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Objective: This study aims to investigate the impact of stimulus environments
(Virtual Theatre vs Monitor) and error probabilities (20% vs 50%) on attentional
states, Error Potentials (ErrP), and machine learning classification performance.

Approach: EEG signals were recorded using different protocols, and features
were extracted for subsequent analysis from single-trial response and attention
level was computed from the second preceding error processing stimulation.

Results: The results indicate significant differences across conditions: the
Monitor environment consistently elicited higher and faster ErrP responses
and elevated attentional states compared to Virtual Theatre. Additionally,
classification performance in the Monitor environment outperformed Virtual
Theatre consistently. Further analysis revealed that the 20% error probability
protocol yielded increased ErrP responses, heightened attentional states, and
superior classification performance compared to the 50% protocol. Classification
performance under the 20% error probability condition consistently exceeded
75% validation and test sets. Moreover, a significant correlation between
attention-related features and ErrP characteristics was observed, highlighting
the intricate relationship between error processing and attentional engagement.

Relevance: These findings underscore the importance of considering stimulus
environments and error probabilities in cognitive neuroscience research and
machine learning applications. Understanding these factors can inform
experimental design and model development, ultimately advancing our
comprehension of cognitive processes and enhancing real-world applications
of machine learning algorithms.
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1 Introduction

In recent years, significant progress has been made in the development of Brain-
Computer Interfaces (BCIs) that enable the control of external devices by interpreting brain
activity (Wolpaw et al., 2000). The electroencephalographic (EEG) signal plays a crucial role
in this process, but it is inherent complexity and stochastic nature make reliable and
accurate classification of brain activity challenging. Consequently, BCI systems may
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misinterpret user intentions, leading to errors (Lotte et al., 2018).
Such misclassifications can have a detrimental impact on system
performance and easily frustrate users (Spuler et al., 2012).

To address these challenges and improve the accuracy of BCI
systems, researchers have investigated the use of Error Potentials
(ErrP) (Buttfield et al., 2006; Chavarriaga et al., 2010). ErrP is an
evoked potential that occurs when a subject perceives an error,
whether self-generated, generated by another subject, or by an
external device such as a BCI system (Falkenstein et al., 2000; Fu
et al., 2023). Detecting ErrP during a BCI experiment enhances
classification accuracy, enabling the system to repeat tasks that
resulted in erroneous outcomes. For instance, Dal Seno et al.
(2010) utilized detected ErrP signals to correct the output of a
P300 speller, and their study demonstrated improved classification
performance of the overall BCI system.

The ErrP is an innate response to erroneous events whose
characteristic waveform features a negative peak at around 250 m
after the error, followed by a positive peak at 320m and a subsequent
negative peak at 450 m. In terms of frequency content, the EEG
signal recorded after an error event is particularly prominent in the
delta (1–3 Hz) and theta (5–8 Hz) brain rhythms Ferrez et al. (2008).
However, the extent to which cognitive abilities affect the temporal
and frequency characteristics of ErrP signals remains unclear
(Farabbi and Mainardi, 2022). Specifically, limited research has
investigated whether a subject’s level of attention during ErrP-
based BCI experiments can influence the evoked ErrP response
to errors.

Moreover, the influence of environmental factors on ErrP
elicitation remains poorly understood, despite the growing
integration of Augmented or Virtual Reality environments in
modern BCI systems. Vourvopoulos et al. (2019) utilized a
virtual reality (VR) setup to simulate rowing a boat and facilitate
upper limb Motor Imagery in stroke patients. Similarly, Škola and
Liarokapis (2018) employed VR to enhance Motor Imagery in a
video game contest, leading to a more engaging protocol and a
heightened sense of embodiment for the participants. Those studies
investigate Motor Imagery but, considering the rising interest in VR/
AR environments for BCI systems, it becomes also crucial to
investigate the impact of such environments on innate brain
responses, such as ErrP, which currently remains unclear.

Several studies have investigated the impact of virtual reality
environments on cognitive processing and task performance. Of
particular relevance to our research, Szpak et al. (2019)
demonstrated that VR exposure can induce significant alterations
in visual processing and cognitive performance that persist beyond
the immediate VR experience. These effects were found to be
independent of traditional cybersickness symptoms, suggesting a
distinct cognitive adaptation mechanism to virtual environments,
especially in subjects with few experience in using VR systems.
Additionally, Mittelstadt et al. (2019) explored how VR-based
training environments affect cognitive load and task
performance, finding that the virtual environment itself can
impose additional cognitive demands on users, potentially
affecting their ability to process and respond to stimuli effectively.

