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Biosensing techniques are progressing rapidly, promising the emergence of
sophisticated virtual reality (VR) headsets with versatile biosensing enabling
an objective, yet unobtrusive way to monitor the user’s physiology.
Additionally, modern artificial intelligence (AI) methods provide
interpretations of multimodal data to obtain personalised estimations of
the users’ oculomotor behaviour, visual perception, and cognitive state,
and their possibilities extend to controlling, adapting, and even
creating the virtual audiovisual content in real-time. This article proposes
a visionary approach for personalised virtual content adaptation via novel
and precise oculomotor feature extraction from a freely moving user and
sophisticated AI algorithms for cognitive state estimation. The approach is
presented with an example use-case of a VR flight simulation session
explaining in detail how cognitive workload, decrease in alertness level,
and cybersickness symptoms could be modified in real-time by using the
methods and embedded stimuli. We believe the envisioned approach will
lead to significant cost savings and societal impact and will thus be a
necessity in future VR setups. For instance, it will increase the efficiency
of a VR training session by optimizing the task difficulty based on the user’s
cognitive load and decrease the probability of human errors by guiding visual
perception via content adaptation.
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Introduction

Head-mounted displays (HMD) offer an unobtrusive platform for head-area
sensing. In this article, the term head-area sensing denotes a virtual reality (VR)
headset enabling unobtrusive monitoring of a variety of biosignals such as eye and head
movements, pupil size, heart rate, skin conductivity, and brain activity providing
versatile information on human physiology and psychophysiology. Existing VR
headsets include built-in eye-trackers, and an increasing number of versatile
biosensing capabilities are emerging. Further, enabling VR content adaptation with
seamless real-time estimations on human visual perception and cognitive state, for
instance, we could analyse and modify human perception and attention allocation in a
specific task (e.g., safety critical, monitoring tasks), optimize learning and rehabilitation
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effect during a session, or even guide individual experience paths
(e.g., in entertainment and tourism related use-cases).

In this article we envision why biosignal-based personalised
virtual content adaptation should be a necessity in future VR
systems. The functionality of such a system is presented with an
example use-case of a VR flight simulation training session. We
explain how signal and feature processing, adaptive
classification, and decision making with virtual content
parametrisations are composed to operate together as a
sophisticated AI system. We illustrate examples of three
distinctive occasions that would be most likely to affect the
performance of the trainee; increase in cognitive workload,
decrease in alertness level, and cybersickness symptoms
estimation. The primary focus here is in the eye and
oculomotor parameters, as well as head movements, given
their crucial role in visual perception.

Since visual perception is tightly linked to the visual content, the
discussion is limited to VR environments (in which the content is
fully controllable). However, some of the protocols could be
implemented in augmented reality (AR), especially in fully
rendered mixed reality (MR), where the visual scene is known
(Rauschnabel et al., 2022).

Perception is an active cognitive process we use to form our
understanding of the complex and dynamic world around us. It
involves receiving and processing sensory information selectively
filtered by attention. Cognitive state, such as alertness, directly
influences attention allocation and visual perception (Lim and
Dinges, 2010). Therefore, knowledge on the person’s cognitive
state is essential for understanding their perception and
attentional processes, strategies, behaviour, and performance in
specific tasks.

Currently, the user’s cognitive state, especially stress and
cognitive workload, can be detected from biosignals with
machine learning methods in constrained environments as a
binary indicator (Giannakakis et al., 2022). VR experiments have
achieved a similar goal by limiting to data from an integrated eye-
tracker (Shadiev and Li, 2023) and by the inclusion of wearable
measurement devices (Weibel et al., 2023), (Tao et al., 2022),
(Miltiadous et al., 2022) or custom hardware attached to the
headset (Luong et al., 2020). However, external devices are more
error-prone, leading to synchronization challenges compared to
integrated sensors. Moreover, we have found that by combining
multiple biosignals (such as electro-oculography, EOG;
electroencephalogram, EEG; electrocardiogram, ECG;
electrodermal activity, EDA) it is possible to achieve better
classification performance in a multiclass classification of stress
and cognitive workload (Pettersson et al., 2020), (Tervonen et al.,
2023). These points suggests that the advent of novel VR headsets
integrating biosensing facilitate to deliver versatile and engaging
stimuli in a less constrained environment to estimate cognitive states
on a more fine-grained level.

