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Introduction: The increasing integration of digital tools in education highlights
the potential of embodied pedagogical agents. This study investigates how task-
related errors and language cues from a robot influence human perception,
specifically examining their impact on anthropomorphism and subsequent
empathy, and whether these perceptions affect persuasion.

Methods: Thirty-nine participants interacted with a NAO robot during a quiz.
Employing a 3 × 2 mixed design, we manipulated the robot’s error rate (above
average, human-like, below average) between subjects and language style
(humble, dominant) within subjects. We measured perceived
anthropomorphism, empathy, sympathy, and persuasion. Data were analyzed
using multilevel modeling to assess the relationships between manipulated
variables and outcomes.

Results: Our findings indicate that human-like error rates significantly increased
perceived anthropomorphism in the robot, which in turn led to higher levels of
empathy and sympathy towards it. However, perceived anthropomorphism did
not directly influence persuasion. Furthermore, the manipulated language styles
did not show a significant direct effect on perceived anthropomorphism,
empathy, sympathy, or persuasion in the main experiment, despite pretest
results indicating differences in perceived personality based on language cues.

Discussion: These results have important implications for the design of embodied
pedagogical agents. While strategic implementation of human-like error rates
can foster empathy and enhance the perception of humanness, this alone may
not directly translate to greater persuasiveness. The study highlights the complex
interplay between perceived competence, likability, and empathy in human-
robot interaction, particularly within educational contexts. Future research
should explore these dynamics further, utilizing larger samples, diverse robot
designs, and immersive environments to better understand the nuances of how
errors and communication styles shape learner engagement with pedagogical
agents.
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Introduction

The integration of digital tools into educational environments is
an accelerating trend in our rapidly evolving technological
landscape. A particularly promising approach is the development
of pedagogical agents–virtual entities or embodied robots designed
to facilitate learning across various educational contexts. These
agents often incorporate anthropomorphic features, emulating
human interactions, emotions, and communication styles. This
strategy leverages learners’ predisposition to engage with social
cues, aiming to create a more immersive and effective
educational experience (Alzubi et al., 2023). Facial expressions,
body language, voice modulation, and even expressions of
empathy are carefully integrated to deepen engagement (Riek
et al., 2009). Moreover, pedagogical agents can provide
personalized feedback, encouragement, and emotional support,
potentially influencing motivation, promoting deeper conceptual
understanding, and enhancing long-term knowledge retention (Hu
et al., 2023).

While earlier research in human-robot interaction focused on
observable human characteristics like appearance (Fink, 2012),
emphasis is shifting towards understanding the cognitive abilities
of these agents (Airenti, 2015). The development of emotion-
recognizing technologies, such as the robot Alice, and
sophisticated language models (Bommasani et al., 2022) highlight
the importance of higher-order social and emotional skills.
However, this increased humanization introduces new challenges.

For embodied digital technologies (EDTs) to be truly assistive in
our daily lives, successful interaction within relevant contexts is
essential. This necessitates seamless communication: EDTs must
respond appropriately to human input, and conversely, humans
must be able to recognize and interpret informational and
communicative signals. External appearances, human-like
movements, and modulation of the voice are important
foundational elements. Yet, humanized sensory information
output from EDTs represents only a small component of
effective communication and interaction. The attribution of
human-like qualities to agents may result in the application of
stereotypes and implicit biases (Bommasani et al., 2022),
potentially obscuring their true capabilities. While research and
development have prioritized the concrete capabilities of embodied
digital technologies (Mara et al., 2022), critical questions regarding
implicit cognitive and psychological processes remain unanswered.
What are the cognitive mechanisms involved in engaging with these
artificial, yet increasingly human-like companions? And how do
these internal psychological processes interact? Can we assume that
the implicit processes mirror those occurring during human-human
interactions, or is there a more nuanced dynamic present?

Addressing these questions is paramount in learning and
teaching contexts, as they are inherently social-cognitive activities
with outcomes substantially influenced by social skills. This
dependence becomes even more significant with the introduction
of autonomous social pedagogical agents. Learning and
performance-relevant information is no longer merely presented
but instead become embedded in a social situation. The successful
transmission and internalization of information relies on the proper
alignment of social cues within the learning environment.
Information presented flawlessly by the agent, in terms of tone

and expression, may be ineffective if the accompanying social
relevance cues are misaligned with the specific situation.