One study by Falkenstein et al. (1995) investigated the effects of
error feedback probability on event-related brain potentials (ErrP)
and attentional mechanisms. The researchers found that when
participants were less likely to receive erroneous feedback, there

was a significant increase in the amplitude of the ErrP component,
suggesting heightened neural responses to errors. This enhanced
ErrP response was indicative of greater attentional resources being
allocated towards error processing. Similar findings were found in
the studies by Feng et al. (2020).

Furthermore, another study by Hajcak et al. (2003) explored the
impact of varying error feedback probabilities on attentional
mechanisms. They observed that lower error rates led to
improved performance on subsequent tasks requiring error
monitoring, indicating a beneficial effect of increased error
feedback probability on cognitive control strategies.

In addition, research by Gehring and Fencsik (2001) studied the
neural mechanisms underlying error processing in the context of
different error feedback probabilities. They proposed that variations
in error feedback likelihood could modulate the activity of the
anterior cingulate cortex, a brain region implicated in error
monitoring and cognitive control. Specifically, higher error rates
were associated with greater activation in the anterior cingulate
cortex, suggesting a link between error feedback probability, neural
responses to errors, and attentional mechanisms.

In other Evoked Potentials stimulations, as visual
P300 elicitation, it is usually implemented an oddball paradigm,
where an odd (less likely stimulus) is alternated with a standard
stimulus (more likely stimulus). Various studies affirm that odd
stimuli are able to elicit a more pronounced response as reported in
Verleger and Śmigasiewicz (2020) and De Venuto and
Mezzina (2021).

In view of the aforementioned considerations, this study
investigates if variations in attention and engagement levels
(provided by different environments) can modulate the brain’s
response to error and potentially affect its perception. To
accomplish this, we devised an innovative protocol called “Racing
Mistakes” to elicit ErrP within a gaming environment. The protocol
was implemented in two distinct settings: a conventional monitor-
based setup and an immersive VR room. Subsequently, only in the
Monitor setting, the protocol was tested again lowering the
probability of giving an erroneous feedback to 20% in order to
assess the influence this change can have on ErrP realization and
subject’s attention level during the experimental protocols. To
evaluate brain response we performed an analysis of the EEG
signals obtained from participants in both environments and
protocols, with the aim of identifying differences.

Based on the previous considerations, we hypothesize that both
the experimental environment and error probability will
significantly influence subjects’ brain responses to errors.
Specifically, we expect that the VR environment will produce a
dual effect: while increased immersiveness should enhance attention
and potentially strengthen error detection mechanisms, subjects’
limited familiarity with VR technology might introduce additional
cognitive load, potentially interfering with error processing and
distracting the user from the task. Additionally, we hypothesize
that reducing error probability to 20% will enhance the amplitude of
the ErrP response, similar to the increased neural responses
observed in other evoked potentials under oddball paradigms.
Both factors are expected to modulate subjects’ attention levels
throughout the experimental protocols.

This research aims to shed light on the potential impact of
environmental factors, probability of erroneous feedback and
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attention on the processing of errors and the subjective
perception thereof.

2 Materials and methods

2.1 ErrP stimulation protocols

To investigate the differences in ErrP response and attentional
states introduced by different environments and the probability of
erroneous events a specific experimental protocol was designed. A
cohort of 17 university students (7 male, mean age: 21.8 ± 0.77
years) participated in the Error Potential elicitation study.
Individuals with visual impairments were excluded to prevent
artifacts potentially arising from visual fatigue. The elicitation
was conducted using a custom-developed Unity game engine
software, and data from all screened participants were included
in the subsequent analysis. Participants were instructed to watch a
video (titled “Racing Mistakes”) featuring a car navigating a road
with randomly appearing checkpoints represented as bridges (rings)
on either the left or right side of the street. The car had a 50%
probability of approaching the checkpoint or moving on the
opposite side of the street. When the car missed a checkpoint, it
was expected to elicit an ErrP (Error Potential).

Each participant experienced a total of 20 checkpoints during
the data acquisition process. The stimuli were presented in two
distinct environments across two different sessions in a within
participants experimental design in order to assess differences
between environments. We randomised which session each
participant completed first to prevent order effects from biasing
the results. One session occurred in a laboratory setting, where

participants viewed the video on a high-quality RGB monitor
(resolution of 1,280 × 1,024 and an 8-bit intensity) ensuring
optimal visual presentation. The other session occurred in a
Virtual Theatre (VT) equipped with Virtual Reality technology.
The VT is designed as a 360° cylindrical space with a diameter of
7 m, utilizing an advanced multi-projector system for complete
immersive experiences. The projection system consists of six
projectors in total:

• Four projectors are strategically positioned to cover the
cylindrical walls, with each side projector responsible for
rendering more than 90°of the curved surface. These
projectors feature intentional overlap zones to ensure
seamless calibration and continuous imagery across the
entire circumference

• Two additional projectors are dedicated to floor projection,
creating a complete immersive environment from ground to
walls implementation of the stimuli.