In their extensive 2021 review, Halbic and Latoschik noted
that although the integration of biosignals with VR applications
is promising, there were no VR headsets with biosignal
capabilities available at that time (Halbig and Latoschik,
2021). Now, 3 years later, many commercial manufacturers
(e.g., OpenBCI, HP, Emteqlabs, LooxidLabs, Wearable
Sensing) are increasingly integrating biosensing such as EOG,

electromyogram, ECG, EEG, EDA, photoplethysmogram, and
facial cameras in addition to eye-tracking (video-oculography,
VOG) into the headsets.

Existing knowledge of human perception and active vision,
has been mainly derived from experiments conducted in static 2D
setups with limited field-of-view (FoV) e.g., (Ugwitz et al., 2022),
and corresponding oculometric algorithms are also designed
based on such setups. While advancements in headset
integrated sensing and VR have opened new opportunities for
studying the complexities of real-life perceptual experiences, e.g.,
(Agtzidis et al., 2019), (Haskins et al., 2020), (Merzon et al.,
2022), they also enable us to update the oculomotor feature
extraction algorithms to operate in more detail in new, more
dynamic (large FoV, 360° VR, even 3D) settings with a freely
moving person (Startsev and Zemblys, 2022).

In the near future the user’s experience can be modified with
personalised content adaptation in VR. This is possible by
combining headsets with time-synchronized VR content and
biosignals, robust real-time oculomotor feature estimation in a
dynamic 3D environment, and sophisticated real-time AI
algorithms for cognitive state estimation. Examples already exist
in the literature on bio-feedback and content adaptation approaches,
such as (Miltiadous et al., 2022), (Halbig and Latoschik, 2021), (Qu
et al., 2022). However, most of these examples present offline
solutions or are related to use-cases involving meditation or
relaxation.

We envision that the personalised content adaptation will
improve immersion and experience as well as obtain more fine-
grained knowledge on the user’s visual perception, cognitive state,
and performance. Ultimately, the approach could enable
behavioural changes, enhance and accelerate learning or
rehabilitation, and even decrease the probability of human error.
These in turn will lead to cost savings and a significant
societal impact.

Personalised content adaptation

The functionality of the personalised content adaptation is
presented with an example use-case of a VR flight simulation
training session with three cognitive states: cognitive workload,
alertness level, and cybersickness symptoms estimation.
Cognitive states are estimated by using all the biosignals
obtained with biosensors integrated to a VR headset. Next,
we will describe how the eye and oculomotor features are
estimated from a freely moving person in VR, what an
embedded stimulus is and how it could be used in content
adaptation, and AI-aspects for realising the real-time
adaptation.

Oculomotor parameter estimation in VR

Figure 1 demonstrates the detection of eye and oculomotor
features during a VR flight training session. The headset tracks the
user’s head and eye movements, and concurrent feature extraction
provides the time series into different eye and head movement
events based on the signal changes.
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Both the head and the eyes are stable during fixations (Figure 1:
light purple). While fixating, an object is held in foveal vision to
gather information and a longer fixation time may indicate, for
example, deeper cognitive processing (Rayner, 1998). Fixation
patterns such as scan paths, and fixation dispersion contain
information about content, and how a person tracks the visual
field, which can change due to fatigue or neurological dysfunction
(Shiferaw et al., 2018), (Cox and Aimola Davies, 2020). Eyes can
maintain the fixation with smooth pursuit even though the object
moves (Figure 1: cyan). Since smooth pursuit is difficult to perform
without a moving target, it is discussed in more detail later with
embedded stimuli.