To make informed design decisions about the most impactful
human characteristics to incorporate into these technologies, we
must first gain a deeper understanding of the cognitive processes
that humans experience during social interactions with artificial
helpers. This research area remains under-explored (Airenti, 2018).
The present study aims to address this knowledge gap by
investigating the complex interplay between implicit attribution
processes, anthropomorphism, and empathy within human-robot
interaction. Specifically, we explore how the perceived
anthropomorphism of a robot interacts with empathy, as well as
with factors relevant to learning and performance, such as
personality traits, perceived similarity, sympathy, and the
frequency of errors made by the agent.

Previous research suggests that robots exhibiting unpredictable
behavior or frequent errors may be perceived as more relatable, even
endearing, leading to increased anthropomorphization (Gideoni
et al., 2022). Conversely, robots with minimal errors are often
viewed as efficient tools, eliciting fewer attributions of human-
like qualities (Roesler et al., 2021). This paradoxical effect
underscores the dynamic interplay between perceived
performance and perceived anthropomorphism, a dynamic we
aim to explore further in this study. The emergence of new
technologies has expanded the use of the term
“anthropomorphization” beyond its traditional scientific context.
In public discourse, it frequently denotes the design of technology
with human-like capabilities, regardless of whether these features
elicit human-like perception in users. To address potential
ambiguity surrounding terminology, we distinguish between
anthropomorphic design and user-driven anthropomorphization.
While anthropomorphic design refers to the intentional
incorporation of cues intended to be perceived as human-like
into technology, anthropomorphization includes the user’s
subjective perception and interpretation of these design cues as
human-like. Thus, anthropomorphic design is the inclusion of cues
typically (but not exclusively) perceived as human-like.
Anthropomorphization, conversely, is the process of attributing
human-like characteristics to non-human entities based on the
interpretation of these anthropomorphic cues.

Whether a design element triggers anthropomorphization
depends on whether it is interpreted by the user as an
anthropomorphic cue. These cues can be consciously or
unconsciously perceived as signifying human qualities and thus
initiate the process of anthropomorphization. The perception of a
human name (e.g., Siri, Alexa) as an anthropomorphic cue, for
example, can be influenced by various moderating factors (Epley,
2018). Conversely, non-human properties can evoke the perception
of human-like intentionality, meaning design elements can be
perceived as anthropomorphic even if unintentionally designed as
such (van Buren et al., 2016).

Furthermore, the processing of anthropomorphic cues can be
either conscious and explicit or operate implicitly. Implicit
processing frees up cognitive resources for tasks requiring
focused attention, such as learning, performance, communication,
and social interaction; implicit processing also facilitates rapid
categorization of novel stimuli and promotes efficiency in
decision-making. The availability of cognitive resources is
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particularly important when communicating and interacting, where
the attribution of a theory of mind to the interaction partner is often
necessary (Sidera et al., 2018). A theory of mind is a mental model of
another’s mental states–their beliefs, desires, and intentions–which
is a complex construct, requiring substantial information or, in the
case of a non-human entity, numerous clear, unambiguous
anthropomorphic cues (Bagheri, 2023). Interaction necessitate the
attribution of a theory of mind to the interaction partner (Sidera
et al., 2018).

When encountering anthropomorphic cues, human cognitive
models are gradually augmented with anthropomorphic concepts
(Epley, 2018). This expansion requires relevant and appropriate
information for integration, as incongruity can impede acceptance
(Bartneck et al., 2009). Clear anthropomorphic cues facilitate
adaptation. The often implicit and rapid nature of
anthropomorphization, even with minimal cues, means the entity
can be perceived with empathy early in the interaction. Purposeful
movement, for instance, can trigger motor and cognitive empathy
due to perceived intentionality. Simple geometric shapes can elicit
such responses (van Buren et al., 2016).

