their existing requirement specification practices.

• We helped the participants understand the practicality and
viability of implementing the VReqST tool and assess the
potential benefits in relation to the costs, resources, and time
required for integration with their conventional approaches.

• We requested to involve diverse teams, domain experts, and
stakeholders from their internal organizations to gather varied
perspectives and insights. We leveraged collective expertise to
comprehend the tool’s potential impact across various aspects
of their VR product development. These diverse viewpoints
will help us identify the tool’s opportunities, threats, and
unforeseen implications in practice.

• We received enhancements to VReqST and incorporated them
in a new version of the tool. We received enhancements in
three iterations, and we included the revisions and released a
new version in all three iterations for further adoption.

• In the end, we conducted a short survey to understand the
impact of VReqST in their day-to-day business when
compared to their conventional practices.

In the following subsection, we present a detailed overview of
our study setup, feedback received in three iterations, and the impact
of survey details.

3.3 VReqST validation study setup

The following steps are involved in our validation study setup
with VR community practitioners in respective iterations.

3.3.1 Iteration 1
• In early October 2022, we provided the source code of our first
version, i.e., iteration 1 of the VReqST tool to deploy.

• We requested the participants to author at least 2–3 new
requirement specifications of their existing projects using
VReqST and share them with their VR developers.

• As part of the early analysis, we requested the requirement
analysts to review the capabilities of the VReqST tool
compared with their conventional requirement
specification processes.

• A total of 53 unique VR practitioners have deployed the tool
during this iteration.

3.3.2 Iteration 2
• We re-connected with the VR practitioners and sought their
feedback in mid-April 2023. We implemented the feedback
from iteration 1 and shared the revised VReqST tool for
redeployment in May 2023.

• We requested the practitioners to re-author the old
specifications using the revised tool and the new
requirements to experience the revisions and ease of use
with new enhancements.

• During this period, we collected feedback from these VR
practitioners on the iteration 2 version of the VReqST tool
and documented it for further improvement.

• A total of 48 out of 53 unique VR practitioners have provided
feedback on the iteration 2 version of the VReqST tool.

• However, all the 53 unique VR practitioners have deployed the
iteration 2 edition of the VReqST tool.

3.3.3 Iteration 3
• We received significantly valuable feedback during our iteration
2, which helped enhance the tool between July 2023 and
October 2023. We completed our iteration 3 version of the
VReqST tool by the end of October 2023 and delivered it to the
engaged VR practitioners in early November 2023.

• All 53 unique VR practitioners have deployed the iteration
3 edition of the VReqST tool. This was the final iteration of our
VReqST enhancements that significantly improved the
workflow and ease of use of the VReqST in practice.

In the following sub-section, we present detailed observations
shared by VR practitioners during each iteration, along with the
implementation information related to those enhancements
in detail.

3.4 VReqST impact and experience survey

After a thorough review of iterations and implementing
feedback on VReqST, we reached out to the VR practitioners to
share their experiences on using VReqST and the impact it has made
on their day-to-day activities. The following are the questions posed
to VR practitioners to help us understand their experiences and the
impact of VReqST on their VR product development journey in
contrast to their regular processes.

1. Is the VReqST tool compatible with the existing tools that you
use for your overall VR software product development?

2. Is the overall user-interface and design of the VReqST tool
intuitive and user-friendly for your team members?

3. Does the VReqST tool allow you to specify requirements for
necessary features in your VR software to meet your
business needs?

4. With whom and how frequently did you use the VReqST tool
while specifying or explaining the requirements to your target
users (developers or stakeholders)?

5. Are you able to completely specify and track the requirements
associated with your feature in a given VR scene?

6. Does the tool allow you to correctly specify the requirement as
per the conventional standards of the VR technology domain?

7. Is the VReqST tool’s performance and stability under different
conditions and workloads acceptable for your day-to-
day business?

8. Do you believe the VReqST tool is extendable to meet your
current product needs and adaptable to future needs,
considering updates in the VR technology domain?

Overall, our validation study and impact and experience survey
of the VReqST tool focuses on the following quality attributes listed

Frontiers in Virtual Reality frontiersin.org19

Karre and Reddy 10.3389/frvir.2024.1471579

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1471579

below in particular stack order.We evaluated the benefits of VReqST
using these attributes. We share detailed observations from the VR
practitioners using these quality attributes for better quantification.

• Specify: ability to define the requirements using the existing
model templates.

• Customization: ability to customize and alter the model
template and underlying validator to meet custom business
requirements.

• Scalability: ability to scale VReqST to include new model
attributes for domain- and context-specific applications.

• Traceability: ability to trace the requirements across various
stages of specifications.

• Usability: ability to use the overall tool and manage track
changes to the requirements.

4 Discussion

4.1 Observations—validation study

While releasing the incremental version of VReqST during three
iterations, we gathered feedback through informal interviews with
the VR practitioners on VReqST. We summarize the overall
observations gathered during all the iterations using the
“Abductive Reasoning” approach and illustrate them below. We
categorized these observations into two parts: merits and
enhancements.

4.1.1 Merits
• Meets the intention: The VReqST tool can meet its required
intention, i.e., specifying VR requirements, customizing the
VR model template and its validator, and scaling the VR
model template to new model attributes.

• Supports traceability: The VReqST tool supports traceability.
We can trace defined articles and their action responses and
state information across the trail of overall specifications. This
helps a VR developer and quality engineer to trace, define, and
test the flow of events while developing the VR scene.

• Improves clarity: The VReqST tool helps improve
requirement gaps and present clarity as the specifications
are precise. It also reduces the time required to
comprehend the overall implication of a specification as the
model template provides details from scene to timeline.

• Enhances productivity: The VReqST tool avoids back-and-
forth communication between developers and product
managers on requirement clarification, eventually helping
accomplish developer tasks more effectively and increasing
output by saving time and effort.

• Increases adaptability: Managing requirements of various
projects through project view helps requirement analysts to
adapt to new workflows and achieve better results.

• Enhances collaboration: As the specifications can be shared
across various projects, multiple stakeholders can collaborate
on projects simultaneously, fostering teamwork and
communication.