Gaze is shifted with fast eye movements, saccades (Figure 1: grey;
Figure 1A) with or without a head movement. Smaller gaze shifts
(<15°) are usually made without a head movement (Bahill et al.,
1975a). In studies with fixed head position, saccade parameters (e.g.,
rate, duration, peak velocity, main sequence (Bahill et al., 1975b))
have shown to be sensitive to changes in cognitive state such as
alertness level (Hirvonen et al., 2010), acute stress (Startsev and
Zemblys, 2022), and cognitive load (Qu et al., 2022). We believe
these parameters can be reliably estimated during the VR session
and used to estimate cognitive workload of the trainee during the
flight simulation.

When the target object is far away, the head tends to
continue movement after gaze fixates on the target, causing

the eyes to do a compensatory movement with vestibular ocular
reflex, (VOR) to keep the target in foveal vision (Figure 1:
purple; Figure 1B). Given the coordinated nature of head and
eye movements during attention allocation, the latency between
eye and head movement, amplitude ratio, and direction of the
movements can serve as indicators of the user’s performance,
strategy, cognitive state in VR. Moreover, the dysfunction of
VOR (e.g., jerky eye movements instead of smooth), can
indicate motion sickness and dizziness (Wallace and Lifshitz,
2016), (Clément and Reschke, 2018), (Biswas et al., 2024) and
could be used for estimating cybersickness occasions of the user
during the flight training session.

Blink and pupil size parameters are robust for the head
movements and can thus be monitored from during the VR
session. Spontaneous eye blink frequency (EBR), blink duration,
blink waveform parameters as well as eye lid velocity and
acceleration (see Figure 1: yellow; Figure 1C) are sensitive to
changes in cognitive state, e.g., vigilance (Schleicher et al., 2008).
EBR is also mediated by the central dopaminergic activity and
indicates cognitive performance (e.g., reinforcement learning and
motivation, and cognitive flexibility) (Jongkees and Colzato, 2016).
Luminance of the stimulus influences the pupil size. Nevertheless,
variations in pupil size can serve as an informative marker for
cognitive states, especially excitement and engagement (Bradley
et al., 2008), if the illumination remains constant or is known.

FIGURE 1
Schematic overview of an illustrative VR flight simulation session where the headset tracks the user’s headmovements (the light cyan signal) and eye
movements with both VOG (the blue signal) and EOG (the black signal). Feature extraction provides the head and eye movement events into different
classes based on their types and concurrence: (A) a detailed illustration of a horizontal saccade, (B) an example of an occasion of simultaneous saccade
and head movement followed by a vestibular ocular reflex (VOR), (C) a detailed illustration of a blink.
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Eye and oculomotor reactions induced by
embedded protocols

The visual scene guides the eye and especially oculomotor
parameters. To get more versatile information on the user’s
oculomotor behaviour and cognitive state, embedded stimuli
could be timely included into the content. For instance, if a
movie includes a salient target, the user will most likely do a
reflexive saccade towards the target, enabling the estimation of
the saccade latency and the occasions when the target has been
missed (Figure 1A). In addition, smooth pursuit can be induced
by adding, e.g., a flying object to the flight simulation content.
Dysfunction of the pursuit system could be an indicator of, e.g.,
fatigue (Stone et al., 2019) or cognitive impairment caused by
alcohol (Tyson, 2021).

Simultaneous eye and head movement can be induced by
implementing a large and rapid target movement across the
FoV, prompting the user to execute a simultaneous head
movement and saccade, potentially followed by a VOR
(Figure 1B). With the help of such embedded stimuli
occurrences, e.g., cybersickness symptoms can be monitored
during the VR session.