Anthropomorphization encompasses the interpretation of a cue
as human-like and the subsequent attribution of human-like
qualities to the entity. This attribution validates the cue as
signifying human resemblance and constitutes a key process in
empathy formation. Anthropomorphization concludes once this
validation is complete. Anthropomorphization, then, enables
empathic responses, leading to appropriate social interactions
with non-human entities.

Empathy is a multi-faceted construct that can be divided into
motoric empathy, emotional empathy, and cognitive empathy.
Motoric empathy is the mirroring of the motor patterns of
another entity. Emotional empathy is sharing a similar affective
state, while cognitive empathy includes understanding the
perspective and mental state of that same entity. Empathy is
rooted in social-cognitive processes that rely on motion, emotion
and cognition, and anthropomorphization initiates this process for
non-human entities. Consistent with this multi-stage model of
interaction, neuroimaging studies have revealed similar brain
regions activated during both anthropomorphism and empathy.
These shared neural underpinnings have been observed in children
(García-Corretjer et al., 2023) and individuals with diverse
neurological profiles (Li et al., 2023).

We argue that the parallels between anthropomorphic and
empathic processes extend beyond shared neural activation. Both
rely on mentalizing, the process of inferring mental states (e.g.,
thoughts, feelings, and intentions) in oneself and others (Bagheri,
2023). This process of social cognition transforms non-human
entities into social actors through the attribution of human-like
mental states. These attributions, however, are not always accurate
and can frequently be fictional, as exemplified in media reception of
real or animated characters (Luis et al., 2023). This is not limited to
robots, but extends to other non-human entities, such as virtual
pedagogical agents.

We posit that the ability of a cue to elicit an empathic response is
determined not by the physical presence of the entity, but by its
ability to stimulate cognitive empathy, affective empathy and motor
empathy. Categorizing anthropomorphic cues based on their
corresponding empathic subprocess suggests that cues triggering

multiple subprocesses simultaneously evoke stronger empathic
responses overall. Therefore, our first hypothesis is:

H1: Higher levels of anthropomorphism will lead to stronger
empathic reactions toward a non-human entity.

Robots are entering human social spaces, which leads to
increasing social interaction between humans and robots and
therefore necessitates understanding how humans perceive and
respond to robotic agents. When robots are ascribed social
agency, people tend to rely on mental models of human-to-
human interaction (Waytz et al., 2014). These models are often
shaped by media portrayals, which frequently depict robots as
flawless machines (Horstmann and Krämer, 2019). This study
investigates the influence of error rate on the perception of robot
animacy and likeability. While some studies suggest that robots
exhibiting errors are perceived as more human-like and likeable
(Arikan et al., 2023), others highlight that flawless performance is
associated with increased perceptions of competence, intelligence,
and functionality (Salem et al., 2015). These are characteristics that
are especially important in learning and performance contexts,
where error-free robots may also be perceived as more
trustworthy and reliable. Interestingly, research suggests that
imperfections in human-robot interaction can enhance social
perception, leading to higher ratings of popularity and credibility
compared to flawless counterparts (Mirnig et al., 2017). This effect is
likely attributed to the increased perceived human-likeness
associated with imperfection. Based on these findings, we
propose the following hypothesis:

H2: As the robot’s error rate approaches the human error rate, it
will be perceived as more human-like and, consequently,
more likeable.

This study additionally investigates the impact of perceived
robot animacy on task performance and blame attribution. While
Salem et al. (2015) found no significant effect of robot error rate on
user performance, contrasting results were reported by Ragni et al.
(2016). Furthermore, Waytz et al. (2014) demonstrated that
individuals tend to attribute greater blame to counterparts
perceived as more anthropomorphic. This finding suggests that
increased perceived human-likeness leads to the attribution of
enhanced mental capabilities and control over actions, implying
the robot possesses agency beyond pre-programmed behavior.
Supporting this notion, Furlough et al. (2021) reported increased
blame attribution even towards counterparts perceived as simply
possessing greater autonomy. Prior research has primarily
investigated user responses to robots committing errors or acting
flawlessly (Mirnig et al., 2017), focusing exclusively on violations of
technical and social norms. To address this gap, the present study
examines the effect of content-related errors on blame attribution.
Based on these findings, we propose the third hypothesis:

H3: As the robot is perceived as more human-like, greater blame
will be attributed to it for task-related errors.

