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Introduction: Intersections are particularly complex traffic situations and are
often the scene of accidents. Driver behaviour and decision-making might be
affected by specific factors such as the right of way, traffic volume, and the
occurrence of a critical event directly before the intersection.

Methods: We developed a new driving scenario in virtual reality (VR) to test the
impact of these factors using a fully immersive head-mounted display.
Participants had to navigate through a series of intersections to reach their
target destination. We recorded their driving behaviour as well as their brain
activity using electroencephalography (EEG).

Results: Our results showed that participants engaged cognitive control
processes when approaching an intersection with high traffic volume and
when reacting to a critical event, as indexed by driving behaviour and
proactively by increased theta power. We did not find differences for right of
way in the EEG data, but driving behaviour was as expected, revealing a driving
speed reduction when participants had to yield to traffic.

Discussion:We discuss advantages and potential challenges of an immersive VR-
based approach to driving simulations and the challenges encountered when
recording and analysing EEG data. We conclude that despite movement and
electronic artefacts, EEG data in the theta and alpha bands can be analysed
robustly and allow for novel insights into control processes in realistic VR
scenarios.
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Introduction

For many of us, driving a car is a normal part of our daily lives. At the same time, driving
is a complex task that requires an intricate interplay of attentional processes, cognitive
control and motor coordination. For example, drivers are required to manoeuvre their car
(e.g., controlling speed and lane position, shifting gears) while at the same time constantly
scanning their environment (e.g., for information from road signs or for monitoring the
behaviour of other road users) and potentially reacting to obstacles (e.g., swerving or
braking if a pedestrian unexpectedly enters the road). Lapses of attention or fatigue can have
severe consequences in the form of accidents. One particular hotspot for accidents are
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intersections. For example, one-third of all crashes in the
United States (NHTSA, 2020) and 43% of injury accidents in
Europe occur at intersections (Simon et al., 2023).

One reason might be that intersections—especially ones not
controlled by traffic lights—are highly complex traffic situations
where right of way is governed by specific traffic rules that need to be
obeyed, other road users might be involved, and navigational
decisions have to be made. Drivers have to constantly shift and
re-focus their attention (e.g., Huizeling et al., 2020). This is
particularly relevant when they have to yield to other road users
(Werneke and Vollrath, 2012; Ringhand et al., 2022), when they are
distracted by an unexpected event such as a pedestrian crossing the
road (Metz et al., 2011; Ericson et al., 2017), and when traffic volume
is high (Werneke and Vollrath, 2014; Ericson et al., 2017; Ringhand
et al., 2022). Hence, it is important to understand the underlying
cognitive processes of how drivers deal with these situations and
how these affect driving behaviour at intersections. To this aim,
electroencephalography (EEG) can be used to record brain activity
while driving. Taking advantage of the high temporal resolution of
EEG, it is possible to use EEG to track drivers’ attention and fatigue
levels (Lin et al., 2007; Guo et al., 2018; Wascher et al., 2023) and to
predict when they are about to brake (Haufe et al., 2011; 2014;
Nguyen and Chung, 2019). In addition, EEG provides insights into
how drivers process and respond to increased cognitive load and
allocate their attention before and after critical events (Huizeling
et al., 2020). Here, theta power (oscillations between 4 and 7 Hz) and
alpha power (oscillations between 8 and 12 Hz) have been reported
to play an important role. Increased theta power is an indicator for
increased cognitive control and mental effort and typically has a
midfrontal topography (Nigbur et al., 2011; Cavanagh et al., 2012;
Cavanagh and Frank, 2014; Cohen, 2016; Zavala et al., 2018), while
decreased alpha power is an indicator for increased attention and
typically has a posterior topography (Klimesch et al., 2007;
Hanslmayr et al., 2011; Klimesch, 2012; Peylo et al., 2021). For
example, Getzmann and colleagues (2018) found increased theta
power and decreased alpha power under more difficult driving
conditions (e.g., shaper bends of the road) compared to easy
driving conditions. Huizeling et al. (2020) showed that theta
power increased when participants reacted to a car braking in
front of them and when refocusing their attention to task-
relevant information (i.e., a road sign displaying directions to the
target destination) after such a critical event, indicating increased
mental effort. Further, younger (but not older) participants
demonstrated decreased alpha power when they had to detect
task-relevant information on a road sign if this was preceded by
a critical event, indicating increased attention. While EEG studies
focusing on driving behaviour at intersections are rare, there is
evidence that alpha and theta power also track important processes
in this context. For example, a driving simulation study by Zhang
and Yan (2023) demonstrated that intersection collisions are
preceded by lower theta power and increased alpha power,
indicating a lack of attention. Further, a real world driving study
found that preparing for a turn at an intersection was shown to be
associated with an increase in alpha power variation (Kim et al.,
2014). In summary, theta and alpha power are useful indicators of
cognitive processing that allow further insights into the mechanisms
underlying driving behaviours, including those required at
intersections.

