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In recent years, extended reality (XR) has gained interest as a platform for human
communication, with the emergence of the “Metaverse” promising to reshape
social interactions. At the same time, concerns about harmful behavior and
criminal activities in virtual environments have increased. This paper explores
the potential of technology to support social harmony within XR, focusing
specifically on audio aspects. We introduce the concept of acoustic
coherence and discuss why it is crucial for smooth interaction. We further
explain the challenges of speech communication in XR, including noise and
reverberation, and review sound processing methods to enhance the auditory
experience. We also comment on the potential of using virtual reality as a tool for
the development and evaluation of audio algorithms aimed at enhancing
communication. Finally, we present the results of a pilot study comparing
several audio enhancement techniques inside a virtual environment.
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1 Introduction

The idea of XR as a platform for human communication has become increasingly
popular in recent years. It has led to the emergence of the concept of the “Metaverse,” which
is speculated to become the leading medium of communication in the future (Dzardanova
et al., 2022; Dwivedi et al., 2022). The primary aim of such virtual worlds is to enable
individuals from different locations to interact within a shared audiovisual environment. In
parallel to the widespread appreciation for the technological potential and the promise of
fostering social connections, there is also a common concern that the Metaverse could
facilitate toxic behavior and pose threats of criminal activity (Gómez-Quintero et al., 2024).
In response to this, there has been a growing interest in studying ways in which technology
could promote social harmony and inclusive behavior within virtual worlds. In this brief
paper, we take a closer look at this issue from the perspective of audio technology. We
identify challenges related to speech communication in XR and discuss sound processing
methods that could improve the overall auditory experience in XR. We support this
discussion with a pilot study featuring virtual reality, spatial sound and selected audio
enhancement methods, and report the preliminary results obtained from a user
feedback survey.
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2 Challenges of speech communication
in extended reality

Figure 1A illustrates a common VRmeeting scenario where four
users, depicted as avatars, gather around a virtual table to engage in a
conversation. Because the users are physically located in different
spaces, the microphones of their respective headsets, apart from
speech, capture additional environment-specific disturbances e.g.,
noise, background sounds, wind or movement disturbances, and
reverberation. Additionally, microphone positioning may not be
optimal for capturing voice with high quality (See Figure 1C). The
final mixture of sounds delivered to the user originates from several

distinct environments. This results in a virtual scene where the
acoustic elements fail to form a coherent and plausible soundscape.
Coherence in XR refers to the degree to which the virtual
environment behaves in a reasonable or predictable way (Collins
et al., 2017; Skarbez et al., 2020; Slater, 2009). In this paper, we adopt
this concept and use the term acoustic incoherence to describe a lack
of a plausible auditory illusion in mixed reality–a problem that has
already been discussed by several authors (Neidhardt et al., 2022;
Fantini et al., 2023; Popp and Murphy, 2024). Acoustic incoherence
may arise from the evident contrast between the acoustics of
individual sound sources or from the discrepancies between
perceived sounds and their visual representations within the

FIGURE 1
(A) VR conversation with users at remote locations; (B) AR conversation with users at remote locations; (C)Microphones of the Quest 2 VR Headset;
(D) Diagram depicting audio processing pathway for augmented reality conversations. (E) Proposed demo: user interface to change audio settings; (F)
Proposed demo: schematic signal flow.
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virtual environment. In augmented reality (AR) scenarios
(Figure 1B), where remotely recorded sounds must seamlessly
integrate with the user’s real soundscape, such incoherence might
be even more noticeable.

Beyond acoustic incoherence, even in an ideal scenario where all
audio sources are perfectly adapted to each user’s environment,
group conversations in XR can still lead to the so-called “cocktail
party effect,” where multiple people speak at the same time (Cherry,
1953). This situation is particularly challenging because it involves
both energetic and informational masking and requires a high level
of selective auditory attention (Brungart et al., 2006; Oberfeld and
Kloeckner-Nowotny, 2016). Below, we explain why difficult acoustic
conditions are a potential bottleneck for interactions in XR.