• UI/UX: The practitioners have reported 20+ recommendations
for the overall UI/UX design. We included the updates in an

iterative release. As the VReqST tool is still a prototype, we can
extend industry-scale UI/UX features in the user interface that
can impact the user experience. End-to-end usability testing on
VReqST helped us improve the usability aspects of the tool.

• Reusability: The specifications authored in VReqST are either
localized to a specific project or can be extended to a given new
scene. The tool can save, share, and re-use the authored
specifications, especially for articles and their action
responses, as a repository. Such a repository bank can help
other requirement analysts adopt and reuse based on their
business needs.

4.1.2 Enhancements
• Simplify authoring: Currently, the requirement analysts (RAs)
are required to specify requirements using the JSON model
template files. If VReqST handles the conversion from form-
based model templates to JSON at all stages, it may lead to
higher adoption of VReqST from VR practitioners with non-
programming backgrounds.

• Security and privacy aspects: Security and privacy
requirements are a few key areas of overall VR software.
The current version of the VReqST does not provide any
model attributes linked to security and privacy, which are
essential for a bare-minimum set of model attributes. This may
lead to setbacks in the practice of adopting VReqST.

• Complexity: Authoring complex behavior requires much
conceptual effort compared to conventional requirement
specifications that are authored in plain English. The behavior
editor needs to be either gamified or allowed to be in a low-code
mode to improve the overall adoption of the behavior editor.

In contrast to the consolidated observations, we present detailed
feedback that we gathered during each iteration below, along with
the revisions performed on the VReqST tool. We shared the revised
tool during each iteration and have incorporated these changes
accordingly.

Iteration 1: The detailed changes conducted as part of our
iteration 1 are listed below. We included all the required changes in
the form of figures as part of Supplementary Material.

• Multi-stage authoring: Our initial VReqST tool did not
support multi-stage authoring of our requirement
specifications for available model template files like scenes,
articles, action responses, custom behaviors, and timelines in a
particular order. We revised the user interface of the authoring
wizard to include the model template validation in a particular
order. The highlighted pane using a blue outline clearly
illustrates the revision. Each stage requires successful
validation to enter into a new specification stage, i.e., unless
scene model template validation is unsuccessful, one cannot
navigate to the article model template. Upon completing all
stages, the requirement analysts can navigate all the stages to
go through the individual specifications in detail. This revision
helps requirement analysts review and specify requirements in
stages and trace them to the initial specification.

• Project management: In our initial VReqST edition, the
requirement specification was static and linear, i.e., a
requirement analyst must specify and download the

Frontiers in Virtual Reality frontiersin.org20

Karre and Reddy 10.3389/frvir.2024.1471579

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1471579

finalized specifications. However, in the revised version, we
included user-management and project-management
modules to manage the specification group for a particular
project. This will help requirement analysts save, maintain,
and revise the specifications for individual projects. As part of
this revision, we can now create a new project, share it with
others, and edit/revise in the future based on the changes to
our business needs.

• In-page validation messages: We revised our ad hoc message
regarding validation status on demand on the same page
rather than performing validation at the end of all stages.
With the inclusion of multi-stage authoring, we
implemented successful and failure messaging as in-page
status messages.

• We have converted the underlying MongoDB instance from a
private cloud cluster to a public cloud cluster so that the VR
practitioners can download the underlying DB with the core
installation instance and re-point it to their private cloud
cluster instances. This will help the VR community
practitioners to store their requirement specifications
as private.

• Other minor revisions include font changes and text re-sizing
across different pages, including additional fields on the
registration page and a few minor implementation changes
to make it simpler to deploy.

Iteration 2: The detailed changes conducted as part of our
iteration 2 are listed below. We included all the required changes in
the form of figures as part of Supplementary Material.

• Customizing validator files: Until the iteration 1 version of
VReqST, the requirement analyst had to rely on the core
model template validator for each validation stage, i.e., scenes,
articles, action responses, custom behaviors, and timelines.
The model template validator must be updated directly from
the backend if they wish to customize. However, as part of this
revision, we provisioned a customizing model template
validator through UI. We also provide the ability to choose
the custom validator while authoring the specification during
project creation. Thus, as part of this iteration, the
requirement analyst can upload a custom validator for each
VR requirement specification stage and choose this custom
validator while creating a requirement project. A new view
includes “My projects” and “My validators,” displaying a list of
custom validators created by oneself, along with all model
template validators developed by other requirement analysts
using the same tool.

• Authoring states of articles: Until the previous iteration, the
state for a given article is not included as part of the default
article model template. As part of this iteration, the underlying
article model template now supports the “state” of an article,
where the requirement analyst will now have the ability to
define the initial state, final state, and state transition of a given
article based on the event performed with respect to a
given timestamp.

• Other minor revisions in this iteration include adding text to
the welcome page, providing documentation support as help,
enabling the review of past and ongoing project details.

Iteration 3: The detailed changes conducted as part of our
iteration 3 are listed below. We included all the required changes in
the form of figures as part of Supplementary Material.

• Article and action/response template revisions: Until iteration
2, the requirement analysts must specify all the articles in a
single article model template. As part of this iteration, we
revised the article model template view stage by providing a
new button to specify one article after another. As shown in
figures from the Supplementary Material, the highlighted
article stage in blue contains articles like coin_1 and coin_2,
listed beside the model template editor. Upon successfully
specifying each article in step 2, the requirement analyst can
click on the respective article to revise the specification before
moving to the next stage, i.e., the action response stage. Step 3,
highlighted in blue, i.e., action response, also has a similar
update. Instead of authoring all action responses between two
articles in a single action response model template file, we can
now author them separately and view them individually. For
example, under step 3, i.e., action response, we may find
examples of specifications of action response between
player and coin such as player_grabcoin, player_steercart,
and player_jumprailcart.

• Behavior editor revisions: As part of this iteration, we revised
the entire workflow of step 4, i.e., the Behavior editor formerly
known as “Custom JSON Step.” This step has three modes: 1)
“author behaviors,” where users can define authored behaviors
and publish them using three sections, code constructs (if, if-
else, for, while, etc.), a list of articles from the previous step,
and a drag-and-drop interface for combining these elements;
2) “view author behavior mode” contains a list of behaviors
from the “author behaviors” mode for review and
management; and 3) “publish” mode contains a list of
opens to drag and a list of behaviors to be included in the
final validation list for the behavior step. These three modes
can be visualized as part of the figures included in
Supplementary Material.