Systematically investigating how different intersection
properties affect cognitive processing and driving performance
requires a controlled, yet realistic driving environment. This
trade-off between ecological validity on the one hand and
experimental control on the other hand poses a key challenge in
driving research. In naturalistic driving studies (i.e., driving an
actual car), it is almost impossible to control all factors that
might influence the behaviour of interest and it can be
impossible or unethical to implement certain manipulations (e.g.,
having a pedestrian run across the road or having a car crash in front
of the driver). These issues can be addressed in driving simulator
studies, where participants drive a simulated car through a
computer-generated virtual environment. However, driving
simulators have certain limitations. They typically operate
through various large screens in front of the driver, which has
the disadvantage of imposing a fixed field of view onto the driver and
restricting potential driving behaviours (e.g., it is typically not
possible to drive backwards). These drawbacks can be addressed
by fully immersive virtual reality (VR) that allows the driver free 360°

movement by combining a simulated car with a VR headset. In
addition, freely available video game engines such as Unity (Unity
Technologies, 2024) and Unreal (EpicGames, 2024) offer
researchers the possibility to construct a wide range of virtual
environments and traffic scenarios, which not all commercial
driving simulators provide. Recent research (Weber et al., 2021)
also shows that, when recording EEG while wearing a virtual reality
head-mounted displays (HMD), lower frequency brain oscillations
such as theta and alpha are not affected by the electronic artefacts of
HMDs such as the HTC Vive Pro (employed here), as these are
typically limited to a higher frequency range.

The aim of this study was to develop a fully immersive VR
driving scenario to assess driving behaviour at intersections. We
manipulated three factors: 1) right of way, 2) presence of traffic, and
3) the presence of a pedestrian crossing the road. We recorded EEG
to gain further insights into how these factors influence cognitive
and attentional processes underlying driving behaviours. We
expected that theta power should be increased and alpha power
should be decreased 1) when drivers have to yield to traffic, 2) when
traffic volume is high, and 3) when drivers have to react to an
unexpected event.

Methods

Participants

We recruited 34 participants between the ages of 18 and 28 years
through posters put up on the campus of Aston University
(Birmingham, UK), through the Psychology participant data base
of Aston University, and through word-of-mouth. Participants had
to meet the following criteria: They had to possess a valid UK driving
license and had to have driven in the UK within the last year; they
must not suffer from motion sickness; never have had a diagnosis of
a neurological disorder, i.e., not take psychotropic medication; had
normal or corrected-to-normal vision and colour vision (for
corrected vision: only small-framed glasses that fit in the virtual
reality headset were allowed), and finally, excellent understanding of
verbal and written English was required. Of the 34 participants who
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volunteered for our study (25 female, mean age = 20.56 years, SD =
2.27 years), 14 dropped out during the study due to cybersickness;
the final sample consisted of 20 participants (12 female, mean age =
20.70 years, SD = 2.45 years). Participants received either class credit
(in the case of undergraduate Aston University Psychology students)
or reimbursement in the form of vouchers (£7.50/hour) for their
participation. The study was approved by Aston University’s
University Research Ethics Committee (REC ref: 1782).

Initially, we also aimed to compare different age groups, as
driving performance and cognitive control processes have been
shown to differ between younger and older drivers (Bennett
et al., 2016; Getzmann et al., 2018; Huizeling et al., 2020). We
therefore attempted to recruit an older participant group (65+
years), however, due to recruitment difficulties during the
COVID-19 pandemic and high rates of cybersickness (8 dropouts
out of 9 recruited participants) we stopped the recruitment process
(see Supplementary Material for details).

Study procedure

The study consisted of one session lasting roughly three hours.
First, participants gave informed consent and filled out a
demographic questionnaire. Then, they received written
instructions on the driving task and performed a practice version
of the virtual driving task. In the practice version, there was no traffic
and the pedestrian was always idle, so that participants could focus
on familiarising themselves with driving in the virtual environment.
They were encouraged to brake and accelerate several times and to
practice driving at the speed limit of 30 mph. The practice block
lasted for sixteen trials (intersections) but could be extended if
participants stated that they needed more time. If participants felt
comfortable with the virtual driving task, they then performed four
trials (intersections) of the real task, where they experienced traffic
and the pedestrian running across the road. After this practice,
participants completed the Driving Habit Questionnaire (assesses
driving habits and experience within the last year; Owsley et al.,
1999), the Useful Field of View test (measures divided attention,

selective attention and visual processing; Ball et al., 1988), and the
Choice Reaction Time test (measures visual processing speed).

In the second part, participants completed the virtual driving
task while wearing an EEG cap. The task was organised in five blocks
of sixteen trials (intersections) each. In the task, participants had to
follow road signs towards a target destination. Participants took
breaks between each block during which they had the opportunity to
take off the HMD. The driving task took approximately 40 min on
average. After the driving task, participants had the opportunity to
wash the EEG gel out of their hair. They completed two virtual
reality questionnaires after the experiment: The Virtual Reality
Sickness Questionnaire (Kim et al., 2018) which measures
cybersickness symptoms and is a reduced version of the
Simulator Sickness Questionnaire (Kennedy et al., 1993) with
high internal consistency (Cronbach’s alpha of .92; Sevinc and
Berkman, 2020), and the Igroup Presence Questionnaire (IPQ;
Igroup project consortium, 2024; Schubert et al., 2001) which
measures how present participants felt in the virtual
environment. The IPQ consists of the subscales spatial presence
(Cronbach’s alpha of .82), involvement (Cronbach’s alpha of .87),
and experienced realism (Cronbach’s alpha of .69), as well as one
item to measure general presence (Regenbrecht and Schubert, 2002).
At the end, participants were debriefed about the aims of the study.

Driving simulation task

Participants completed a driving simulator task in virtual reality
where they navigated a series of intersections to drive towards a
target destination.