Human interaction heavily relies on auditory perception.
Various studies illustrate how factors such as noise,
reverberation, and the inaccuracy of binaural cues can impair our
ability to understand speech, localize sound sources in space, or
concentrate on specific sounds (Puglisi et al., 2021; Good and Gilkey,
1996; Bronkhorst, 2000). Even when the linguistic message is
comprehended, reduced audio quality escalates the effort
required for listening, resulting in measurable physiological
changes in the body, typically associated with psycho-social
stressors (Francis and Love, 2020).

The studies mentioned above focus on measuring how sound
degradation affects an individual’s auditory perception and
ability to understand speech. While good hearing and speech
comprehension are usually prerequisites for communication,
passive listening is not the same as active communication. In
recent years, there has been growing interest in measuring how
acoustic conditions influence communication between groups of
people. New study paradigms aim to quantify conversation
quality by analyzing changes in speech production, turn-
taking time, or movement synchronization between
participants (McKellin et al., 2007; Hadley and Ward, 2021;
Beechey et al., 2020; Petersen et al., 2022; Petersen, 2024;
Sørensen et al., 2021; Hadley et al., 2019). Generally, factors
that degrade speech intelligibility or increase listening effort also
impact conversation dynamics. Noisy conditions, in particular,
force conversation partners to adapt their behavioral strategies to
overcome communication challenges.

The influence of adverse acoustic conditions has also been
discussed from a social perspective. In Jones et al. (1981) the
authors review the existing evidence and propose three main
social effects of noise: (a) social interaction is disrupted by the
masking of sounds; (b) the weighting of interpersonal judgments is
changed; and (c) noisy settings are perceived as aversive, which
governs the utility of social engagement. Moreover, multiple studies
report the negative effects of noise exposure on the social
interactions in the work environment or classroom (Singh et al.,
1982; Cohen and Spacapan, 1978).

Communication difficulties and their psycho-social
consequences have also been well studied in the hearing-impaired
population - a social group inherently exposed to degraded auditory
information (Podury et al., 2023; Monzani et al., 2008). People with
hearing difficulties are more at risk of social isolation and
depression. They perceive the interactions as less successful, and
more frustrating and effortful (Aliakbaryhosseinabadi et al., 2023;
Beechey et al., 2020).

The studies mentioned above represent well-established
research on the perceptual effects of low signal-to-noise ratios,
which are typical in complex, real-world acoustic environments
and often studied in the context of hearing impairment. However,
sound can influence the overall experience in VR in other ways, such
as impacting immersion (Geronazzo et al., 2019; Kim and Lee, 2022)
and presence (Rogers et al., 2018; Kern and Ellermeier, 2020). For a
recent scoping review, see Bosman et al. (2024). Additionally, a few
studies have investigated the auditory consequences of audio-visual
incongruities unique to XR, such as their effects on distance
perception (Gil-Carvajal et al., 2016), localization (Roßkopf et al.,
2023), and speech recognition (Siddig et al., 2019). It is important to
note that these aspects, even if they do not directly affect auditory
perception, may still be important for successful communication.

In summary, although the influence of audio on social
interaction in XR still requires more investigation (Bosman et al.,
2024), the existing literature suggests that human interactions are
likely to be less harmonious in environments with poor acoustics.

3 Technologies to improve audio
interactions

Binaural technology is the foundation for most audio
experiences in virtual and augmented reality. Through a rigorous
preparation of the signal in the left and right audio channels, an
auditory illusion of sound being placed at a specific location inside a
defined environment can be created. In an XR meeting scenario, the
voice captured by the headset on one user’s end becomes a virtual
audio source for the other users.

Figure 1D illustrates a possible audio processing pipeline applied
to such a recording before reaching the listener’s ears: Initially, the
sound emitted by User 1 in Environment 1 – s1e1 – is captured by the
microphones of the headset. Before transmitting the signal to User 2,
environmental disturbances degrading the recording must be
eliminated through denoising and dereverberation to obtain the
clean source signal s1. In parallel, the originally captured signal
serves as a source of environmental information e1 extracted in the
acoustic characterization step, essential for later adapting the audio
received from User 2. Once the recording is cleaned of unwanted
disturbances, it can be passed as input to the binaural rendering
stage. Binaural rendering involves a) spatialization, which creates a
perception of a specific direction according to the relative position
and orientation between the source and receiver, and b) acoustic
matching, which applies the acoustic properties of the target room.
The exact order of these operations depends on the chosen binaural
rendering method (See Gari et al. (2022) for a review). Finally, the
spatialized sound with modified room acoustic properties – s1e2 – is
delivered to the user’s ears. It’s noteworthy that in VR, as the user
moves their head, the relative direction of sound arrival changes,
requiring real-time updates of the entire binaural rendering block.