The participants were tested three times consecutively
throughout each session with a 2-minute break between each
acquisition. The diagram of the complete protocol is depicted in
Figure 1. The complete experimental procedure lasted
approximately 1 hour per participant. This included 20 min for
EEG setup and subject preparation, 10 min for computer setup, and
approximately 15 min for the experimental trials. The trial period
consisted of three 3-minute trials, with 2-minute breaks between
each trial.

Following the acquisition in both settings, the decision wasmade
to expand our protocol within Monitor environment to another
group with identical numbers, but with a 20% probability of error

FIGURE 1
Experimental protocol.
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instead of 50%. This was done to evaluate how the level of
surprise affects both the erroneous response and the
attentional state of the subjects. It has been chosen a new
group of participants for this protocol rather than the original
one to avoid potential habituation effects, as the first population
had already developed familiarity with the protocol. The
selection of 50% and 20% error probabilities was purposeful
and grounded in existing literature. The 50% error rate is
commonly used in ErrP studies Fu et al. (2023). The 20%
error rate was specifically chosen based on oddball paradigm
experiments for evoked potential elicitation (particularly P300),
where this probability is frequently employed Verleger and
Śmigasiewicz (2020), Feng et al. (2020).

All participants signed an informed consent before participating
in the study and the protocol was approved by Ethics Committee of
Politecnico di Milano (Opinion n.29/2021).

2.2 Data acquisition and pre-processing

During each session, the EEG signals were recorded (512 Hz,
sampling rate) using a cuff equipped with 64 electrodes and
conductive gel, which were carefully placed on the subject’s
scalp. The EBNeuro BE Plust LTM amplifier (EBNEURO,
Florence, Italy) was used to acquire the signals and to transmit
them to a PC via Bluetooth. In order to achieve accurate
synchronization of the EEG signals with specific events, such as
the timing of erroneous or correct movements of the car, the timing
of the trigger was sent to the PC using the Lab Streaming
Layer protocol.

The recorded EEG signal underwent several pre-processing
steps. First, the signal was band-pass filtered (1–40 Hz) using a
5th-order Butterworth filter to attenuate high-frequency
components associated with muscle activity and to preserve
frequency information relevant for our analysis. Subsequently,
channels exhibiting poor quality were identified and eliminated.
These channels may have been affected by electrode issues,
resulting in little or no detectable activity. To address artefacts
originating from various sources such as blinking or saccadic eye
movements, Independent Component Analysis (ICA) was
employed. To mitigate the influence of common noise shared
across channels, the Common Average Rereferencing technique
was utilized. As a final step, the previously removed channels
were treated as missing data and introduced into the EEG data
through spatial interpolation.

2.3 Single trial estimation

To extract single-trial ErrP responses, we employed a
single–sweep analysis based on the Subspace Regularization
method (Vauhkonen et al., 1998). The method represents the
recorded EEG signal (z in Equation 1) as a linear combination of
s, the signal of interest (also referred to as the source), and, v, the
noise resulting from the measurement process:

z � s + v � Hθ + v (1)

where the source signal is estimated as a linear combination of basis
vectors (i.e., H). The goal of subspace regularization is to find the
optimal basis vectors and parameters (i.e., θ) by minimizing the
contribution of estimated noise (i.e., v). In this study, the noise
properties were estimated from the background EEG activity
recorded during the second preceding the stimulation. It has
been shown by Ranta-aho et al. (2003) that an estimate of the
source signal (ŝ) can be obtained using Equation 2:

ŝ � H HT p C−1
v H + α2HT I −KsK

T
s( )H( )−1HTC−1

v z (2)
where Ks is the eigenvector of the correlation matrix of z, Cv is the
covariance matrix of the noise and α is a regularization parameter.

2.4 Data analysis

The EEG signal was comprehensively analyzed in temporal,
frequency, and spatial domains to gain a thorough understanding of
the brain’s response following erroneous stimulation and to
compare these responses between the two environments.

2.4.1 Time and frequency domain features
Time and frequency domain features were extracted from the

sources ŝ at electrodes Cz and FCz, those are the areas where most of
the ErrP-related activity is expected to occur (Falkenstein et al.,
2000; Fu et al., 2023). In the time domain, essential ErrP features [as
reported by Falkenstein et al. (2000); Fu et al. (2023)] such as peak
amplitude and latency were extracted for the positive peak within
the 200 − 400ms interval after the stimulus, and for the negative
peak within the 300 − 500 ms interval after the stimulus. The latency
of the negative peak was calculated relative to the positive peak to
account for delay propagation effects.