Materials and apparatus
As depicted in Figure 1, participants were seated in an adjustable

GT Ω Art Racing Simulator Cockpit (RS6 seat). They used a
Logitech G27 steering wheel and pedal set to control the car in
virtual reality. The steering wheel included paddles to the left and
right of the steering wheel that served as indicators. Gear shifts were
automatic, so participants only used the accelerator and brake pedals
and did not manually shift gears. The virtual driving scenario was
presented using the HTC Vive Pro head-mounted display (HMD).
The HTC Vive Pro has a dual OLED 3.5 inch display with a
resolution of 1,440 × 1,600 pixels per eye, a field of view of 110°

and a refresh rate of 90 Hz. The interpupillary distance between the
two lenses is adjustable and was adapted to each participant. The
HTC Vive Pro also includes headphones.

The virtual driving scenario was created in Unity version
2019.4.21f1 and was controlled via SteamVR version 1.20.4 on a
Windows 10 personal computer (i9 processor, 32 GB RAM, Nvidia
GeForce RTX 2090 TI GDDR6). The Unity Experimental
Framework (Brookes et al., 2020) was used to record behavioural
data (including the position and rotation of the driver car, velocity,
speed, accelerator input, brake input, indicator input, steering input,
and lane position). Lab Streaming Layer (LSL) was used to send EEG
triggers from Unity to the EEG recording system over a
mobile hotspot.

For the virtual environment, all roads were created in Blender
version 2.91 (Blender Development Team, 2024). Roads at
intersections contained typical UK road markings to indicate

FIGURE 1
Setup of the driving simulator with VR headset and EEG cap.
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right of way (white double broken lines and triangle sign for having
to give way). All static objects in the environment were either free
assets from the Unity asset store or were created in Unity (this
includes all houses, nature elements and road signs; for a list of
assets, see Supplementary Table S1). For the pedestrian, we used a
free 3D model of the character “Sophie” including idle and running
animations from http://mixamo.com (Adobe Systems). All cars were
based on a realistic car model obtained from the Unity asset store
(https://assetstore.unity.com/packages/3d/vehicles/land/realistic-car-

hd-03-113200) and controlled by the Realistic Car Controller V3.
4 asset (Buğra Özdoğanlar, 2024). The inside of the driver’s car
included fully functional mirrors. Two virtual hands were placed at
the 10 and 2 (o’clock) positions on the steering wheel. The dashboard
contained a non-functional RPM dial and a functional digital
speedometer in miles per hour (MPH). The driver’s car also
produced audio output consistent with the car behaviour (e.g., an
“engine start” sound when starting the engine, engine sounds that
changed with the RPM while driving, indicator sounds when one of

FIGURE 2
Screenshot of the virtual driving scenario. The driver is approaching a give way intersection without any traffic.

FIGURE 3
Intersection design and experimental manipulations. (A) Schematic of markers used for EEG epoching and behavioural analysis segments. The
before turn marker was placed 8.6 m before the turn (green), the apex marker was placed at the apex of the turn (orange), the facing intersection marker
was placed 17 m before the intersection (red), the pedestrian was placed 12 m before the intersection (blue), the start intersection marker was directly at
the beginning of the intersection (yellow). Note that the pedestrianmarker used for time-locking was themovement onset of the pedestrian, not the
time when participants crossed the pedestrian’s position. (B) The experimental design was as follows: After a turn around a corner (left or right turn,
balanced), a pedestrian stood on the pavement to the left or right (random). In half of trials, she started running across the road so that drivers had to brake
and stop. At the intersection, there was a road sign with 9 destinations. We systematically varied the right of way (vs. give way) and the presence of traffic
(vs. no traffic).
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the indicators was activated). Road signs were created by editing 3D
models in Blender and adding text using TextMeshPro in Unity.
Road signs were brown with white text. Each road sign listed nine
destinations, with the top three destinations pointing straight ahead,
the middle three destinations pointing right, and the bottom three
destinations pointing left. The road sign had a size of 5.35 × 3.80m. A
screenshot of the virtual driving environment is presented in Figure 2
(for a video, see https://osf.io/fqtve/).

Intersection design
The virtual driving scenario consisted of a series of intersections.

A schematic illustration of the intersection design can be found in
Figure 3. Each intersection started with a straight road on which the
participant’s car was moving. After 48 m, the road took a 90° corner
(left or right). At the outer apex of the corner, there was a car park.
16 m after the corner, there was a four-way intersection. Road
markings either indicated that participants had right of way or that
they had to give way; there were no traffic lights. A road sign on the
left side of the road displayed nine destinations. The order of the
destinations was randomized at each intersection. 12 m before the
intersection, a pedestrian stood either on the left or the right side of
the road. The pedestrian was initially in idle mode; in half of the
intersections, the pedestrian then ran across the road (added
distractor event). The onset of the pedestrian’s movements was
time-locked to 1s after participants crossed an invisible line before
the turn and the speed of movement was varied randomly. At the
intersection, there was traffic in half of the intersections (added
cognitive load). Traffic consisted of five unique cars controlled by a
simple artificial intelligence (AI); these AI cars could either be
driving from left to right, right to left, or from straight ahead.
The AI cars’ speed was adjusted based on the participants’ driving
speed up until shortly before the intersection; this ensured that
regardless of how fast participants were driving, there would be
traffic when they arrived at the intersection. AI cars pulled into the
car parks before the next intersection as to not further influence
participants’ driving behaviour.

We systematically varied three factors in a full factorial within-
subjects design (see Figure 3B): the presence of a distracting event
(idle pedestrian vs. running pedestrian), the road type (right of way
vs. give way), and the presence of traffic (no traffic vs. traffic). We
also balanced the initial left vs. right turn before the intersection.
This resulted in 2 × 2 × 2 × 2 = 16 unique intersections. We
randomized the order of these intersections in each block. For each
intersection, the position of the pedestrian (left vs. right side of the
road), the position of the target destination on the road sign, and the
number of AI cars in the traffic condition (4-5) was
assigned randomly.