• Other minor revisions include text re-sizing across different
pages, adding additional fields to the validator file picker page,
and implementing minor changes to simplify deployment.

After considering thorough feedback from the VR community,
we updated the VReqST tool in three iterations and released it as an
open-source tool. In contrast to this feedback, we surveyed the
participants to understand the impact and overall experiences of
using VReqST in practice. We present more details in this regard in
the following subsection.

4.2 Observations—impact and
experience survey

Between December 2023 and January 2024, we reached the
53 VR practitioners who participated in the VReqST iterative
validation study to participate in an impact and experience
survey to provide their overall experience of their team on using
VReqST and their experiences in utilizing the specifications in
practice. Of the 53 VR practitioners, 26 responded to the survey.

Frontiers in Virtual Reality frontiersin.org21

Karre and Reddy 10.3389/frvir.2024.1471579

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1471579

The detailed observations from the survey are provided in the
following sections.

4.2.1 Demography of participants
Most organizations that participated in this impact and

experience survey have been building enterprise VR products
for approximately 6 years on average, with 2 years being the
minimum tenure of a given organization on a lower end and 20+
years for the maximum tenure of a given organization on a
higher end on building VR products from countries US, UK,
India, China, Europe, and Australia. Among the 26 participants,
we have engineering manager(s), engineering directors with
various capacities, product managers, technical architects, and
software engineers who work in XR, an emerging technology
domain. The participants of the survey primarily build VR
products in the following domains: healthcare, defense,
simulation, digital twins, interior design, inner environment
design, industrial layout, corporate education, compliance
training, entertainment, gaming, drug discovery, medical
protocol design, gaming content, cinema, retail marketing,
marketing campaigns, authoring tools, metaverse, fashion,
ads, wearables, financial analytics, tourism, consulting,

enterprise banking, and recreational tours. These practitioners
are from Deloitte Digital, Plug XR, Cornerstone On Demand,
SAP-XR, Samsung Studios, SkillSoft, UNITY Developer Group,
ThoughtWorks Dev Group, Khronous Dev Community, and
many other VR open source practitioners helped us provide
their valuable feedback.

4.2.2 Compatibility
Figure 15A illustrates that most participants observe that the

VReqST tool is compatible with their existing processes and can be
easily integrated without any hassle. Primarily, small organizations
with an organization size of less than 200 employees have found
VReqST to be highly compatible with their regular VR product
development processes.

4.2.3 Ease of use (UI/UX)
Figure 15B illustrates that most participants observe that the

VReqST tool is intuitive, considering its user interface and overall
user experience seem manageable in practice. Small organizations
with an organization size of fewer than 200 employees have found
VReqST to be highly consistent with its UI design and ease of use
in practice.

FIGURE 15
(A) Compatibility of VReqST with existing processes, grouped by organization size. (B) Ease of UI/UX of VReqST in practice, grouped by
organization size.

Frontiers in Virtual Reality frontiersin.org22

Karre and Reddy 10.3389/frvir.2024.1471579

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1471579

4.2.4 Frequency of use
Figure 16A illustrates that most participants who started using

VReqST frequently or occasionally for authoring requirement
specifications for their VR products mentioned that VReqST can
specify requirements in detail, irrespective of the organization’s size.
In almost all cases, the VReqST is highly capable and easy to specify
requirements, or it is manageable compared to their conventional
approaches.

4.2.5 Feature tracking
Figure 16B illustrates that most participants who started using

VReqST frequently or occasionally for authoring requirement
specifications for their VR products mentioned that VReqST can
easily track and trace requirements, irrespective of the organization’s
size. In almost all cases, the VReqST tool is highly capable andmakes
it easy to track and trace requirements to the overall features across
the requirement specifications of VR products, especially when
compared to conventional approaches.

4.2.6 Extendability
Figures 17A, B illustrate that most participants who started using

VReqST for authoring requirement specifications for their VR

products observed that VReqST is highly extendable and adaptable
in practice. It can be extended to accommodate newmodel attributes as
the underlying model validator can be customized for domain- or
context-specific applications. Most small and mid-range organizations
working on context-specific VR products observed VR as a better
alternative to specifying requirements to meet their business goals.

4.2.7 Additional observations
Along with the survey questionnaire, we asked the survey

participants to share their additional insights on adopting and
using VReqST. The following subsection illustrates detailed
responses in participants’ words, which we have coded into
specific themes for better illustration.

4.3 VReqST extensions in VR product
development

With the VR community practitioners’ exposure to VReqST, the
following ideas are suggested as future extensions to the VReqST
tool by the VR community to ease overall VR software product
development. We detailed them as follows.

FIGURE 16
(A) Ability to specify VReqST specifications by frequency of usage across organizations. (B) Ability to track VReqST requirements by frequency of
usage across different classes of organizations.

Frontiers in Virtual Reality frontiersin.org23

Karre and Reddy 10.3389/frvir.2024.1471579

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1471579

4.3.1 Code generation
VReqST-based requirement specifications can be extrapolated

further on generating model-driven code generation tools for scenes
and three-dimensional articles. Irrespective of the VR technology
stack, VReqST specifications can be used to develop new tools that
can generate alternate versions of code snippets for behaviors that
could be generated on-demand during the scene play. It is one of the
critical future aspects of extending VReqST into automated scene
generation and behavior generation on run time.

• In most cases, VReqST specifications can be integrated into an
automation pipeline. This is yet to be explored. We are
considering expanding the underlying template to support
security requirements. [P4]

• It helps consultants gather requirements. However, more
automation is needed to channel the JSON specifications to
code generation and testing. [P12]

• Very detailed. This tool will have no value unless it is
integrated into an automation pipeline. There is need to

build supporting tools like co-pilot to generate code with
VReqST specifications. [P15]

• It provides the ability to record requires specifications with
higher precision. Integration into an automated delivery
pipeline is necessary for more adoption. [P17]

• We recently entered the XR market with a garment wearable
product. We aim to integrate the JSON specifications into
asset generation using AI models. Thanks for keeping this
open source. [P20]

4.3.2 Test case generation
As VReqST curates the requirements in detail, automated test

case generation of scene dynamics, article properties, action
responses, behaviors, and timeline of events can be effortlessly
explored to comprehend the quality of a delivered VR scene. A
new, novel customizable software testing framework can be
developed as an external wrapper around VReqST to generate
on-demand test cases during run-time to improve the
performance of the VR scene.