In the frequency domain, the Power Spectral Density (PSD) of
the ErrP (segments long 1s after error stimulus onset) was calculated
using the Welch method, and the amplitudes of the highest peaks in
the δ frequency range (i.e., 1 − 3Hz) and θ frequency range
(i.e., 4 − 7Hz) were extracted for each epoch. These bands were
chosen since studies from Ferrez et al. (2008) and Fu et al. (2023)
suggest those as the most responsive bands to erroneous stimuli.

2.4.2 Time-frequency features
Event-Related Spectral Perturbation (ERSP) (Makeig, 1993) was

computed for the ErrP trials in both environments to provide a
simultaneous description of the ErrP-related response in both the
time and frequency domains. ERSP describes the average changes in
power with respect to a baseline level. The Wavelet Transform,
specifically the Morlet wavelet, was employed to extract frequency
information over time. The ERSP was calculated for all channels
using the formula in Equation 3:

ERSP � 10 · log Ptrial

Pbaseline
( ) (3)

where Ptrial represents the power computed on a 1s window
following each erroneous stimulus, and Pbaseline represents the
power computed during the 1 s window preceding the stimulus.
In particular, the ERSP represents the power variation in the
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logarithmic scale after the event with respect to the baseline
represented by the second before the stimulus.

2.4.3 Spatial features
Spatial features were analyzed to examine the spatial

characteristics of the ErrP response. The ERSP averaged across
the δ, θ, and α–frequency bands (Falkenstein et al., 2000; Ferrez
et al., 2008) for each time bin, obtained from all electrodes, was
represented using topoplots (Duffy et al., 1979; Michel and Murray,
2012). Topoplots are graphical 2D representations of a specific
variable on the scalp. In our case, we represent the ERSP
computed for each electrode in the different frequency bands and
for each time bin. In the areas where no electrode is placed, the value
is extracted through cubic spline interpolation of the ERSP
computed in the nearest electrodes. We decided to analyze
α-related activity since studies by Clayton et al. (2018) and
Klimesch (2014) have shown that decreased α oscillations can
indicate sustained attention. Based on this relationship, we
examined the fluctuations in α activity during ErrP stimulation.

2.4.4 Attention features
In this study, we analyzed attentional features gleaned from

previously published literature (Lutsyuk et al., 2006; Ke et al., 2021;
Braboszcz and Delorme, 2010; Bacigalupo and Luck, 2019; Ogrim
et al., 2012; Gola et al., 2013; Barry et al., 2003). The primary
objective of the chosen studies was to quantitatively evaluate the
attentional states of individuals without cognitive disorders while
engaging in various tasks, such as those encountered in work or
educational settings. Conversely, certain studies aimed to explore
differences in these parameters between individuals without
cognitive disorders and those with attention-related cognitive
impairments. The selected parameters are delineated in Table 1,

wherein each parameter specifies the frequency band under analysis,
the measurement zone, and the correlation between the parameter
and attention levels. These features were derived from the frequency
analysis of Section 2.4.1 and were computed in the second preceding
the erroneous stimulus.

2.4.5 Statistical analysis
To evaluate the differences between the two environments, as

the data did not adhere to normal distributions, we employed the
Mann-Whitney rank-sum test. This statistical test was utilized to
assess significant differences between the environments and between
surprise levels specifically in relation to the temporal and frequency
domains of electrodes FCz and Cz.

Permutation statistics were employed to focus the analysis
solely on significant values of the ERSP. This involved zeroing out
non-significant features in the output plots, enabling a more
targeted investigation. All statistical comparisons were
performed using MATLAB R2021a, with a significance level
set at 5% (p< 0.05).

2.5 ErrP classification

The examination of ErrP elicitation differences has extended to
assessing classification performance in discerning between
erroneous and correct events. To achieve this objective, an LDA
classifier will be trained for each environment and each level of
surprise, utilizing ErrP temporal and frequency domain features
outlined in Section 2.4.1.

Model validation is executed through a 5-fold cross-validation
approach. Balancing of the training set is accomplished utilizing the
ARX method expounded in Farabbi et al. (2022). The ARX model

TABLE 1 Parameters for quantitative assessment of attention status. The frequency bands considered, the measurement area and the correlation with the
attention state are shown.