EEG data acquisition

We recorded scalp EEG from 64 Ag/AgCl electrodes using a
64 channel eego sports mobile EEG system (ANT Neuro, Enschede,
Netherlands). The electrode layout followed the international
10–20 system. EEG data was recorded with a sample rate of
500 Hz. Electrode AFz was used as ground and electrode CPz
was used as reference. Impedances were kept below 20 kOhm.
We did not record data from mastoids or eye electrodes.

EEG preprocessing

EEG data were preprocessed using Matlab R2021b and eeglab
2024.2 (Delorme and Makeig, 2004). Preprocessing consisted of the
following steps. We bandpass-filtered the data between 1 and 50 Hz
(Hamming windowed FIR filter). A recent study by Weber et al.
(2021) investigated EEG contamination by HMD artefacts (incl.
HTC Vive Pro) and concluded that frequencies below 50 Hz
remained largely unaffected (see also Alexander, 2024 for
confirmation). We then extracted three different epoch types. As
baseline, we extracted 12 s epochs (−10 to 2 s) time-locked to before
participants reached the turn (see Figure 3A). For analyses of right of
way and traffic, we extracted 20 s epochs (−10 s–10 s) time-locked to
when participants first faced the intersection after the turn (see
Figure 3A). In addition, we re-epoched the data to extract 8 s epochs
(−2–6 s) time-locked to the onset of pedestrian movement for
analysis of the pedestrian. In trials where the pedestrian did not
move, we used an estimate based on the onset times of all other trials
for that participant. For all epochs, we inspected the data visually to
identify bad channels and remove trials that were affected by severe
artefacts (baseline: M = 1.45 trials removed, SD = 3.68 trials; facing
intersection and pedestrian: M = 1.35 trials removed, SD =
3.69 trials). We excluded bad channels before re-referencing to
infinity using reference electrode standardization technique
(REST; Yao, 2001) as implemented in Fieldtrip version
20,210,330 (Oostenveld et al., 2011). Next, we performed
Infomax independent component analysis (ICA) to identify
artefact components (as based on Bell and Sejnowski, 1995 as
implemented in EEGLAB). We used ICLabel (Pion-Tonachini
et al., 2019) to mark artifact components such as eye and muscle
movements, which we then visually inspected before removing clear
artifacts (average number of removed components: baseline: M =
6.85, SD = 2.03; facing intersection and pedestrian: M = 7.10, SD =
1.86). Finally, we interpolated bad channels using spherical spline
interpolation as implemented in EEGLAB (Perrin et al., 1989). We
then resampled to 250 Hz.

EEG time-frequency analysis

We analysed data using Matlab 2021b and Fieldtrip version
20210330 (Oostenveld et al., 2011). We carried out time-frequency
analyses using complex Morlet wavelets for frequencies from 1 to
50 Hz in 50 logarithmically spaced steps. The cycle length of the
complex Morlet wavelets increased from 3 cycles at 1 Hz to 8 cycles
at 50 Hz in logarithmically spaced steps. As baseline, we averaged the
time-frequency signal during four seconds of driving straight ahead
(−5 to −1 s before the before turn trigger) across time and trials. We
applied a decibel (dB) baseline normalisation where normalised
power is dB = 10 * log10 (power spectrum/baseline) for each trial.
We then averaged across trials per condition and across frequencies
(theta: 4–7 Hz; alpha: 8–12 Hz) and ran cluster-based permutation
tests (Maris and Oostenveld, 2007) using two-tailed dependent
sample t-tests. We set the minimum number of neighbouring
channels to 2, alpha level was 0.05, and the number of
permutations was 10,000. We tested three comparisons of
interest separately for theta and for alpha power: traffic vs. no
traffic (time-locked to facing intersection, time window of
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interest: −0.5–2 s), give way vs. right of way (time-locked to facing
intersection, time window of interest: −0.5–2 s), and pedestrian
running vs. idle (time-locked to onset of pedestrian movement, time
window of interest: −0.5–2 s).

Data statement

We report how we determined our sample size, all data
exclusions (if any), all manipulations, and all measures in the
study. We did not preregister this study. All data and analysis
scripts are openly available from https://osf.io/v7yx4/. Due to
licensing constraints, we can only share the Unity project with
people who have obtained the necessary licenses, as some of the
Unity assets used in our experiment are not openly available (see
Supplementary Table S1 for a list of required Unity assets). Please
contact the corresponding author for further details.

Results

Behavioural results

First, we looked at participants’ cybersickness and presence
scores to evaluate how the experienced the virtual environment.
Next, we checked if participants took the task seriously by analysing
navigational errors, crashes, indicator activation and average driving
speed. Then, we analysed participants’ speed, braking and
acceleration patterns at the intersection as well as their reaction
times in activating the indicators at the intersection (in case of a left
or right turn).

The impact of the virtual environment
Participants had a general presence score of 3.85 (SD = 1.35)

using the IPQ, indicating satisfactory presence (for results of the
subscales, see Supplementary Material). Cybersickness symptoms
were low to moderate, with an average VRSQ score of 19.42 out of
100 (SD = 14.39) for the 20 participants who completed the
experiment. As the dropout rate was relatively high at 41%, we
also looked at participants who did not complete the experiment.
Notably, these participants reported descriptively higher
cybersickness scores (M = 26.96, SD = 13.46). In addition, only
21% of participants who dropped out had prior experience with VR
(compared to 65% of participants who completed the experiment).
Finally, we ran exploratory correlational analyses between
cybersickness and presence scores across all participants and
found a significant negative correlation between cybersickness
and spatial presence, rho = −.437, p = .01 (see Supplementary
Material for details).