FIGURE 17
(A) Ability to extend VReqST to domain-specific applications, grouped by the ability to specify requirements based on conventional standards across
different classes of organizations. (B) Ability to convert conventional specifications to VReqST specifications.

Frontiers in Virtual Reality frontiersin.org24

Karre and Reddy 10.3389/frvir.2024.1471579

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1471579

• We started as pilot project with two requirement analysts. We
found VReqST to be high extendable. The generated
specifications can be used as input source for our test case
generation system to conduct unit and integration testing. We
are planning to extend our specifications for automated design
validations. Thank you for collaboration. [P1]

• We have been building games for approximately 20 years now
using highly templatized terrain data and an internal asset
repository. We might have to perform backward re-
engineering of existing assets to align with this specification
for automated scene generation, test case creation, and
interaction-flow testing. This tool will definitely help
newcomers. Good luck with the tool. [P23]

4.3.3 Risk and dependencies
With detailed VReqST requirements, the requirement analyst

can determine the risks of prioritizing or extending new features.
The requirement analyst can easily understand the overall
dependencies of articles and their action responses on each other.
These dependencies will help the requirement analyst estimate the
consequences of the continuous evolution of a feature in VR and
contribute toward a higher-quality VR product.

• Although it requires some effort, VReqST output is a good
input source for our low-code platform. Most of the asset and
behavior generation can be automated to some extent. The
specifications are easy to maintain and version. Most of our
designers rely on the JSON text to go through the
specifications for revisions. [P2]

• It is easy to integrate into our established processes. Small
requirements are easy to author and can later be traced to a
large specification. It helps is maintaining a requirement
repository for dedicated projects related to assets and
terrain definitions. It also helps re-draw scope and assess
risks associated with failing to meet the requirement. [P9]

• It is plug-and-play with internal VR authoring tools and
makes it easy to determine the risk of requirement failure
during implementation. However, it is difficult to read
requirements in the JSON format. A better way to read the
VReqST specification in detail is needed. [P10]

• VReqST may not be very useful as we have curated fixed,
pre-defined visualization templates. However, it helps when
we have to redesign a new visualization template. The
reusability and traceability of reporting features are easy
to observe from the specification to the template. It may
require less adaption but could become vital in specific
business cases. We suggest extending an AI mode to
predict/propose visualization templates for recorded
VReqST specifications. [P18]

4.3.4 Traceability
As the VReqST requirement specifications establish a relationship

between VR concepts like scenes, articles, action responses, and
timelines, the changes made to one concept will reflect across other
concepts. These specifications support design traceability, helping
understand the rationale behind design decisions. New tools can be
developed alongside VReqST to handle code traceability, aiding the
understanding of code segments and assists with debugging. Such new

tools can support test traceability to help testers identify gaps in test-
case coverage.

• More effort is needed to define our product-specific validator.
We cannot use the tool with our own business/context-specific
validator. The specifications are easy to version and trace. For
RAs, it is difficult to read JSON specifications as they are not
technically skilled. [P5]

• Traceability of feature is the key. It is easy to author micro
requirements. [P24]

4.3.5 Maintenance and portability
With substantial requirements, the challenges of VR platform

portability, i.e., porting VR scenes developed using a particular
technology stack to another, can be mitigated to some extent. As
VReqST can distinguish platform-independent requirements from
platform-dependent ones, VR developers can now maintain
platform-independent source code separately from the regular
code branch. This practice may improve the maintainability and
versioning of VR source code.

• We are still in early stages of adoption. Our analysts are not
tech savvy to use this tool. However, our developers like it as it
helps them understand requirements with higher accuracy.
We still need to explore its capabilities for portability. [P3]

• When we started, we had to author our own validator. It is easy
to integrate but requires a lot of early effort. The initial steps
are challenging. A strong community support system is
required to reuse and share artifact specifications. There is
a need for an asset specification repository like GitHub. [P6]

• Wemostly use it for AR advertisement campaigns. It is easy to
use and manage specifications. [P25]

• We can also author requirements for AR applications by
updating the underlying validator. The specifications are
portable between VR-only and MR applications, even if
they were originally authored for AR applications.
However, extra effort is needed to develop an underlying
template for our own business need. [P8]

• It requires a lot of effort to understand and update the
domain-specific validator. It requires more community
support. [P11]

• The requirements are too detailed. It is difficult to illustrate
large terrains with such high specificity. However, it is easy to
author micro-requirements. [P14] Our use-cases are highly
domain-specific. We need to put a lot of efforts into
developing the underlying validator. For now, we are better
with our conventional approach to capture requirements in
templates. [P22]

4.3.6 New types of requirements
The current VReqST version does not facilitate security, privacy,

and usability requirements. The VR community recommends
facilitating additional features to VReqST, including customizable
security, privacy, and usability requirements, as part of the new
model template. These requirement types are non-generic and
domain-centered. They may vary from application to application.
As VReqST is customizable, security, privacy, and usability
requirements can be included beyond the bare-minimum model

Frontiers in Virtual Reality frontiersin.org25

Karre and Reddy 10.3389/frvir.2024.1471579

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1471579

template. It can be managed by domain-specific requirement
analysts to accommodate such new requirement types by
composing a custom model template on par with the bare-
minimum model template.