Frequency–Bands Area Correlation with attention status References

Beta Band (13 − 30Hz) 1) Occipital
2) Parietal

Positive Lutsyuk et al. (2006)

BetaBand

ThetaBand
Beta(13 − 18Hz)
Theta(4 − 7Hz)

1) Frontal
2) Parietal

Positive Ogrim et al. (2012)

BetaBand

ThetaBand + AlphaBand
Alpha(8 − 13Hz)
Beta(13 − 18Hz)
Theta(4 − 7Hz)

Sum in channels: Cz, Pz, P3, P4 Positive Barry et al. (2003)
Ke et al. (2021)

BetaBand

AlphaBand
Beta(13 − 30Hz)
Alpha(8 − 13Hz)

1) Channel P4
2) Channel Pz

Positive Braboszcz and Delorme (2010)
Bacigalupo and Luck (2019)

ThetaBand

AlphaBand
Beta(13 − 30Hz)
Alpha(8 − 13Hz)

Theta band in Frontal zone
Alpha Band in Parietal zone

Positive Bacigalupo and Luck (2019)
Gola et al. (2013)
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combines background EEG activity with characteristic error-related
waveforms and can be expressed as in Equation 4:

yi t( ) � ∑p
j�1

ajyi t − j( ) +∑q
k�1

bku t − k − d( ) + ei t( ) (4)

where yi(t) represents the EEG signal at epoch i, with aj and bk
being the model coefficients for the autoregressive and exogenous
components, respectively. The exogenous input u(t) models the
ErrP waveform, while ei(t) represents a white noise process. The
ErrP waveform u(t) is obtained through synchronous averaging of
epochs containing error potentials. For robust estimation, we
exclude epochs that exhibit either a root mean squared (RMS)
difference exceeding two standard deviations from the mean, or a
maximum slope greater than two standard deviations from the
average maximum slope across epochs.

Model identification is performed by estimating the coefficients
through least squares optimization as described in Equation 5:

Fi t( ) � 1
N

∑N
j�1

yi t( ) − ŷi t( )( )2 (5)

where N denotes the number of time samples, and ŷi(t) represents
the model’s prediction. The optimal model orders are selected using
the Akaike Information Criterion (AIC), and model validation is
performed using Anderson’s test with a 95% confidence interval to
verify residual whiteness.

For data augmentation, we generate synthetic epochs by
applying three distinct modifications to the exogenous input.
First, as reported in Equation 6, amplitude scaling modifies the
waveform magnitude:

unew t( ) � a · u t( ), a ∈ 0.5, 1.5[ ] (6)
Second, we introduce additive white noise with zero mean and

variable standard deviation as in Equation 7:

unew t( ) � u t( ) +WN μ � 0, σ( ), σ ∈ 0.1, 0.8[ ] (7)

Finally, in Equation 8, temporal warping is applied to modify the
signal timing:

unew t( ) � u a · t( ), a ∈ 0.75, 1.25[ ] (8)

These transformations, applied individually or in combination,
generate diverse yet physiologically plausible synthetic ErrP epochs
while maintaining the essential characteristics of the original signals.

We evaluate model performance comprehensively using
balanced accuracy, precision, recall, and F1-score on both
validation and test data.

3 Results

This section presents the outcomes of the comparison between
two distinct environments for ErrP elicitation, namely, the Monitor
and VT, followed by a comparison based on the probability of error
occurrence (i.e., 20% and 50%). For each protocol comparison, the
results will be initially presented concerning neurophysiological
responses, encompassing both ErrP realization and attention
features. Subsequently, the section will delve into the evaluation
of LDA classifier performance. Figure 2 illustrates the Grand
Average of the Error Potential (ErrP) signals computed from the
Cz and FCz electrodes in both the Monitor and VT environments
for one subject as an example. The shape of ErrP shows the expected
waveforms in both environments; however, noticeable differences
can be observed between them. Specifically, during the Monitor
stimulation, the ErrP exhibits distinct positive and negative peaks at
the expected latencies. In contrast, in the VT environment, the
amplitudes of both peaks are attenuated. Additionally, the VT
environment elicits delayed responses, as clearly depicted in
Figure 2 with the timing of the initial maximum peak indicated
by a red line.

3.1 Monitor vs. Virtual Theatre

3.1.1 Neurophysiological response
The observed qualitative differences in the Grand Averages

are further supported by the distribution of computed time
domain features, as presented in Figure 3A. This figure

FIGURE 2
Grand Averages of ErrP trials for one subject in the Monitor (left) and VT (right) environments for electrodes Cz (blue) and FCz (orange) with the
related confidence interval.
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provides information on the medians, 25th and 75th quartiles of
each feature’s distribution in the Monitor and VT environments,
specifically for electrodes FCz and Cz. All the reported features
show significant differences in the two environments
(p − value< 0.05), beside the minimum peak at the two
examined electrodes.