Basic check: realistic driving behaviour
To test if participants took the task seriously and drove in a

realistic manner, we analysed their driving behaviour. Participants
made very few navigational errors; they drove in the wrong direction
at 0.6 out of 80 intersections on average (SD = 0.88). We found some
variability when analysing crashes (collisions with other cars or the
pedestrian); participants had an average number of 1.75 crashes
(SD = 2.20), with 1.15 crashes (SD = 1.50) involving other cars and

0.60 crashes (SD = 1.23) involving the pedestrian on average; eight
participants did not crash at all. This is comparable to traditional
driving simulator studies (Werneke and Vollrath, 2012) and fits with
the finding that participants make more errors in simulated
compared to controlled driving (Bach et al., 2008). Most
participants used their indicators correctly, with only three
participants failing to indicate (two participants failed to indicate
at nine intersections, one participant failed to indicate at three
intersections). The average driving speed while driving on a
straight road was 25.02 mph (SD = 3.51 mph). Overall, this
indicates that participants obeyed traffic rules and drove in a
realistic manner.

Dynamics of driving behaviours at intersections
Next, we focused on speed, acceleration and braking patterns

during the different periods of the driving task. We divided each
intersection into five segments (see Table 1; Figure 3A).

We compared participants’ average driving speed, brake input
and throttle input during each segment for each of our conditions
(traffic vs. no traffic, pedestrian running vs. idle, give way vs. right of
way) using two-tailed paired t-tests. The results are summarised in
Figure 4 and descriptive statistics are presented in Supplementary
Material (Supplementary Tables S1–S3). Participants reduced their
driving speed well in advance when approaching an intersection
where they had to give way (as compared to the right of way).
Participants accelerated more when approaching an intersection
without any traffic (as compared to high traffic volume), but their
driving speed only differed in the last time segment directly before
the start of the intersection. Participants braked for the pedestrian as
expected, but then accelerated more in later time segments.

Next, we looked at how fast participants were in activating their
indicator in case they had to turn. We took this as a proxy for how
quickly participants identified the target destination when
approaching the intersection. We ran two-tailed paired t-tests on
the time between passing the pedestrian (see Figure 3A, bluemarker)
until the activation of the indicator for each comparison of interest
(see Figure 5; Supplementary Table S6). Indicator activation times
were significantly faster in the pedestrian running as compared to
idle condition, t(19) = −2.55, p = .020, dz = −0.57. When considering
the acceleration patterns described above, this could indicate that
participants took the time that they waited for the pedestrian to pass
to prepare for the upcoming intersection, thus making them quicker
at identifying the target destination and activating their indicator.
Indicator activation times did not differ between traffic and no traffic
conditions, t(19) = −0.69, p = 0.500, dz = −0.15, but were
significantly faster in the right of way as compared to give way

TABLE 1 Overview over driving behaviour segments. Colours in brackets
refer to event markers in Figure 3.

Segment Average time

Segment 1: trial start to before turn (green) 3.387s (SD = 0.664s)

Segment 2: before turn to apex (orange) 2.363s (SD = 0.538s)

Segment 3: apex to facing intersection (red) 1.276s (SD = 0.360s)

Segment 4: facing intersection to pedestrian (blue) 1.704 (SD = 0.236s)

Segment 5: pedestrian to start intersection (yellow) 3.995 (SD = 0.587s)
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condition, t(19) = −2.41, p = .026, dz = −0.54. As the speed and
acceleration patterns showed that participants slowed down before
the intersection in the give way condition, this is likely due to
participants being more cautious in the give way condition and
hence taking longer to identify the target destination.

EEG results

We tested theta and alpha power for all comparisons of interest
using cluster-based permutation tests (see Methods). Both the
comparison of right of way vs. give way and traffic vs. no traffic

were time-locked to when participants first faced the intersection (see
Figure 3A, red event marker) to test for differences in cognitive
processing while participants approached the intersection. For the
comparison of give way vs. right of way, we did not find significant
clusters for theta, all ps > .99, or alpha power, all ps > .59 (see
Supplementary Figures S1, S2 for topographies). For the comparison
of traffic vs. no traffic, there was a significant difference for theta with
increased theta power in the traffic condition. Descriptively, we found
two clusters: a posterior cluster (appr. 480–800 ms, p = .009) and a
midfrontal cluster (appr. 760–1,040 ms, p = .03) (see Figure 6;
Supplementary Figure S3). We did not find a significant difference in
alpha power, all ps> .99 (see Supplementary Figure S4 for topographies).

FIGURE 4
Average driving speed (top row), brake input (middle row) and throttle input (bottom row) for each of the comparisons of interest and all five time
segments (s1 to s5, see Table 1). Significant differences are marked with a grey asterisk. Error bars represent standard errors.
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For testing the effect of the pedestrian, we time-locked the data
to the moment the pedestrian started moving. Here, we found
significant differences for both theta and alpha power (see
Figure 7). For theta power, we found an early cluster with
increased theta power for when the pedestrian was running that
included all electrodes, but was especially prominent across mid-
frontal electrodes (appr. 80–600 ms, p < .001). We also found a later
cluster with decreased theta power (appr. 680–2000 ms, p < .001)
that included various electrodes distributed across the scalp (but the
topography varied substantially across the time window, see
Supplementary Figure S5 for a detailed time course). We found
the same pattern for alpha power, with a significant early cluster of
increased alpha power (appr. 160–400 ms, p < .001), and two
significant later clusters of decreased alpha power
(1,120–1,640 ms, p < .001 and 1,640–2000 ms, p = .003) (see
Supplementary Figure S6 for a detailed time course).