• The specificity of requirements is maintained through this
tool. However, it requires training as our BAs are not technical
enough to author specifications in JSON. We request a form-
based template that can convert to JSON in backend. [P7]

• We request the inclusion of a privacy-related specification
validator by default. This would help cover compliance use-
cases easily. [P13]

• Fashion requires clear specifications, and VReqST fills that
gap. While it is slightly painful to write our custom validator, it
is easy to maintain and re-trace the specifications. Strong
collaboration is needed among XR community partners to
share open-source asset specifications for better
reusability. [P16]

• Currently, our plain English requirement specifications are
being converted to VReqST specifications. It helps us create
large terrain templates for future touring projects. The
behavior editor is the coolest feature. It is easy to author
and track linkages between the interactions. [P19]

4.4 Proof of concept: specifying
requirements for depression detection
application using VR

4.4.1 Background
Between January 2023 and October 2023, researchers from the

Software Engineering Research Center and Cognitive Science
Laboratory at IIIT Hyderabad worked toward developing
multiple virtual reality scenes for the detection or intervention of
depression using VR technology. These VR scenes are used as a
medium to evoke emotions that are deemed to result in positive,
negative, and neutral emotions. These three emotions are evoked
using positive, negative, and neutral environments. Figure 18
illustrates the positive scene, negative scene, and neutral scene
with top view and side views. The requirement specifications of
these VR scenes are first authored using VReqST; they are revised
and then finalized for design and development. These VR scenes are
developed in UNITY Game Engine (Unreal Game Engine, 2022)
and are visualized using HTC Vive Pro 2. This headset has a dual
RGB low persistence LCD screen with a resolution of 2,448 ×
2,448 pixels per eye (4,896 × 2,448 pixels combined) and a
refresh rate of 90/120 Hz. It has a field of view of 120° and
requires two compatible base stations and two compatible
motion controllers. We used a PC with 16 GB of RAM and a
970 graphics card.

4.4.2 Experiment
The three developed VR scenes are designed to evoke the

participants’ positive, negative, and neutral emotions while
locomoting in the virtual environment. While the participant is
under locomotion under the influence of a VR scene, the
participant’s gait pattern is captured using a VelGmat (Wani
et al., 2022), i.e., a Velostat-based gait mat that captures gait

pressure. The gait pattern under the influence of positive,
negative, and neutral scenes will reveal the levels of depression in
a given participant as the scene evokes emotions. The participant is
required to walk around in the environment once clockwise around
the right shelf and once anti-clockwise around the left shelf, and in
each round, while returning, he/she is required to pick up the
specified object and place it into the respective crate.

4.4.3 VR scene requirements
All three environments have a 10 × 2 foot aisle with six-foot-high

shelves on both sides, two feet apart. There are two similar aisles on
the right and left that allow the players to circle the right and left
shelves clockwise and anticlockwise, respectively. The walking area
is separated from the respective terrain by a glass wall. The right aisle
has an opaque wall with images of positive and negative
environments. Both shelves are stacked with four objects on
three different levels. The aisles on the sides have crates in
the corners.

• Positive environment: Figure 18 illustrates the top and side
views of the positive scene. The goal of the positive scene is to
evoke happiness in the participant. It is primarily achieved
using bright and warm lighting sources with saturated colors,
accompanied by pleasant background music. The
environment is filled with forest terrain with trees around a
central plan with two racks separated by a walkable area. The
racks contain few objects. The two large crates on two ends of
the center pane are on one side of the scene, whereas the other
end of the center pane contains images floating on a virtual
wall. The objects in the scene are primarily under color-grade
shades of light blue and light pink for better differentiation.
The images on the display wall are selected from the
International Affective Picture System (IAPS) database with
high valance ratings (above 50). IAPS is a database of pictures
designed to provide a standardized set of pictures for studying
emotion and attention. It is widely used in psychological
research. The tree assets used in the forest were imported
from the Unity Demo URP terrain.

• Negative environment: Figure 18 illustrates the top and side
views of the negative scene. The goal of the negative scene is to
evoke sadness in the participant. It is primarily achieved using
dark and low-intensity lighting sources with dull colors, along
with disturbed background music. The environment is filled
with forest terrain with trees around a central plan with two
racks separated by a walkable area. The two large crates on two
ends of the center pane are on one side of the scene. The racks
are bulkier and contain too many objects, thus making the
space feel more congested. One end of the center pane
contains images floating on a virtual wall. The objects in
the scene are primarily under color-grade shades of dark
brown and dark green, making them difficult to
differentiate. The images on the display wall depict decay
and suffering, selected from the IAPS database with very low
valance ratings (less than 50). IAPS is a database of pictures
designed to provide a standardized set of pictures for studying
emotion and attention. It is widely used in psychological
research. The tree assets used in the forest were imported
from the Unity Demo URP terrain.

Frontiers in Virtual Reality frontiersin.org26

Karre and Reddy 10.3389/frvir.2024.1471579

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1471579

• Neutral environment: Figure 18 illustrates the top and side
views of the neutral scene. This controlled environment is
designed to collect participants’ gait data without emotional
elicitation in the VR. The scene contains black and white
colors on all the objects, with no images on the wall or music.

4.5 Future work

Model-driven development (MDD) is a software engineering
methodology that emphasizes the creation and use of domain
models. These are conceptual models representing various aspects
of a software system. They serve as blueprints for software
development, guiding the process from design to code
generation. MDD involves abstracting technical aspects such as
logic, data models, and user interfaces into visual representations
that can be easily manipulated. The ultimate goal of MDD is to
enhance productivity, improve software quality, and facilitate
collaboration among developers of varying skill levels. In the
context of virtual reality software products, our role-based model
template can be useful for formulating a model-driven development
approach using domain-specific large language models and
generative AI. Our role-based model template for comprehending
the virtual reality technology domain is a backbone for formulating
model-driven development for developing virtual reality software
products. Using our role-based model template for VR, we
developed an open-source requirement specification tool called

VReqST. This tool can apprehend bare-minimum concepts
related to the VR technology domain. It can generate precise and
clear specifications that can become an input to our MDD pipeline
for virtual reality. Figure 19 describes a development pipeline for
virtual reality software. During the requirement phase, VReqST can
be used to specify requirements, which are then used as input to a
three-dimensional large learning model (LLM) that is specific to the
VR domain. The input will be in a JSON format. In the design phase,
the 3-D LLM is trained using 3-D object data sources that offer data
in the form of point clouds, voxels, or meshes to generate multiple
desired articles, mock design templates for terrain, three-
dimensional environment, and respective action response flow.