This study also investigates the influence of language style on the
persuasive impact and perceived anthropomorphism of robots in
human-robot interaction. A crucial factor in attributing blame is the
perceived level of control held by each entity involved. To effectively
influence user behavior, robots must possess the ability to subtly
guide or modify user actions. The Media Equation Hypothesis
(Reeves and Nass, 1996) posits that individuals respond similarly
to social cues exhibited by robots and those displayed by other
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humans, a notion aligned with our theoretical assumptions about
anthropomorphism and empathy. Building upon this, several
studies have explored the role of persuasion, focusing particularly
on psychological reactance (Ghazali et al., 2017). Reactance
describes a behavioral response to perceived persuasion attempts,
often manifesting as disregard for instructions or adoption of
opposing behaviors to reassert autonomy (Sharon S Brehm, 1981).

Beyond social cues (e.g., head movements, facial expressions,
vocalizations), language plays a crucial role in shaping perceptions
and facilitating interaction with robots and embodied digital
technologies. Studies show that people respond to robots’
language similarly to how they respond to human language
(Reeves and Nass, 1996). High controlling language, in particular,
has been linked to increased psychological reactance, with users
disregarding instructions or adopting opposing behaviors to assert
autonomy (Sharon S Brehm, 1981). In addition research suggests
that submissive language is perceived more favorably than dominant
language (Habler et al., 2019). Similarly, extraverted robots are often
perceived as more socially intelligent, likable, and animate
(Mileounis et al., 2015). Conversely, robots using high controlling
language are perceived as less competent, sociable, trustworthy, and
anthropomorphic (Ghazali et al., 2017). In the present study, the
robot will not provide direct instructions but rather subtly present its
suggestions to aid participants in selecting the correct answer in a
quiz. Therefore, we will manipulate the robot’s language style,
contrasting a dominant and a humble version. Both conditions
will incorporate characteristics from various dimensions
(extraversion, high controlling language, etc.), acknowledging the
inherent overlap and interconnectedness of these dimensions. Given
the limited and inconclusive research on the persuasive influence of
(anthropomorphic) robots based on language cues, coupled with the
conflicting findings regarding anthropomorphism, this study
investigates the following research question.

RQ1: How do different language styles influence human-robot
interaction, especially the persuasive impact and perceived
anthropomorphism of robots?

The influence of perceived robot personality on human-robot
interaction (HRI) is a vital research area. Personality, a fundamental
aspect of human social interaction (Aly and Tapus, 2013), consists of
enduring characteristics that shape thoughts, emotions, and
behaviors. Cues for inferring personality include visual elements
(appearance, status), verbal markers (speech, language), and
nonverbal communication (gestures, body language) (Ekman
et al., 1980).

Some research suggests a preference for individuals with
congruent characteristics (Tapus et al., 2008). For example, an
introverted person might find an introverted robot more
appealing. Tapus et al. (2008) attribute this preference to the
perceived ease of adapting to similar personalities, leading to
increased likeability. Extroverts tend to speak loudly, rapidly,
with minimal pauses, and employ informal language and positive
emotion words (Dewaele and Furnham, 1999). Conversely, Nass
et al. (1995) associate submissive and introverted behavior with low
controlling language. Additionally, Tapus et al. (2008) found that
introverted participants preferred introverted robots, supporting the
hypothesis. Interestingly, perceived robot personality was also

influenced by interpersonal distance, with extroverted individuals
finding closer proximity less uncomfortable than introverts (Nielsen
et al., 2022), a finding consistent with the importance of
interpersonal distance in human social interactions (Walters
et al., 2005).