The frequency domain features further substantiate the
presence of differences between the two environments. The
comparison of average PSD values in the δ and θ bands for
the Monitor and VT environments is presented in Figure 3B. The
results reveal a significant increase in activation (i.e., p< 0.05) in
the Monitor environment for both bands across most
acquisitions. Notably, the θ band exhibits the most
substantial increase.

The results of ERSP analysis of electrodes Cz and FCz in both
environments is depicted in Figures 4A, B. These figures provide
insights into the observed activation patterns and differences
between the two environments. In the Monitor environment,
notable activation is observed in the expected frequency bands
and latencies. Furthermore, after 400 ms, this activation extends
to the alpha band. Conversely, in the VT environment, the activation
is nearly absent in electrode FCz, and there is a delay in activation
observed in electrode Cz. Both plots also include a representation of
the difference in activation between the Monitor and VT
environments. The image supports the findings reported before,
with a higher activity in the Monitor environment. Figure 5
illustrates the spatial ERSP at 100, 300 and 500 ms in the two
different stimulation environments, as well as for the δ, θ, and α

FIGURE 3
Radar plots of the temporal (A) and frequency (B) features for the Monitor (blue) and VT (orange). For both classes and each feature is reported
shaded the interquartile range.
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frequency bands. At 100 ms we can notice a higher
desynchronization in the parietal zone for the Monitor
environment, especially in the alpha band, while in the VT
environment, this desynchronization is attenuated. At 300 ms in
the Monitor environment, the expected spread activation in the
fronto-central area is observed in both delta and theta bands. In
contrast, no significant activity is observed in the VT environment.
The brain’s response to erroneous activity in the VT environment is
more noticeable at 500 ms, where slight and more localized activity
can be observed. In the Monitor environment, at the same instant,
high activity is observed in the occipital regions, particularly
concentrated in the alpha band. This type of activity is not

evident in the VT environment, where significant activity cannot
be detected after the typical response to the erroneous event.

Concerning the difference in the attentional state between the two
environments, the violinplots showing significant differences for each
considered attention related feature are reported in Figure 6. We can
notice that for all features the Monitor stimulation resulted in a
significantly higher attentional state if compared to the VT environment.

3.1.2 Classification performance
The performance of the LDA classifier in discriminating

between ErrP and Non-ErrP epochs can be observed in both
Monitor (blue) and VT (orange) environments for validation and

FIGURE 4
ERSP for electrodes Cz (A) and FCz (B) in the VT and Monitor environments and difference of the two environments. In the plot are reported just
significant values along trials.
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test sets (cf. Figure 7). It is worth noticing that for all the
considered metrics the Monitor environment results in better
performance both in validation and test set. Moreover, the
Monitor environment always resulted in performance over the
50% value, while the VT in balanced accuracy, precision and
F1–score resulted in performance slightly above or below chance
level (i.e., 50%).

3.2 Surprise effect on ErrP realization

The results presented for the two environment now will be
presented for the two levels of probability of error happening (i.e.,:
20% and 50%). Also for this analysis the comparison have been made
both in terms of neurophysiological response and performance in
classification when distinguishing between ErrP and Non–ErrP events.

FIGURE 5
Topoplots of ERSP at 300ms (left) and 500ms (right) after the stimulus in Monitor and VT environments and in the δ, θ and α brain oscillations. In the
plot are reported just significant values along trials.

FIGURE 6
Distributions of examined attention related features for the VT (in orange) and the Monitor (in blue) environments.
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3.2.1 Neurophysiological response
Also when comparing the protocols with different probabilities

of erroneous outcomes some differences can be noticed.
Illustrated in Figure 8, the ErrP Grand Average for one subject as

an example, reveals the attainment of typical ErrP responses in both
protocols across different surprise levels. Notably, the latencies of
ErrP characteristic peaks for electrodes Cz (left) and FCz (right)
approximate 300ms. However, qualitative distinctions in amplitude
become evident, particularly pronounced when employing a
probability of erroneous events at 20%.

Details of the ErrP characteristics in time and frequency
domains for the single trials are reported in Figure 9. In
particular from Figure 9A can be observed that significantly

higher peaks, both positive and negative, are obtained in the
protocol with a 20% probability of error, while no significant
difference was found for the related latencies. Concerning the
ErrP frequency domain features illustrated in Figure 9B,
significant difference are reported only for the PSD computed in
the θ band for both electrodes Cz and FCz.

The results of the time-frequency analysis in the two different
protocols are reported as spectrograms in Figure 10 in terms of ERSP.
Both for electrodes Cz and FCz no main differences are reported with a
slightly more pronounced activation in the 20% protocol. These findings
are confirmed by the ERSP topolots at 300 and 500 ms for the δ, θ and α
bands depicted in Figure 5. At 300 m the level of activation is similar in
both protocolswith amore localized activity in the central areawhenusing

FIGURE 7
LDA classification performance in distinguishing between ErrP and Non–ErrP epochs using data coming from VT (in orange) and Monitor (in blue)
environments. For validation set is reported the mean of the 5 folds cross validation and the standard deviation.