The depicted pipeline specifically addresses augmented reality,
where the target acoustic space is defined by the user’s actual
location. Consequently, the properties of the target environment
must be estimated through acoustic characterization. In the graph,
the user’s own voice recording serves as the source of this
information. However, alternative methods exist for estimating
room acoustic properties, such as estimating plausible
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reverberation from images (Chen et al., 2022). In VR setups, this step
is typically unnecessary since the reverberation can be simulated
from scratch using geometric methods based on polygon meshes in
the scene (Välimäki et al., 2016).

The sub-tasks depicted in Figure 1D have been the focus of
research in audio and acoustics, leading to diverse approaches
utilized in a broad range of audio processing devices. Notably,
recent advancements in artificial intelligence are beginning to
change the landscape of audio technology. Besides numerous
deep learning solutions for individual signal processing tasks,
there is a trend of replacing entire conventional audio processing
pipelines with end-to-end neural approaches. Table 1 presents a
non-exhaustive comparison between traditional signal-processing-
based solutions and their deep-learning-based counterparts used for
solving the challenges of audio in XR.

4 VR as a tool to study the influence of
sound on human interactions

In previous sections, we outlined the challenges of interactions
in virtual reality (VR) that stem from the insufficient quality of
acoustic signals, and we discussed the state-of-the-art audio
technologies that can help to mitigate these challenges. In this
section, we want to draw the reader’s attention to the fact that
VR not only benefits from advancements in audio technology but
can also serve as a powerful tool for researchers and engineers
developing new audio algorithms, particularly in the domain of
speech enhancement.

Although most of the speech enhancement algorithms aim at
facilitating smooth communication, they are seldom assessed in
actual communication settings. Instead, novel algorithms, especially
in rapidly evolving fields, are typically evaluated using objective
metrics or basic passive listening tests. There are practical reasons
for this gap: Setting up an interactive communication scenario in the
lab is time-consuming, requires multiple participants, and poses
significant challenges in ensuring reproducibility or scaling the study
paradigms. VR offers the possibility to simulate real-life
environments with highly controlled audio content, visual input
and head movements, providing a great platform for detailed testing
of speech enhancement algorithms. Additionally, VR can
automatically generate large volumes of realistic data samples,
which can significantly augment the training and evaluation
datasets needed for developing deep learning models.

The idea to use VR to study human interaction, originating from
experimental psychology (Pan and Hamilton, 2018), is gaining

interest in hearing research (Mehra et al., 2020; Keidser et al.,
2020; Hohmann et al., 2020) and musicology (Van Kerrebroeck
et al., 2021). In our opinion, VR is likely to become a core technology
in developing audio algorithms aimed at enhancing human
communication, particularly for assistive listening devices such as
consumer earbuds, hands-free communication headsets, hearing
aids, and head-mounted displays for XR.

5 Pilot study

We designed a qualitative pilot experiment to validate the virtual
conversation scenes with spatial audio, varying acoustic conditions,
and speech enhancement. In this prototype study, users are asked to
evaluate aspects of the proposed virtual environment and rate
several different speech enhancement algorithms. Below, we
describe the technical system, the method for collecting user
feedback, and the obtained results.

5.1 VR application

Using Unity game development software, we created an
interactive environment simulating a typical meeting in VR,
where four people engage in a conversation. The user is virtually
placed at the same table as four virtual characters and has the
opportunity to observe and listen to their conversation, while also
being able to modify audio processing via the user interface (See
Figure 1E). The user interface allows switching between the
following audio options:

• COHERENT: original recording of the avatars conversation.
• INCOHERENT: noisy, reverberant audio without signal
enhancement.

• CONVENTIONAL AUDIO PROCESSING: spectral noise
gating (Sudheer Kumar et al., 2023).

• DEEP LEARNING METHOD FROM 2020: Facebook
Denoiser (Defossez et al., 2020).