However, Lee et al. (2006) reported contrasting findings,
suggesting a complementary-attraction phenomenon, where
participants perceived robots with opposing personalities as more
intelligent, attractive, and present. This highlights the potential
influence of embodiment on social perception–interaction with a
humanoid robot might be perceived more similarly to human-to-
human communication than interaction with a digital avatar or text-
based agent (Benk et al., 2023). Woods et al. (2005) neither
confirmed nor refuted either hypothesis, potentially due to the
non-humanoid nature of the robot used. Their research revealed
that technical experience significantly impacted perceived
personality, with individuals possessing greater experience
exhibiting a stronger tendency to project human-like qualities
onto robots. Walters et al. (2008) emphasized the role of robot
appearance, demonstrating a halo effect where aesthetically pleasing
robots were evaluated more positively, suggesting that user
preferences can influence perceived personality. For instance,
they observed that introverted participants with low emotional
stability exhibited a preference for mechanic-looking robots.

Additional studies by Mileounis et al. (2015) yielded
inconclusive results regarding both the similarity-attraction and
complementary-attraction hypotheses. Introverted robots were
consistently perceived as more socially intelligent, emotional,
intelligent, and likable than extroverted robots, regardless of
participant personality. The authors attributed this to the
cooperative and submissive communication style employed by
the introverted robot, which was perceived more favorably than
the commanding tone of the extroverted robot.

In conclusion, current research on the influence of perceived
robot personality on user preferences in HRI remains inconclusive.
While the impact of personality on human-robot interactions is
undeniable, further research is necessary to definitively establish the
nature of this relationship. This study aims to address this gap by
investigating the second research question:

RQ2: How do the robot’s perceived personality and perceived
similarity influence human-robot interaction, especially in
collaborative task-solving scenarios?

To test the hypotheses and answer the research questions, the
following laboratory experiment was carried out, in which test
subjects had the opportunity to interact with different robots.

Methods

A 3 × 2 factorial mixed design was employed to investigate the
hypothesized relationships. The first independent variable, error
rate, consisted of three levels: above average, human-like, and below
average, and was varied between-subject. The second independent
variable, language style, was manipulated within-subjects,
comprising two levels: humble and dominant. The dependent
variables of interest were attribution of blame and likeability.
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Additionally, several covariates were measured, including
technophobia and technophilia, participant personality, perceived
robot personality, and perceived anthropomorphism.

Participants

Participants were recruited through mailing lists of Chemnitz
University of Technology and social media platforms. A total of
39 individuals (51.3% female, Mage � 29.1 years, SD � 9.5 years,
range � 19 − 52 years) participated in the study. The sample
comprised undergraduate and graduate students (53.8%) and
employees (41.1%). All participants completed the experiment
without interruptions, resulting in no exclusions. Each participant
experienced both language-cue conditions. Given the between-
subjects nature of the error rate manipulation, participants were
randomly assigned to three groups of equal size (n = 13) using a
randomized allocation procedure.

Materials

The study employed two NAO robots manufactured by
SoftBank Robotics. These humanoid robots stand 58 cm tall and
weigh 4.5 kg. Each robot possesses 25 degrees of freedom, enabling
movement of the arms, legs, and head. Additionally, they are
equipped with four microphones and two cameras for
recognizing human movement, faces, and facilitating interaction
(Kulk and Welsh, 2008). The robots were outfitted with white shells
and either red or blue accents. We chose the NAO robot for this
study due to its humanoid form and interactive capabilities, making
it a suitable representation of an embodied pedagogical agent. Its
relatively small size and non-intimidating appearance make it
appropriate for interacting with diverse participant groups.
Furthermore, while our study focused on physical interaction
with NAO, its design and behaviors can be readily translated to
virtual representations within XR learning environments, providing
a bridge between physical and virtual pedagogical agents. This
allows for future studies to explore similar interactions in
immersive settings where the physical presence of a robot may
not be feasible or desirable. A collection of quiz questions was
obtained from various websites (Kratzenberg, 2020). Some questions
were supplemented with answer choices. The initial pool consisted
of 36 questions, which were subsequently reduced to 30 following a
pretest. These 30 questions were further divided into two separate
quizzes, as described in the following section.