One potential confound in our paradigm are eye movements, as
some conditions are more likely to contain eye movements than
others (e.g., the presence of moving stimuli such as other cars in the
traffic condition or the running pedestrian). We ran additional time-
frequency analyses on ocular ICA components in order to gain a
better understanding of the influence of eye movements on our
effects (see Supplementary Material for details). The results showed
clearly distinct temporal-spatial patterns for the traffic vs. no traffic
comparison between ocular and cleaned data (see Supplementary
Figures S7, S8), whereas we found temporally similar patterns for the
pedestrian running vs. idle comparison (see Figure 8, Supplementary
Figures S8, S9). However, the topographies were very different to the

clearly midfrontal peak that we observed in the cleaned data. It is
important to emphasise that the ocular ICA components shown here
and in Supplementary Material were removed from the data, thus,
only residual ocular artefacts might have affected the cleaned data
forming the basis of our analysis and results. Therefore, while we
cannot fully exclude the possibility of ocular artefacts in our results,
we believe that the differences in temporal and spatial patterns
between the ocular data and the cleaned data indicate a neural
source for the effects we observed.

Finally, we wanted to explore if the observed brain signatures in
the theta and alpha range (average power) during the baseline
driving period (4s, see EEG preprocessing) correlate with
cybersickness and/or presence scores. We only observed a
significant positive correlation between average midfrontal theta
power and cybersickness severity, rho = .341, p = .036 (for further
details, see Supplementary Material; Supplementary Figure S11).

Discussion

In this study, we developed a fully immersive driving
environment in VR to assess driving performance at
intersections. We manipulated three experimental factors: 1)
right of way, 2) amount of traffic, and 3) the presence of a
pedestrian crossing the road. We also recorded EEG to analyse
how these factors influence theta power (as an indicator of cognitive
control) and alpha power (as an indicator of attention). We found
expected behavioural patterns such as a slower approach of the

FIGURE 5
Density plots and boxplots for time from passing the pedestrian to indicator activation.
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intersection when traffic volume was high and when participants
had to give way. We also found increased midfrontal theta power, a
neural maker of cognitive control, when participants approach
intersections with high traffic volume. Surprisingly, we found no
such effect for giving way vs. right of way. When a critical event
occurred (in the form of a pedestrian crossing the street directly
before the intersection), participants also showed a strong increase
in theta power. Taken together, our study offers new insights into the
cognitive and attentional processes underlying driving behaviour at
intersections. We will now discuss the implications of our results in
more detail.

The impact of intersection factors on neuro-
cognitive processing

Right of way
Participants slowed down early on when approaching an

intersection where they had to give way. They were also slower
to activate their indicator. This might reflect longer processing time
due to additional demands, as it has been shown that more attention
is allocated towards traffic coming from left and right when having
to give way (Werneke and Vollrath, 2012; Ringhand et al., 2022).
However, this might also reflect that participants simply waited for
other cars to pass before indicating (i.e., passive waiting).
Interestingly, we did not find any differences at the neural level.

Neither alpha nor theta power showed significant differences
between having the right of way and giving way. This is
surprising in the light of the behavioural effects and in light of
differences in attention reported in the literature (Werneke and
Vollrath, 2012; 2014; Ringhand et al., 2022). It is possible that our
data are either too noisy or too variable or both to find differences for
this manipulation, particularly as there might be significant
variability in when drivers realise that they have to give way or
have the right of way. This could affect the timepoint of when exactly
attentional control processes are increased when having to give way,
and hence make it difficult to detect this effect. In addition, as the
impact of right of way might be smaller than the impact of traffic
volume and the occurrence of a critical event, it is possible that our
sample size was too small to detect this effect (see Limitations).

Presence of traffic
When approaching an intersection with high traffic volume,

participants slowed down relatively shortly before reaching the
intersection. This fits well with other research showing that
participants slow down and allocate their attention towards
traffic when they are close to an intersection (Werneke and
Vollrath, 2014; Ringhand et al., 2022). In addition, we found that
theta power started to increase very quickly after participants were
able to detect traffic. Descriptively, there seemed to be an early
increase in posterior theta power directly after turning around the
corner and facing the intersection. This could indicate increased

FIGURE 6
Time-frequency results for traffic vs. no traffic. (A) Topographic plots of baseline-corrected theta power for each significant cluster. Left
topographies show the differences between both conditions, centre and right topographies show traffic and no traffic respectively. Significant clusters
aremarkedwith yellow asterisks. (B) Time-frequency-plots of baseline-corrected power formidfrontal electrodes and posterior electrodes. All results are
time-locked to the moment of facing the intersection. The time-frequency windows of the significant theta clusters are represented by black
rectangles. No significant alpha clusters were observed. Further explanation in the text.
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visual attention when detecting cars moving left and right at the
intersection (Huizeling et al., 2020; Asanowicz et al., 2023).
Approximately 1s after facing the intersection, there seemed to
be an increase in midfrontal theta power. Midfrontal theta power
is associated with increased cognitive effort (Cohen et al., 2008;
Nigbur et al., 2011; Cavanagh and Frank, 2014). In the context of
driving, midfrontal theta has been shown to increase under complex
driving conditions (Di Flumeri et al., 2018; Wascher et al., 2018;
Diaz-Piedra et al., 2020; Huizeling et al., 2020; Depestele et al., 2023).
Therefore, we interpret this increase in midfrontal theta power as a
proactive engagement of cognitive control when participants detect
that there is traffic at the intersection, as high traffic volume typically
requires additional monitoring, preparation for driving actions
(such as stopping) and complex decision making (e.g., predicting
another driver’s intentions and driving behaviour and reacting
accordingly). Our results also suggest that this proactive
engagement of cognitive control happens relatively early on,

whereas behavioural differences such as slowing down only
emerge when participants are closer to the intersection.
Therefore, it would be interesting to combine EEG and eye-
tracking to examine the timeline of neural, attention and
behavioural effects of traffic volume.