FIGURE 8
Grand Averages of ErrP trials for one subject in the 20% (in purple) and 50% (in blue) probability for electrodes Cz (left) and FCz (right) with the related
confidence interval.

Frontiers in Virtual Reality frontiersin.org10

Farabbi and Mainardi 10.3389/frvir.2024.1433082

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1433082


a 20% of error probability. The desynchronization in the α band at 500ms
discussed in the previous section for the Monitor environment with 50%
of error probability can be seen also for the 20% protocol (bottom left
of Figure 11).

The analysis of the attention levels during the two protocols with
different error probabilities is reported in Figure 12 using violin plots.

In this case, for all the attention–related features examined, when
using a 20% of probability for erroneous events happening a significantly
higher attention level can be appreciated if compared to the other
protocol analyzed.

Table 2 reports the significant (p − value< 0.01) Pearson
correlations (corrected for multiple comparisons with the
Bonferroni–Holm method) between ErrP and attention level
characteristics for the protocol using a 20% probability of erroneous
events, while no correlation has been found for all the other
experimental setups. From a first analysis, it is observable that

higher attentional states before the erroneous event yield to faster
and more pronounced ErrP response.

3.2.2 Classification performance
Figure 13 displays the performance of an LDA classifier tasked

with distinguishing between ErrP and Non-ErrP epochs in the
context of the 20% error probability (depicted in blue) and the
50% probability (depicted in orange) protocols across validation
and test sets.

It is noteworthy that, across all evaluated metrics, the 20% error
probability protocol consistently yields superior performance in both
validation and test sets. Specifically, the 20% error probability protocol
consistently achieves performance surpassing the 75% threshold,
whereas the 50% probability protocol demonstrates balanced
accuracy, precision, and F1-score performance below 60% both in
validation and test set.

FIGURE 9
Radar plots of the temporal (A) and frequency (B) features for 20% probability of error events protocol (purple) and the 50% one (blue). For both
classes and each feature is reported shaded the interquartile range.
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4 Discussions

In this paper, we examined two comparisons centered around
the ErrP response and attention levels. The first of these
comparisons analyzes the influence of the stimulation
environment, specifically putting the Monitor environment
against the VT setting in a within participants experimental
design. Both environments utilized a crafted Unity stimulation
protocol featuring a car-driving game where participants faced
the prospect of missing targets. Remarkably, despite the
correctness of the ErrP stimulation in both environments,
distinctions emerged.

Within the Monitor environment, a discernibly higher
amplitude of ErrP response unfolded across various dimensions:
time, frequency, space, and time-frequency. This was accentuated by
a faster and more pronounced response when compared to the VT
environment. While these findings are preliminary due to our
limited sample size the implications of this variance point
towards the possibility that subjects, not used and untrained in
the use of VR systems, may have exhibited different neural responses
in these distinct environments. These results align with previous
research investigating the relationship between VR usage and
cognitive performance. While the literature shows some
variability in results, several studies provide evidence

FIGURE 10
ERSP for electrodesCz (A) and FCz (B) in the 20% probability of error events protocol and the 50%one and difference of the two environments. In the
plot are reported just significant values along trials.
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supporting our observations. Notably, Szpak et al. (2019)
demonstrated that VR environments can induce cognitive
aftereffects independent of traditional cybersickness
symptoms, leading to decreased task performance and
increased reaction times. Similarly, Mittelstadt et al. (2019)
observed that cognitive processing in VR environments can be
compromised even in the absence of motion sickness or physical
discomfort, suggesting that the cognitive load of virtual
environments itself may influence task performance.

Moreover, the higher attention levels observed in
the Monitor environment further underline the potential

impact of subjects’ unfamiliarity with VR systems on
cognitive engagement. The hypothesis that participants
were not habituated to VR experiences seems plausible
as their attention-related features manifested differently in
the Monitor environment. The application of an LDA
classifier to discern between erroneous and correct
events substantiated this trend, with the Monitor
environment demonstrating better performance. This
suggests that the ErrP characteristics captured in the Monitor
environment were not only more robust but also more easily
differentiable.

FIGURE 11
Topoplots of ERSP at 300 ms (left) and 500 ms (right) after the stimulus in the two protocols with different probability of error events and in the δ, θ
and α brain oscillations. In the plot are reported just significant values along trials.