Most of the presented eye parameters are under voluntary
control, thereby being closely associated with the user’s
motivation and engagement, for example, the user can
voluntarily inhibit the embedded target. However, in certain
setups VR may incorporate stimuli that elicit startle responses.
Startle responses (e.g., blink and pupil) are predominantly
unconscious defensive reactions triggered by sudden or
threatening stimuli, such as a loud noise or light flashes (Koch,
1999). The latency of the startle responses reflects the functioning of
the startle reflex controlled by the brainstem (Koch, 1999), providing

insight into both affective and cognitive processes (Bradley
et al., 2003).

AI aspects and cognitive state estimation

Head-area sensing in VR may benefit from AI in several ways,
ranging from adaptive feature extraction, user cognitive state
detection, content adaptation, synthetic virtual content creation
based on user preferences, or assistance in reaching the VR
session objectives by guiding the overall session management.
Figure 2 presents a schematic overview of the data flow from
sensing to personalised content adaptation.

We illustrate the proposed approach (Figure 2) by using the
example of estimating and tuning the trainee’s 1) cognitive load, 2)
alertness level, and 3) cybersickness occasions during a VR flight
simulator session. In the imaginary use-case a user carries out flight
simulator session. The system operates in the background with
capabilities to run and personalise the VR content, automated
feature extraction, and state detectors to reach a certain overall
objective set for a particular user.

The example: In the first phase of the session, the VR basic
flight content is rendered and separate parallel personalised
models on cognitive workload, alertness, and cybersickness
provide corresponding estimations based on session
objectives (e.g., steadily increasing cognitive load,
maintaining alertness level, and eliminating cybersickness).
The content parameters of the first phase of the embedded
protocol simulation are tuned for evaluating the individual
model performance measures within each of the three
cognitive state test cases. The cases can be run sequentially
or some of them can be combined. After the first phase each of

FIGURE 2
Flow of head-area and biosignal data from sensing to calibration, feature extraction, modelling, and personalised content adaptation.
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the model provide individual state estimations (e.g., cognitive
workload medium, alertness low, cybersickness high) for
suggesting corresponding embedded protocol content
parameter updates (this comes through physiology and
oculometry vs. model explanations). The content parameter
updates are converted in the background into new simulation
sequences (embedded protocol adaptation) which are
then played (sequentially or combined) with fine-tuned
estimation models in the second phase of the simulation.
These steps can be repeated until the objectives of the
training session are fulfilled.

More concretely, a flight simulation session has the objective
of training a student to fly in various weather conditions and
manage different malfunctions while flying from one location
(A) to another (B). Here, personalised content adaptation
optimises the task difficulty with embedded stimuli to
maximize the learning effect. During a normal takeoff and
climb to cruising altitude, the ML models for workload,
alertness, and cybersickness are personalised. At the same
time, cybersickness symptoms and vigilance level are
checked. If, for instance, the system notices that the student’s
low alertness level is not optimal for learning, stimulating
elements are automatically added to the content (e.g.,
turbulence, flock of birds). When the student’s alertness level
is increased, the actual task can begin. The task difficulty is
increased by adding embedded stimuli, for instance, increasing
the crosswind. Afterwards, the student’s performance (e.g.,
correct altitude and heading) and cognitive workload are
checked, and the task difficulty increased with various
embedded stimuli (e.g., malfunction, or another weather
condition) automatically in order to keep the workload in an
optimal level.

As perceptional, attentional, and physiological
processes are specific to everyone, modelling and content
adaptation should account for individual differences.
Personalisation requires some prior information, which is
not available for a new person, i.e., when a cold start
occurs. Since new users will likely require a short period of
time to get used to the setup, an AI-assisted calibration
process can be run while collecting the required baseline
information to calibrate the setup and personalise cognitive
state detection.