Critical event
Finally, we examined participants’ reactions to a critical event

occurring directly before the intersection in form of a pedestrian
crossing the road. We found a substantial increase in theta power
across the whole scalp shortly after the movement onset of the
pedestrian. This increase was maximal for midfrontal theta power.
We interpret this effect as participants processing the critical event,
increasing their attention and quickly carrying out a motor response
(i.e., braking), which are processes that demand increased attention
and cognitive control. Interestingly, there was also a decrease in
theta power later on. This might indicate that participants

FIGURE 7
Time-frequency results for pedestrian running vs. idle. (A) shows topographic plots of significant theta power clusters, (B) shows topographic plots
of significant alpha power clusters (all baseline-corrected). Please note the different scales of the colour bars for the difference maps (chosen to best
illustrate the respective effects). Left topographies show the difference between both conditions, centre and right topographies show the running and
idle condition respectively. Significant clusters are marked with yellow asterisks. (C) shows time-frequency-plots of baseline-corrected power for
midfrontal electrodes and posterior electrodes. Black and yellow rectangles represent time-frequency windows for significant theta and alpha clusters,
respectively. All results are time-locked to the onset of movement of the pedestrian.
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disengaged their attentional focus while they waited for the
pedestrian to pass, whereas in the idle condition participants
continued driving and were already preparing for the
intersection. In addition, the topography of this effect was not as
focal as for the early midfrontal cluster, which might reflect a larger
degree of variability. Unexpectedly, we observed similar patterns for
alpha power. This is surprising because alpha power typically
decreases when theta power increases (Klimesch et al., 1998;
Klimesch, 1999). The time-frequency plots show that this might
be due to a broadband peak across frequency bands when the
pedestrian starts running (see Figure 7, Panel C, top left).
However, exploratory analyses across all frequencies in the time
window between 120 and 540 ms suggest that the peak is in mid-
frontal theta power and might be leaking into higher frequency
bands. This makes it difficult to interpret alpha in this time window
in a meaningful way. On the one hand, the differences in alpha
power might be simply due to short-comings of the time-frequency
analysis. On the other hand, it might reflect a true cognitive process,
as a previous study also found increased alpha power directly before
a critical event in safe drivers (Zhang and Yan, 2023). Increased
alpha power has often been associated with inhibition of task-
irrelevant information (e.g., Klimesch et al., 2007; Sauseng et al.,
2009; Jensen and Mazaheri, 2010). Given the complexity of driving -
the current scenario included - alpha-based inhibition could indicate
a temporary suppression of information and actions that are
unrelated to a demanding event – in our case, braking and
avoiding collision with the pedestrian. This interesting line of
enquiry that should be addressed in future research.

Fully immersive driving simulations in VR and
Neuro-VR: potential and challenges

In our novel driving simulation, participants demonstrated
expected driving behaviours, such as slowing down when
approaching an intersection with high traffic volume or when
having to give way, being faster to activate their indicators when

having the right of way, and braking for a pedestrian. Our study
highlights several key advantages of using VR environments for
driving research.

First, freely available VR game engines such as Unity and Unreal
are very powerful and offer a large degree of freedom and flexibility
to researchers. This makes it possible to create virtually any driving
environment that might be of interest. For example, in the present
study, we designed the environment in a modular way, such that the
next intersection was only activated once drivers had crossed the
current intersection. This made sure that participants always
experienced the intended intersection types, regardless if they
drove in the correct direction. In addition, the built-in features of
VR gaming engines can easily track behavioural measures of driving
performance, such as velocity, lane position or pedal inputs. VR
game engines are highly compatible with other hardware devices,
making it possible to record psychophysiological data such as EEG
or eye-tracking (such as recommended by Menck et al., 2023). In
combination with freely available VR headsets and steering wheels,
this allows for a relatively inexpensive yet powerful driving
simulator setup.

Second, VR driving scenarios offer a full range of motion and
field of view, which makes them more immersive than traditional
driving simulators. This also makes it possible for participants to
turn around, which enables researchers to investigate driving
situations involving turns or parking manoeuvres.

However, this also creates potential challenges for driving
research. The main pitfall lies in the increased risk of
cybersickness in VR driving scenarios. In our study, 41% of
participants had to drop out due to cybersickness. While
comparable dropout rates due to simulator sickness have been
reported in traditional driving simulator studies (e.g., 35% in
Shechtman et al., 2007; 45% in Werneke and Vollrath, 2012),
symptoms have been shown to be more severe in studies
comparing HMD and screen-based driving simulations (Weidner
et al., 2017; Suwarno et al., 2019). This is important to consider,
particularly for research on individuals whomight have a higher risk
for cybersickness, such people with motion sickness or older adults

FIGURE 8
Topographies of dB-corrected theta power for cleaned data and eye component data. Detailed results and topographies can be found in the
Supplement.
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(Tian et al., 2022). In our study, we had to abort recruitment of an
older driver group due to unacceptably high cybersickness rates;
however, other studies successfully used VR driving simulations
with older adults (e.g., Bennett et al., 2016). This highlights that VR
driving environments differ in how well they are tolerated by
participants. In addition, our study demonstrates that design
factors within the virtual environment that induce a higher
degree of visuo-vestibular discrepancies can increase
cybersickness symptoms (Kemeny et al., 2017; Kemeny et al.,
2020). This poses a challenge for research on intersections or on
roads that involve sharp bends and turns.