The output of the 3-D LLM can be used as input to a low-code
platform that generates the behavior script for specific VR game
engines and creates a consolidated behavior script library for future
reference. A model-based testing protocol can be formulated for
these behavior scripts based on the generated code snippets. The
overall 3-D run-through can be evaluated using a machine learning
BOT through point-of-view testing. The tested artifact can now be
deployed using a model-based deployment approach, where changes
reflected in the model (scene artifacts, article artifacts, action
response artifacts, behavior artifacts, and timeline artifacts) can
be deployed asynchronously in an incremental approach to
production. However, despite various automated processes
involved in the proposed overall MDD pipeline for virtual reality
software development, it is partially a human-in-a-loop process.
Human validation is required in a few stages to validate the

FIGURE 18
Scene flow of positive, negative, and neutral scenes in mental health VR applications.

Frontiers in Virtual Reality frontiersin.org27

Karre and Reddy 10.3389/frvir.2024.1471579

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1471579

exactness and quality of the resultant VR scene. This hypothesis
requires a lot of conviction to execute at a large scale.

5 Related work

Although VR applications have much attention in practice, as a
domain, they still require wider adoption. Platform fragmentation
and hardware dependencies are causing serious adoption issues.
Early studies in requirement specification in VR are either human-

centered or process-oriented. The VR community widely practices
functional software requirement specification documentation,
unified modeling language/legacy software requirement
specification documentation (Ragkhitwetsagul et al., 2022),
templatized specifications (Okere et al., 2016), and task tree
documentation (Colombo et al., 2020). These approaches do not
facilitate detailed specifications that are VR-centered, and it depends
on the requirement analyst’s ability to articulate the requirements
effectively. Thus, such approaches are subjective and arbitrary in
practice. Other approaches like common scene definition (Belfore

FIGURE 19
Model-driven development using LLM and GenAI for virtual reality software products.

TABLE 4 Comparison of VReqST with existing VR specification tools.

VR specification tool STATEMENT VR-WISE Common scene
definition

CLEVR Mental
model

VReqST

Tool type Message sequence
diagram

Conceptual
model

Fixed scene definition VR system
conceptual model

VR system
conceptual model

VR domain
meta-model

Can specify requirements Yes Yes Yes Yes Yes Yes

Support requirement traceability No No No action No No Yes

Reusability of requirements No No No No No Yes

Ease of usage of the tool Easy Moderate Easy No study available No study available Easy

Supports domain-specific/context-
specific requirements

No support Supports No support Supports Customizable Full Support

Requirement versioning No support Partially No support Partially No support Full support

Portable to new VR engines Low Medium Low Low Low High

Maintenance High Medium High High Medium Low

Current fate Obsolete Obsolete Needs revision Needs revision Needs revision Available and
revisable

Frontiers in Virtual Reality frontiersin.org28

Karre and Reddy 10.3389/frvir.2024.1471579

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1471579

et al., 2005), conceptual VR prototyping (Manninen, 2002), and
mental modal technique (Mohd Muhaiyuddin and Awang Rambli,
2014) are distinct requirement specification methods that are used
on sample VR scenes and studying spatial presence. They are specific
to simulation-based VR applications and are not extendable to other
VR applications. Kim et al. (1998) were the first to explore the
possibilities of creating a process-oriented approach for requirement
engineering in VR. Early tools like STATEMENT (Kim et al., 1998)
based on POSTECH and message sequence diagrams (MSDs) paved
the way for VR requirement engineering automation. Pellens et al.
(2005) proposed VR-WISE for modeling the static part of VR, from
conceptual specification to code generation, Seo and Kim (2002)
proposed a CLEVR model that considers the functions, behavior,
hierarchical modeling, user task and interaction modeling, and
composition reuse in early VR systems. Alinne et al. proposed a
scene-graph-based approach for requirement specification and
testing automation of VR products (Souza et al., 2018). Our
previous work about an extensive systematic literature review on
requirement engineering practices of VR software products (Karre
et al., 2024) also illustrates that almost all the requirement
specification approaches are either template-based or manual in
practice. Most of these tools and approaches are obsolete and require
a generalized revision to align with the contemporary state-of-the-
art in VR as a technology domain. Amidst such challenges, we
ideated and developed VReqST, a model-based tool to specify
requirements for VR products to address the observed gaps for
the VR community to adopt and practice. Table 4 illustrates the
unique contributions of VReqST in comparison to existing VR
requirement specification tools.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary Material.

Ethics statement

Written informed consent from participants was not required to
participate in this study in accordance with the national legislation
and the institutional requirements.

Author contributions

SK: conceptualization, data curation, formal analysis, funding
acquisition, investigation, methodology, project administration,
resources, software, supervision, validation, visualization,
writing–original draft, and writing–review and editing. YR:
conceptualization, data curation, formal analysis, funding

acquisition, investigation, methodology, project administration,
resources, software, supervision, validation, visualization,
writing–review and editing, and writing–original draft.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This effort
was carried out at the Design Innovation Center, IIIT Hyderabad,
India, partially funded by the Ministry of Education, Government
of India.

Acknowledgments

The authors thank the VR practitioners from SAP-XR, Deloitte
Digital Laboratories, ThoughtWorks, Samsung Studios, UNITY Dev
Group, and Khronos Dev Community for participating in the
empirical study to formulate and sharing their insights.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that Generative AI was used in the
creation of this manuscript. We acknowledge that image as part
of Figures 11–iv image generated by OpenAI’s DALL-E 2 for
reference purpose only, December 15, 2023.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/frvir.2024.1471579/
full#supplementary-material

References

AframeJS (2022). AframeJS documentation.

Amazon Lumberyard (2022). Lumberyard documentation. Amazon Web Services.