Biosignal events and the corresponding extracted features
are computed based on the visual scene, the task at hand, the
presence of head movements and the temporality of the
physiological phenomenon behind the biosignal feature. For
instance, blinks occur every 3.5 s on average, making the
calculation of blink rate over any shorter segments pointless.
Moreover, cognitive responses and oculomotor behaviour
emerge with varying velocity and duration, making some of
them useful for fast-paced content adaptations and others more
relevant for longer-term domain-specific applications.
Essentially, adaptive feature sampling and segmentation
involves three distinct time frames.

i) Super-fast reactions (few seconds at most) such as
panicking which should be caught for fast safety critical
interventions.

ii) Short reactions (about a minute) such as cognitive load, and
acute stress, detectable from e.g., ECG, EDA, and eye
parameters.

iii) Slow reactions (3–10 min or more) such as flow, and
engagement which require slower interventions.

These interventions largely consist of the addition of embedded
stimuli, like modifying the visual scene to show only essential
information, although switching to automated operating mode
might also be needed in some cases and applications. Reactions
to interventions are monitored and given back as input in the
feedback loop.

In the scenario the AI models responsible for user calibration,
cognitive state estimation, and adaptations with embedded
protocols work in conjunction with another AI model to
generate synthetic data. Augmenting the calibration data with
the synthetic counterpart could help to improve the performance
of the state detection especially in a cold start. The true potential
of generative AI, however, comes from counterfactual prediction
of adaptations needed to direct user states to a desired direction,
and then creating the required virtual world. Such an AI could,
for example, shift interactive storytelling from active, explicit
decisions made by the user to implicit deduction of one’s wishes
and creation of corresponding multimodal narrative, with
potential applications ranging from training and
entertainment to rehabilitation. These processes relate directly
to the creation and optimization of the virtual space for each user
and situation. We see that these topics are the most challenging
technical advancements for the near future to achieving
the vision.

Discussion

The use of personalised content adaptation will lead into
significant societal impact and cost savings by improving the
efficiency of VR sessions (e.g., in education and rehabilitation) as
well as decreasing the probability of human errors by guiding
attention allocation (e.g., safety critical tasks). For these reasons
we claim that our approach will be a necessity in future
VR setups.

We have illustrated the details and potential our approach
with the flight simulator training use-case. However, the real-
time content and embedded stimuli adaptation opens the
possibility to make desired interventions to a variety of use-
cases. There are multiple application domains varying from
entertainment and workplace to education, with
examples including.

• Entertainment in VR games and movies to
enhance the experience by e.g., modifying the level of
engagement.

• Education in training contexts such as flight simulators to
optimize the content for maximizing learning e.g., real-time
optimization of the task difficulty.

• Demand to estimate the cognitive state of the human in
the loop especially in safety critical work, such as
control rooms.
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• Wellbeing, wellness, and rehabilitation (e.g., stroke, post-
traumatic stress disorder).

A comfortable user experience in VR requires synchrony
between the audiovisual content and immediate controlling
events, such as head turns moving the FoV and eye tracking
sharpening the image once movement halts. However, the
envisioned AI processes for visual perception and cognitive state
modelling, adaptations with embedding stimuli, and especially the
creation of virtual worlds all have potentially significant
computational costs. The orchestration of these AI processes may
require architecturally complex solutions and integration to edge or
cloud processing to ensure the models work accurately in a timely
conjunction.

The potential applications require processing sensitive
personal data, and some of the states that can be detected are
private to the user. Besides computational challenges, developers
need to consider the ethical aspects of their applications, including
user privacy and anonymity, information security, and fairness.
Data processing and AI based systems are also increasingly
regulated, with the General Data Protection Regulation and the
recent AI Act in the EU, and the non-binding AI Bill of Rights in
the US. Such regulations and guidelines help developers ensure
responsible data processing and use of AI and should therefore be
closely followed.

The envisioned approach will revolutionise our understanding
of human visual perception, cognitive state as well as behaviour in
VR. With the integration of context detection, it can be further
extended to AR with an increasing number of real-world
components, and even implemented in real-life settings by using
smart eyewear. Such a setting would allow for an extremely diverse
analysis of human perception, cognition, and behaviour in
everyday life.
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