• DEEP LEARNING METHOD FROM 2023: DeepFilterNet
(Schröter et al., 2023).

The signal flow of our VR application is depicted in Figure 1F:
Each virtual character was assigned to an audio source extracted
from a DiPCo dataset containing close microphone recordings of
real conversations (Van Segbroeck et al., 2019). The clean audio
sources were corrupted with various noises and reverberations to

TABLE 1 Traditional and deep-learning-based approaches for the sub-tasks of virtual acoustic simulation.

Task Traditional approaches Deep-learning approaches

Denoising Virag (1999), Krishnamoorthy and Prasanna (2009) Yuliani et al. (2021), Pascual et al. (2017)

De-reverberation Li and Deng (2021), Nakatani et al. (2006) Ochieng (2023), Su et al. (2020b)

Acoustic characterization Ratnam et al. (2003), Kendrick et al. (2007), Hua (2002) Martin et al. (2023), Steinmetz et al. (2021)

Binaural synthesis Cuevas Rodriguez et al. (2022), Rafaely et al. (2022) Huang et al. (2022), Lluís et al. (2022), Zhu et al. (2024)

Acoustic matching Välimäki et al. (2016), Peters et al. (2012) Koo et al. (2021), Im and Nam (2024), Su et al. (2020a)
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mimic a real scenario (i.e., each participant located in a different
noisy space). The broadband SNR was set to −5 dB for all sources.
We used ACE database for room impulse responses (Eaton et al.,
2015), AVAD-VR for anechoic recordings of instruments (Thery
and Katz, 2019), and Freesound (Fonseca et al., 2021) for other
background sounds. Next, the audio was processed by one (or none)
of the signal enhancement methods listed in the user interface. The
enhanced audio was spatialized based on the relative position
between the source and the listener and placed in a simulated
acoustic environment i.e., a shoebox room corresponding to the
visual scene. We used the Steam Audio spatializer plugin as the
binaural synthesis engine. Apart from spatialization, the signal was
processed offline. The offline signal enhancement did not affect the
binaural reproduction, thereby not limiting the user’s ability tomove
their head and explore the virtual scene. Nevertheless, it simulated
an idealized future scenario where speech enhancement algorithms
could process sound in real time without compromising
performance. A real VR or AR conversation would require
implementing a fully real-time version of these algorithms, which
is challenging and still an active field of research (Westhausen et al.,
2024). This interactive demonstration was developed as a standalone
Meta Quest 2 application.

5.2 Procedure

Using the application described above, we conducted a within-
subject experiment with five different acoustic conditions. We
invited 11 young participants (age 31–42). Apart from self-
reported healthy hearing, there were no other inclusion criteria.
All participants volunteered to take part in the study. They were
informed in detail about the content of the experiment, agreed to
have their survey responses used in the analysis presented here, and
were free to withdraw from the demonstration and analysis at any
time. No personal information was collected, and only anonymized
data was used.

Participants were asked to put on the Quest 2 VR headset
coupled with Sennheiser Epos Adapt 360 over-ear headphones.
First, they were given an introduction, which consisted of several
guided VR scenes. The scenes demonstrated the main audio features
in VR and gave examples of acoustically coherent and incoherent
scenes in virtual reality. Additionally, a hearing loss simulation by
Cuevas-Rodríguez et al. (2019) was presented to raise awareness
about auditory perception of individuals with hearing impairments.

After this introduction, the participants were virtually placed in
the VR meeting scene (described in detail in the previous
subsection), where they could adjust the audio enhancement
settings via the user interface. Participants were instructed to
consider aspects like speech intelligibility and sound quality.
They were encouraged to experiment with audio settings until
they formed a clear opinion about each audio processing option.
After completing this phase, participants removed the headset and
completed an online questionnaire about their experience in the
virtual scene. The questionnaire consisted of 7 Likert scale type
questions. Likert scales are broadly used in social sciences for the
collection of attitudes and opinions (Likert, 1932). They typically
consist of 5 options ranging from “strongly disagree” to “strongly
agree” (or a similar 5-point symmetrical range of responses with

neutral response in the middle) and have been previously used for
evaluating soundscapes (Mitchell et al., 2020).

The following questions were presented in the survey:

1. The listening scenario, i.e., audio material, source positions,
loudness levels felt realistic (strongly disagree - strongly agree).