Finally, when combining VR scenarios with neuroimaging
techniques such as EEG (an approach we call Neuro-VR), it is
important to consider the impact that the virtual environment
and the VR setup have on the signal. On the one hand, the unique
trade-off of experimental control and realism that VR offers
makes it possible to capture EEG signals of more naturalistic
processing. On the other hand, both the increased realism
(including free range of movement) as well as the VR
hardware itself can affect EEG data quality. In addition, the
VR environment itself can affect the EEG signal, as indicated
by a positive correlation between midfrontal theta power and
cybersickness scores in an exploratory analysis. At the same time,
our results show that, despite noisy conditions (body, head and
eye movements, no Faraday cage), we were able to extract brain
signatures that reflect the complexity of brain processing when
driving towards an intersection. Hence, our study demonstrates
that VR can be fruitfully combined with brain recordings such as
EEG to understand complex brain processes in realistic scenarios
(Sharma et al., 2017; Roberts et al., 2019; Gregory et al., 2022;
Lenormand and Piolino, 2022; Peng et al., 2024). However, there
are several limitations to consider, which we will discuss in the
next section.

Limitations

One limitation of our study is the high rate of cybersickness-
related dropouts. This raises the question if our results are
confounded by cybersickness. However, participants’
cybersickness scores (assessed using the VRSQ) suggest that
participants who were able to complete the experiment only
experienced mild symptoms of cybersickness. At the same time,
increased cybersickness was significantly correlated with decreased
spatial presence. Notably, the majority of participants who
completed the experiment had prior experience with VR, which
was not the case for participants who dropped out. This is in line
with research showing that past VR or video game experience is
associated with a lower risk of cybersickness (Tian et al., 2022). This
points toward a potential self-selection mechanism, as people who
use VR might be more interested in participating in VR studies and
are then more likely to not drop out. Hence, future work should
control for past VR and gaming experience and consider how to
mitigate cybersickness in a VR driving simulation. Another reason
might lie in the driving simulator setup. In a VR driving simulation,
latencies between driving actions (e.g., steering) and the
corresponding behaviour of the VR environment (e.g., the car
steering to the left) can increase cybersickness, as this increases

visuo-vestibular conflict (Kemeny, 2014). While performance in our
VR experiment appeared stable (i.e., the framerate did not drop
below the refresh rate of 90 Hz), it is possible that irregular drops in
performance might have occurred or that the coupling of the
steering wheel and pedals to the virtual car model and physics
was not optimal. In addition, reducing stimulus complexity (Davis
et al., 2015), reducing the field of view (Kemeny et al., 2020) and
including more breaks as well as additional practice sessions
(Domeyer et al., 2013) could also mitigate cybersickness.

A second limitation is that our sample size is relatively low,
which limits our statistical power. While EEG studies in the field of
driving research often have comparably small sample sizes (e.g.,
Haufe et al., 2014; Di Flumeri et al., 2018; Wascher et al., 2023;
Zhang and Yan, 2023), this makes it difficult to detect effects with
smaller effect sizes. Hence, null effects like the give way
manipulation in our study should be investigated again using a
larger sample.

Another limitation that needs to be considered is EEG data
quality. While movement of head, arms, legs and eyes is unavoidable
in a driving task, this results in motion artifacts. This could be a
particular issue for the critical event condition, where participants
had to react to a pedestrian crossing the road. In addition, the HMD
itself might introduce additional artifacts, as the straps of the HMD
put pressure on some electrodes. We attempted to mitigate these
issues by applying a thorough preprocessing pipeline and comparing
cleaned and ocular data to assess potential issues. In addition, our
findings of increased midfrontal theta power in the traffic volume
and critical event conditions show that data quality is sufficiently
high to detect such effects. However, it is still possible that some of
our findings are confounded by eye movements. In the future, eye-
tracking should be recorded simultaneously to allow for optimal
separation of artifacts and signal.

Finally, we used LSL to send EEG event markers from Unity.
While LSL is a powerful tool for synchronized recording of
multiple data streams, it cannot take into account any
latencies that occur within the acquisition devices (Kothe
et al., 2024). This could introduce latencies or jitters to the
EEG event markers. However, we argue that this is not a
major issue for our findings, as time-frequency analyses,
particularly in lower frequency bands, do not depend on
millisecond precise timing to the extent that event-related
potentials do. Still, to improve precision in EEG-VR studies,
this should be investigated to identify if such a latency exists in a
Unity-LSL setup and to characterize its duration and stability.

Conclusion

In this paper, we developed a new experiment to investigate
driving behaviour at intersections in virtual reality. We manipulated
three factors: right of way, traffic volume, and occurrence of a critical
event in the form of a pedestrian crossing the road. Recording both
behavioural and EEG data, our study shows that humans proactively
engage cognitive control processes when approaching an
intersection with high traffic volume and when reacting to a
critical event. Our study also highlights both the potential and
the challenges of VR-based driving simulations and neuro-VR
investigations more generally.
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