FIGURE 12
Distributions of examined attention related features for the 20% probability of error events protocol (in purple) and the 50% one (in blue).
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Moving to the second comparison, which scrutinized the impact
of error probability, events with a 20% chance of error were
juxtaposed against those with a 50% probability. Interestingly,
the events with a lower probability of error displayed more
pronounced ErrP characteristics, potentially indicating a
heightened neural sensitivity to scenarios with a lower likelihood
of error. Conversely, a significantly higher attention level was
observed in events with a 20% probability of error, suggesting
that the reduced probability of error might have increased
participants’ cognitive engagement. These results are consistent
with previous evoked potential research using different
paradigms. For instance, Verleger and Śmigasiewicz (2020)
demonstrated that P300 amplitudes in visual and auditory tasks
vary significantly with oddball probability.

The discovery of correlations between ErrP characteristics and
specific attention features adds a layer of complexity to the
relationship between ErrP and attention. Our analysis revealed
significant positive correlations between the P300 amplitude of
the ErrP response and sustained attention metrics, suggesting
that stronger error detection mechanisms may be associated with
enhanced attentional resources. Additionally, we observed a
noteworthy negative relationship between the error-related

negativity (ERN) latency and attention switching capacity. These
findings align with previous research by Klimesch (2014), who
demonstrated that attention-related oscillatory activity can
modulate error processing mechanisms. Similarly, Datta et al.
(2017) found that variations in attention levels can significantly
impact the amplitude and timing of error-related potentials.

Our findings have particular relevance for the design and
implementation of AR/VR protocols aimed at cognitive state
stimulation. The observed differences in attention and ErrP
responses between monitor and VR environments suggest that
careful consideration must be given to the choice of interface
when designing cognitive training or assessment protocols. The
potential impact of environmental familiarity on cognitive
engagement indicates that AR/VR protocols may need to
incorporate adaptation periods or account for individual
differences in technology experience.

Future studies would benefit significantly from incorporating
standardized psychological attention assessments to provide a more
comprehensive understanding of attentional processes. The Test of
Variables of Attention (TOVA) Braverman et al. (2010) could offer
valuable insights into sustained attention and response inhibition,
while the Attention Network Test (ANT) Fan et al. (2002) would

FIGURE 13
LDA classification performance in distinguishing between ErrP and Non–ErrP epochs using data coming from the 20% probability of error events
protocol (in purple) and the 50% one (in blue). For validation set is reported the mean of the 5 folds cross validation and the standard deviation.

TABLE 2 Significant correlation values between ErrP characteristics and EEG attention–related features in the 20% protocol.

Power ch P4 β
α Power ch pz β

α Power β parietal Power β occipital Power θ
α

ErrP PSD θ Cz 0.61 0.55 0.62 0.64 0.58

ErrP PSD δ Cz 0.58 0.54 0.60 0.61 0.59

ErrP Max Amplitude 0.71 0.68 0.64 0.61 0.62

ErrP Max Latency −0.66 −0.65 −0.57 −0.48 −0.59
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help differentiate between alerting, orienting, and executive
attention networks. Additionally, the Multiple Object Tracking
(MOT) paradigm Cavanagh and Alvarez (2005) could provide
crucial data about divided attention capabilities in virtual
environments. These established measures would complement
our EEG-based attention metrics and potentially reveal how
different aspects of attention interact with error processing in
various virtual environments.

5 Conclusion

In conclusion, these dual comparisons highlight the interplay
between stimulation environments, error probabilities, ErrP
responses, and attention levels. The intricate nuances uncovered
in these experiments underscore the importance of carefully
considering these factors when designing experimental protocols
and interpreting results, particularly in the dynamic realms of BCIs
and virtual reality applications. Further research and in-depth
analyses will undoubtedly contribute to a more comprehensive
understanding of the interdependencies within these neural and
cognitive phenomena.

Despite the promising findings, it is essential to acknowledge
the limitations of our study. The relatively small sample
size necessitates cautious interpretation of our results, and
replication with larger populations is needed to validate these
findings. Moreover, we only examined two specific
environments, and additional research is needed to generalize
these findings to other settings. Future studies could explore the
potential benefits and drawbacks of various AR/VR
environments and their effects on the ErrP response and
attentional processes.

Our findings have significant implications for the development
of AR/VR-based cognitive training protocols and therapeutic
interventions. The observed relationship between environmental
factors and cognitive responses suggests that careful attention
must be paid to the design of virtual environments to optimize
cognitive engagement and learning outcomes. Future research
should focus on establishing standardized protocols for
assessing attention and error processing in virtual
environments, potentially incorporating multiple attention
assessment tools to capture different aspects of cognitive
function. This multi-modal approach would provide a more
comprehensive understanding of how virtual environments
influence cognitive processing and could lead to more effective
and personalized AR/VR interventions.
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