Pretest I - error rate
Prior research has not established a consistent approach to

defining and manipulating error rates in human-robot interaction
studies (Mileounis et al., 2015). As this study aims to optimize robot
design for enhanced anthropomorphism, the robot’s responses
should closely mimic human behavior in terms of error rates. To
determine appropriate error rate levels and validate the selected quiz
questions, a pretest was conducted in the form of an online survey.
This pretest comprised 36 questions, each with four answer choices
and one correct answer (see supplementary material). The order of
questions and answer options was randomized. Upon completing

the quiz, participants provided demographic information (gender,
age, etc.). Participants (N = 43, age range: 18–75 years, Mage =
34.7 years, SD = 14.9 years, 60.5% female) were recruited through
personal contacts, social media groups, and websites. The sample
included individuals from diverse backgrounds, encompassing
students (n = 9), employees (n = 23), freelancers (n = 4),
pensioners (n = 3), and pupils (n = 1). Educational qualifications
also varied considerably, ranging from GCSE to Ph.D. This broad
demographic spread suggests the calculated error rate likely
approximates the actual average human error rate.

The pretest revealed a mean error rate of 43.2% (SD = 12.2%),
with a range of 11%–66%. Participants answered an average of
19.9 questions correctly. One question was deemed ambiguous and
excluded from analysis. Notably, no question was answered correctly
or incorrectly by all participants. To select questions for the final
quizzes and determine which questions NAO would answer
correctly, the questions were ranked based on their error rate.
Five questions were deemed too easy due to being answered
correctly by over 80% of participants and were excluded. This
resulted in a final selection of 30 questions.

Given the within-subjects design for the language cue
manipulation, each participant would complete two quizzes, each
containing 15 questions. The questions were divided to ensure an
even distribution of difficulty across both quizzes. While the
calculated error rate for the “human” condition closely
approximates the pretest mean, the other two conditions deviate
slightly, differing by approximately one and a half standard
deviations. Consequently, the final error rates were established as
follows: below-average (26.7%, 4 questions answered incorrectly),
human-like (46.7%, 7 questions answered incorrectly), and above-
average (66.7%, 10 questions answered incorrectly). When
providing incorrect answers, NAO mirrored the most frequently
chosen incorrect response from the pretest. To maximize the
human-likeness of NAO’s responses, question selection for
correct answers was also guided by error rate. Specifically, the
four questions with the highest error rate in all three conditions
were designated as incorrect for NAO in both quizzes. The following
three questions were designated as incorrect in the human-like and
above-average conditions, and so on. Errors were introduced
randomly. This approach was chosen to prevent task complexity
from confounding the results. The resulting answer sets for both
quizzes are presented in the supplementary material.

Pretest II - language cues
To investigate the influence of language cues on perceived robot

personality and user preferences, two conditions were implemented:
dominant and humble. These conditions were informed by previous
research on language cues associated with various personality traits
(Mileounis et al., 2015). The dominant NAO embodied
characteristics of dominance, extraversion (Mileounis et al.,
2015), high controlling language (Roubroeks et al., 2011),
authoritarianism (Trovato et al., 2017), and masculinity (Habler
et al., 2019). It employed assertive language with imperatives and
commands, conveying a confident and controlling demeanor (e.g.,
“You have to choose answer A!”). Conversely, the humble NAO
utilized low controlling language (Roubroeks et al., 2011) and
exhibited submissiveness, introversion (Mileounis et al., 2015),
supportiveness (Trovato et al., 2017), and femininity (Habler
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et al., 2019). It phrased responses as suggestions and questions, using
german first-person singular pronouns more frequently and
incorporating words like “maybe” or “possibly”. Additionally, it
emphasized the uncertainty of its responses (e.g., “I’m not sure, but
maybe it’s answer A.”). Each condition employed a total of nine
distinct phrases.

To evaluate the effectiveness of the language cue manipulation, a
separate online pretest was conducted. Participants were recruited
through personal contacts, social media groups, websites, and
university mailing lists. Students from the Chemnitz University
of Technology’s Institute for Media Research received course
credit for their participation. A total of 200 individuals
participated, with 176 completing the survey. One participant
was excluded for answering the quiz questions before NAO’s
response appeared. The final sample comprised N =
175 respondents (66.9% female) aged 15–76 years (Mage =
26.5 years, SD = 9.5 years). The majority were students (72%)
with either a high school diploma (42.3%) or a bachelor’s degree
(35.4%). Participants were randomly assigned to either the
dominant (n = 92, 68.5% female, Mage = 26.6 years, SD =
8.6 years) or submissive (n = 83, 65.1% female, Mage =
26.4 years, SD = 10.4 years) language cue condition.