2. It was difficult to follow the conversation in the acoustically
incoherent scene (strongly disagree - strongly agree).

3. I would have difficulty interacting with people in acoustic
conditions similar to the acoustically incoherent scene
(strongly disagree - strongly agree).

4. The experiment has raised my awareness about perception of
sound (strongly disagree - strongly agree).

5. The experiment has raised my awareness about audio
technology (strongly disagree - strongly agree).

6. Rate how much each audio processing method helped you
understand speech (did not help at all - helped a lot).

7. Rate the audio quality provided by each audio processing
method (very poor - very good).

To analyze the responses we used the Mann–Whitney U test. The
collected data is ordinal, meaning the response categories have a natural
order but potentially unequal intervals between them. This non-
parametric test compares the distributions of two independent
groups and does not assume normality, making it suitable for
analyzing Likert scale data that may not follow a normal distribution.

A video with the full demonstration including the introduction
is available online1.

5.3 Pilot results and discussion

The survey results are shown in Figure 2. In Question 1, most
participants agreed that the selected listening scenario was realistic,
supporting the expectation that virtual reality can create ecologically
valid acoustic scenarios, as proposed by Hohmann et al. (2020) and
Mehra et al. (2020).

In Question 2 and 3, participants agreed that the incoherent
acoustic scene represented conditions in which it would be difficult
to follow the conversation and interact with others. In additional
interviews, they reported that the acoustic coherence had a crucial
impact on the willingness to take part in the VR meeting and the
ability to associate individual voices with the avatars. The result of
Question 2 confirms the well-known finding that speech
intelligibility is impaired by noise or reverberation (Bradley,
1986; Bronkhorst, 2000). The results for Question 3 suggest that
not only speech comprehension, but also interpersonal interactions,
are negatively affected by poor acoustics, which is in agreement with
the findings of McKellin et al. (2007) and Hadley et al. (2019) who
studied real conversations in noisy settings.

Questions 4 and 5 assessed the potential educational impact of
participating in the experiment. The results indicate that for most of
them, the experiment increased awareness of sound perception and

1 Video available at https://www.youtube.com/watch?v=

SaXMYn8b3eg&t=124s.
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audio technology, although not all participants experienced
this benefit.

Questions 6 and 7 rated three speech enhancement methods.
While it was evident that all methods improved the auditory
experience to some degree, participants reported distinct
preferences when evaluating the methods. The survey questions
were formulated to gather ratings reflecting speech intelligibility
(Question 6) and perceived sound quality (Question 7) for each
algorithm. The DNN-based solution by Schröter et al. (2023) was
regarded as the most beneficial for understanding speech and
yielding the highest signal quality. The second-best option in
both categories was the DNN-based method by Defossez et al.
(2020). Finally, the conventional speech enhancement technique
(Sudheer Kumar et al., 2023) was rated as the least helpful, providing
only marginal improvement in speech perception and exhibiting
poor audio quality. These results suggest that while traditional signal
processing may be insufficient for improving communication in XR,
recent deep learning approaches show significant potential.

The benefit of DNN-based techniques over traditional methods
has been reported in multiple studies (Xu et al., 2013; Zheng et al.,
2023). This benefit is generally attributed to the fact that DNNs do
not rely on the unrealistic assumptions about the statistical
properties of speech and noise that constrain the performance of
traditional methods. However, it should be noted that end-to-end
deep learning approaches, such as those used in this pilot study,
remain computationally expensive and may be challenging to
implement in real-time on mobile devices.

Only a few studies in the context of hearing aid signal
enhancement have compared various speech enhancement
techniques in complex acoustic environments (Gusó et al., 2023;
Westhausen et al., 2024; Hendrikse et al., 2020). Furthermore, most
evaluations rely on objective metrics, which have been criticized for
providing only a limited view of how humans perceive sound
(Torcoli et al., 2021; López-Espejo et al., 2023). To our
knowledge, there is no prior research comparing traditional and
DNN-based speech enhancement methods subjectively in
audio-visual VR.