Anwar, M. S., Choi, A., Ahmad, S., Aurangzeb, K., Laghari, A. A., Gadekallu, T. R.,
et al. (2024). A moving metaverse: Qoe challenges and standards requirements for

Frontiers in Virtual Reality frontiersin.org29

Karre and Reddy 10.3389/frvir.2024.1471579

https://www.frontiersin.org/articles/10.3389/frvir.2024.1471579/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frvir.2024.1471579/full#supplementary-material
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1471579

immersive media consumption in autonomous vehicles. Appl. Soft Comput. 159,
111577. doi:10.1016/j.asoc.2024.111577

Arshad, H., Shaheen, S., Khan, J., Anwar, M., Khursheed, K., and Alhussein, M.
(2023). A novel hybrid requirement’s prioritization approach based on critical software
project factors. Cognition Technol. Work 25, 305–324. doi:10.1007/s10111-023-00729-3

Belfore, L. A., Krishnan, P. V., and Baydogan, E. (2005). “Common scene definition
framework for constructing virtual worlds,” in Proceedings of the 37th Conference on
Winter Simulation (Winter Simulation Conference), WSC’05, Orlando, FL, December
4, 2005, 1985–1992. doi:10.1109/wsc.2005.1574477Proc. Winter Simul. Conf. 2005.

Brennesholtz, M. (2017). VR/AR standards – are we confused yet?

Colombo, C., Blas, N. D., Gkolias, I., Lanzi, P. L., Loiacono, D., and Stella, E. (2020).
An educational experience to raise awareness about space debris. IEEE Access 8,
85162–85178. doi:10.1109/ACCESS.2020.2992327

CryEngine Cry (2021). CRYENGINE programming documentation. Crytek
Technologies.

Filho, O. V. S., and Kochan, K. G. (2001). “The importance of requirements
engineering for software quality,” in Proceedings of the World Multiconference on
Systemics, Cybernetics and Informatics: Information Systems Development-Volume I -
Volume I (IIIS) (ISAS-SCI ’01), Orlando, FL, July 22–25, 2001, 529–532.

Gervasi, V., and Nuseibeh, B. (2000). “Lightweight validation of natural language
requirements: a case study,” in Proceedings Fourth International Conference on
Requirements Engineering, ICRE 2000 (Schaumburg, IL: Cat. No.98TB100219),
140–148. doi:10.1109/ICRE.2000.855601

Gonzalez-Perez, C., and Henderson-Sellers, B. (2008). Metamodelling for software
engineering. Wiley Publishing.

Google Inc. (2010). COLLADA - digital asset and FX exchange schema.

[Dataset] Gramlich, T. (2022). The future of work and virtual reality.

Group, K. (2019). The OpenXR specification 1.0.24.

Hoda, R. (2021). Socio-technical grounded theory for software engineering. IEEE
Trans. Softw. Eng. 48, 3808–3832. doi:10.1109/TSE.2021.3106280

[Dataset] Kandhari, K. (2023). Vr bowling alley game.

[Dataset] Karre, S. A. (2024a). Vreqst - online documentation for virtual reality
requirement analysts.

Karre, S. A. (2024b). VReqST sample specifications.

Karre, S. A., Mittal, R., and Reddy, R. (2023). “Requirements elicitation for virtual
reality products - a mapping study,” in Proceedings of the 16th Innovations in Software
Engineering Conference ISEC’23, Allahabad India, February 23–25, 2023 (New York,
NY, USA: Association for Computing Machinery). doi:10.1145/3578527.3578536

Karre, S. A., Neeraj, M., and Reddy, Y. R. (2019). “Is virtual reality product
development different? an empirical study on vr product development practices,” in
Proceedings of the 12th Innovations on Software Engineering Conference (ISEC), Pune,
India, February 14–16, 2019 (New York, NY: ACM). doi:10.1145/3299771.3299772

Karre, S. A., Pareek, V., Mittal, R., and Reddy, Y. R. (2022). “A role based model
template for specifying virtual reality software,” in In proceedings International
Workshop on Virtual and Augmented Reality Software Engineering, in conjucture
with Automated Software Engineering (ASE 2022), Oakland Center, MI, October
10–14, 2022 (New York, NY: : ACM). doi:10.1145/3551349.3560514

Karre, S. A., Reddy, Y. R., andMittal, R. (2024). Re methods for virtual reality software
product development: a mapping study. ACM Trans. Softw. Eng. Methodol. 33, 1–31.
doi:10.1145/3649595

Kim, D., France, R. B., Ghosh, S., and Song, E. (2003). “A role-based metamodeling
approach to specifying design patterns,” in 27th International Computer Software and
Applications Conference (COMPSAC 2003): Design and Assessment of Trustworthy
Software-Based Systems, Dallas, TX, 3-6 November 2003 (IEEE Computer Society), 452.
doi:10.1109/CMPSAC.2003.1245379

Kim, G. J., Kang, K. C., Kim, H., and Lee, J. (1998). “Software engineering of virtual
worlds,” in Proceedings of the ACM Symposium on Virtual Reality Software and
Technology VRST ’98, Taipei, Taiwan, November 2–5, 1998 (New York, NY, USA:
Association for Computing Machinery), 131–138. doi:10.1145/293701.293718

LaValle, S. M. (2020). Virtual reality. Cambridge University Press.

Levy, J. R., and Bjelland, H. (1994). Create your own virtual reality system.
United States: McGraw-Hill, Inc.

Manninen, T. (2002). Contextual virtual interaction as part of ubiquitous game design
and development. Personal. Ubiquitous Comput. 6, 390–406. doi:10.1007/
s007790200044

Martin, D., Malpica, S., Gutierrez, D., Masia, B., and Serrano, A. (2022).
Multimodality in vr: a survey. ACM Comput. Surv. 54, 1–36. doi:10.1145/3508361

Mittal, R., Karre, S. A., Gururaj, Y. P. K., and Reddy, Y. R. (2022). “Enhancing
configurable limitless paths in virtual reality environments,” in 15th Innovations in
Software Engineering Conference ISEC 2022, Gandhinagar India, February 24–26, 2022
(New York, NY, USA: Association for Computing Machinery). doi:10.1145/3511430.
3511452

Mohd Muhaiyuddin, N. D., and Awang Rambli, D. R. (2014). “Navigation in image-
based virtual reality as the factor to elicit spatial presence experience,” in
2014 International Symposium on Technology Management and Emerging
Technologies, Langkawi Island, Malaysia, May 27–29, 2014, 349–354. doi:10.1109/
ISTMET.2014.6936532

Nebeling, M., and Speicher, M. (2018). “The trouble with augmented reality/virtual
reality authoring tools,” in 2018 IEEE International Symposium on Mixed and
Augmented Reality Adjunct (ISMAR-Adjunct), Munich, Germany, October 16–20,
2018, 333–337. doi:10.1109/ISMAR-Adjunct.2018.00098

Okere, H. C., Sulaiman, S., Rambli, D. R. A., and Foong, O.-M. (2016). A multimodal
interaction design guidelines for vr foot reflexology therapy application. Int. J. Oper. Res.
Inf. Syst. 7, 74–91. doi:10.4018/IJORIS.2016070105

Pellens, B., Bille, W., De Troyer, O., and Kleinermann, F. (2005). “Vr-wise: a
conceptual modeling approach for virtual environments,” in Proceedings of the
methods and Tools for Virtual Reality Workshop (MeTo-VR), 1–10.