Although the method by Defossez et al. (2020) received
slightly higher ratings than Sudheer Kumar et al. (2023), this
difference was not statistically significant in either aspect (see
Figure 2, bottom panel). Informal listening reports indicate that
while the DNN is better at removing noise, it distorts the signal in
a way that makes listening to the conversation unpleasant. This
suggests that perceptually distinct signals can result in similar
effective speech enhancement and comparable assessed quality.
Hence, despite the benefit of SNR, we might expect similar
communication benefit. Further studies are needed to quantify
how different types of distortions interact with binaural XR
environments and if such differences between methods
influence social interactions.

Collecting participant opinions is an efficient way to probe
perception. In this pilot study, we used this approach to explore
new research ideas. However, to validate these findings, future studies
will require quantitative measures of communication success.

FIGURE 2
Results for 7 survey questions performed by the users after participating in the study. Upper panel: Pie charts showing the results of 5 out of
7 questions. Bottom panel: Stacked bar charts representing the results of the remaining 2 survey questions. Statistical significancewas computed with the
Mann–Whitney U test. The symbol ns stands for P >0.05, the symbol ** stands for 0.01>P >0.001, and the symbol *** stands for P <0.001.
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6 Discussion

In this article, we presented our perspective on how contemporary
audio technologies enhance social interaction in extended reality (XR).
Ourmain goal was to conceptually link technical topics in XR and audio
technology with concepts from the psychology of human interaction,
particularly speech communication and hearing science.

Extensive research in psychology and auditory science shows
that sound is fundamental to human communication ? However,
ideal auditory input is often difficult or impossible to achieve.
Whether it’s noisy environments encountered in daily life,
partially inaudible sounds for individuals with hearing
impairments, or remote meetings where sound undergoes
multiple modifications before reaching users’ ears, imperfect
sound can hinder effective communication (Balters et al., 2023;
Beechey et al., 2020; Hadley et al., 2019; McKellin et al., 2007).

In this work, we focused on the challenges of achieving ideal
audio signals in remote XR meeting scenarios. Beyond well-known
issues like background noise and the “cocktail party” effect, XR
presents additional challenges, such as incongruences between
individual audio sources or between audio and visual virtual
representations (Neidhardt et al., 2022). Distortions introduced
by the signal processing pipeline, which involves multiple sub-
tasks, may result in signals unfamiliar to our ears. Even with
perfect hearing, the brain may struggle to adapt quickly to these
synthetic sounds (Willmore and King, 2023).

We introduced the concept of “acoustic incoherence” to describe
these new audio challenges posed by XR technology and emphasized
the importance of coherent acoustic scenes for smooth interaction in
XR. We briefly reviewed existing solutions to the sub-tasks of virtual
acoustic simulation, mentioning deep-learning-based alternatives to
conventional approaches, which are likely to dominate digital audio
processing in the near future.

Although it is clear that sound influences interaction, few studies
examine this influence in actual interactive settings (McKellin et al.,
2007). Similarly, while the ultimate goal of speech enhancement is to
improve communication, speech enhancement algorithms are rarely
evaluated in interactive communication settings (Keidser et al.,
2020). VR provides a valuable platform for creating realistic
evaluation scenarios for hearing research and audio algorithm
development. We believe that, in the long term, prioritizing
communication benefits will transform speech enhancement
algorithms into tools that enhance human interactions, enabling
users to experience more harmonious social connections.

To support our perspective, we presented a pilot study
conducted in virtual reality comparing classical and deep-
learning-based approaches to speech enhancement. The results
indicate that deep-learning-based methods hold potential for
improving communication but also suggest that even de-noised
signal retain distortions that can be detrimental in conversational
scenarios. These initial results, which we plan to complement with a
more formal study in the future, underscore the significance of
speech enhancement in virtual reality interactions and demonstrate
how VR can be used to evaluate novel audio processing algorithms.

In recent years, assistive and multimedia technologies have
advanced significantly, with many low-level challenges, such as
denoising, nearly resolved. Consequently, the focus is shifting
towards a broader, more integrative view of how users interact

with technology and each other (Pan and Hamilton, 2018;
Billinghurst et al., 2024). Developing new algorithms increasingly
requires expertise from human-centered fields such as psychology
and sociology (Gregori et al., 2023). This paper examines existing
audio technology through the lens of human interactions and
presents an original perspective on communication in XR,
supporting a multidisciplinary approach in research and technology.
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