Ragkhitwetsagul, C., Choetkiertikul, M., Hoonlor, A., and Prachyabrued, M. (2022).
“Virtual reality for software engineering presentations,” in 2022 29th asia-pacific software
engineering conference (APSEC), 507–516. doi:10.1109/APSEC57359.2022.00072

Seo, J., and Kim, G. J. (2002). “Design for presence: a structured approach to virtual
reality system design,” in Teleoperators virtual environ, 378–403.

Sherman, W. R., and Craig, A. B. (2003). “Introduction to virtual reality systems,” in
Understanding virtual reality. The morgan kaufmann series in computer graphics.
Editors W. R. Sherman and A. B. Craig (San Francisco: Morgan Kaufmann), 70–73.
doi:10.1016/B978-155860353-0/50003-3

Sony Computer Entertainment Inc. (2004). COLLADA - digital Asset and FX
exchange schema. Khronos Group.

Souza, A., Nunes, F., and Delamaro, M. (2018). An automated functional testing
approach for virtual reality applications. Softw. Test. Verification Reliab. 28. doi:10.
1002/stvr.1690

Strauss, A., and Corbin, J. (1967). Discovery of grounded theory.

UNITY3D (2022). Unity3D manual - offline documentation. UNITY Technologies.

Unreal Game Engine (2022). UnRealEngine 5 documentation. New York, NY: EPIC
Games Inc.

W3C (1997). VRML virtual reality Modeling Language. Web3D consortium.

Wani, M.W., Gururaj, Y. P., P, V., Karre, S. A., Reddy, R., and Azeemuddin, S. (2022).
“Velgmat: low cost gait mat for stance phase calculation,” in 2022 IEEE Sensors, 1–4.
doi:10.1109/SENSORS52175.2022.9967332

X3D (1997). Extensible 3D. Web3D consortium.

Frontiers in Virtual Reality frontiersin.org30

Karre and Reddy 10.3389/frvir.2024.1471579

https://doi.org/10.1016/j.asoc.2024.111577
https://doi.org/10.1007/s10111-023-00729-3
https://doi.org/10.1109/wsc.2005.1574477
https://doi.org/10.1109/ACCESS.2020.2992327
https://doi.org/10.1109/ICRE.2000.855601
https://doi.org/10.1109/TSE.2021.3106280
https://doi.org/10.1145/3578527.3578536
https://doi.org/10.1145/3299771.3299772
https://doi.org/10.1145/3551349.3560514
https://doi.org/10.1145/3649595
https://doi.org/10.1109/CMPSAC.2003.1245379
https://doi.org/10.1145/293701.293718
https://doi.org/10.1007/s007790200044
https://doi.org/10.1007/s007790200044
https://doi.org/10.1145/3508361
https://doi.org/10.1145/3511430.3511452
https://doi.org/10.1145/3511430.3511452
https://doi.org/10.1109/ISTMET.2014.6936532
https://doi.org/10.1109/ISTMET.2014.6936532
https://doi.org/10.1109/ISMAR-Adjunct.2018.00098
https://doi.org/10.4018/IJORIS.2016070105
https://doi.org/10.1109/APSEC57359.2022.00072
https://doi.org/10.1016/B978-155860353-0/50003-3
https://doi.org/10.1002/stvr.1690
https://doi.org/10.1002/stvr.1690
https://doi.org/10.1109/SENSORS52175.2022.9967332
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1471579

	Model-based approach for specifying requirements of virtual reality software products
	1 Introduction
	2 Materials and methods
	2.1 Virtual reality domain model template
	2.2 Attributes for VR software development
	2.2.1 Informal interviews
	2.2.2 VR SDK selection
	2.2.3 VR standards’ selection

	2.3 Virtual reality software system meta model
	2.4 Extending VR meta-model to domain-specific and context-specific applications
	2.5 Model-based requirement specification for virtual reality software
	2.5.1 VR authoring tools
	2.5.2 VR requirement specification tool
	2.5.3 Why use a model-based requirement specification tool for VR?

	2.6 VReqST—to specify VR requirements
	2.7 Model template and its validator
	2.8 VReqST overview
	2.9 VReqST validation workflow
	2.9.1 Model template validation
	2.9.2 Custom behavior editor validation

	2.10 Understanding behavior and state in VReqST
	2.11 VReqST features
	2.11.1 Example specifications
	2.11.2 VR bowling alley game
	2.11.3 VR virtual art gallery

	3 Results
	3.1 Validating VReqST in practice
	3.2 VR community adoption and feedback
	3.3 VReqST validation study setup
	3.3.1 Iteration 1
	3.3.2 Iteration 2
	3.3.3 Iteration 3

	3.4 VReqST impact and experience survey

	4 Discussion
	4.1 Observations—validation study
	4.1.1 Merits
	4.1.2 Enhancements

	4.2 Observations—impact and experience survey
	4.2.1 Demography of participants
	4.2.2 Compatibility
	4.2.3 Ease of use (UI/UX)
	4.2.4 Frequency of use
	4.2.5 Feature tracking
	4.2.6 Extendability
	4.2.7 Additional observations

	4.3 VReqST extensions in VR product development
	4.3.1 Code generation
	4.3.2 Test case generation
	4.3.3 Risk and dependencies
	4.3.4 Traceability
	4.3.5 Maintenance and portability
	4.3.6 New types of requirements

	4.4 Proof of concept: specifying requirements for depression detection application using VR
	4.4.1 Background
	4.4.2 Experiment
	4.4.3 VR scene requirements

	4.5 Future work

	5 Related work
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