The language cues employed by NAO were pre-programmed
and did not adapt to participant responses. This method was chosen
to ensure consistent presentation of the dominant and humble
language styles across all participants. While this approach may
limit ecological validity, it facilitates a controlled investigation of
how language style independently affects perceptions of
anthropomorphism, trust, and likeability.

The pretest employed nine questions from the first quiz,
corresponding to the nine distinct phrases used in each language
cue condition. NAO was not present in this pre-study, but instead
presented as a minimal graphical animation. NAO’s responses were
determined by the answer set corresponding to the human error
rate, with four incorrect answers mimicking the human error rate.
To ensure a consistent initial experience for all participants, the quiz
invariably began with the easiest question, which NAO answered
correctly. The order of subsequent questions was randomized.
Before commencing the quiz, participants were informed that
NAO’s answers might not always be accurate. Five seconds after
a question appeared, NAO’s response was presented within a speech
bubble. Participants were allotted time to read the question and
formulate their own answer. Upon completing the quiz, they
received feedback on their performance, including the number of
correct answers and the correct answers for all questions.

Subsequently, participants rated NAO on five dimensions
corresponding to the language cue manipulation: dominance
(1–5), introversion (1–5), masculinity (1–5), control (1–5), and
authoritarianism (1–5). These questions were presented in a
randomized order, utilizing semantic differential scales ranging
from the designated extremes of each dimension. Following this,
participants’ technophilia and technophobia were measured using
three adapted items from the Martínez-Córcoles et al. (2017) scale.
Five-point Likert scales (1 = “not at all” to 5 = “very much”) were
employed. Both scales demonstrated acceptable internal consistency
(technophobia: Cronbach’s α = 0.77; technophilia: α = 0.80). Finally,
participants provided demographic information. The observed
mean error rate (48.2%, SD = 18.3%) was comparable to the first

pretest (43.2%). On average, participants’ answers aligned with
NAO’s responses in 65.3% (SD = 21.6%) of cases. Neither error
rate nor agreement with NAO’s answers differed significantly
between conditions (error rate: t (173) = −0.55, p = 0.582,
d = −0.08; agreement: t (173) = −0.93, p = 0.352, d = −0.14).
Further analysis revealed significant effects for all manipulated
dimensions (dominance: t (173) = 8.11, p < 0.001, d = 1.23;
extraversion: t (157.41) = 5.10, p < 0.001, d = 0.78; masculinity: t
(150.99) = 2.30, p = 0.023, d = 0.35; control: t (173) = 7.41, p < 0.001,
d = 1.12; authority: t (171.20) = 6.69, p < 0.001, d = 1.00).
Participants consistently rated the dominant NAO as more
dominant, extraverted, controlling, authoritarian, and masculine
compared to the humble NAO. These findings demonstrate the
successful manipulation of perceived robot personality through
language cues. Technophobia and technophilia exhibited no
significant correlations with robot perception. However, older
participants rated NAO as less authoritarian (r = −0.26, p =
0.001) and controlling (r = −0.16, p = 0.042). Additionally in this
pretest, women perceived NAO as significantly more masculine than
men (t (169) = 2.5, p = 0.015, d = 0.41; Mwomen � 4.4, SDwomen �
0.9;Mmen � 4.0, SDmen � 0.9).

Measures

To measure the dependent variables and coviariates, validated
German versions of the instruments were used where available. If
there was no German version or it was not available, the items were
translated into German using a classic forward-backward
translation approach.

Attribution of blame
Measured using a translated two-item scale developed by Kim

and Hinds (2006) (α � .81). Participants rated their agreement with
statements (e.g. “The robot was responsible for any errors that were
made during the task.”) regarding NAO’s responsibility for errors on
a seven-point Likert scale (1 = “strongly disagree” to 7 =
“strongly agree”).

Perceived anthropomorphism
Perceived anthropomorphism was assessed using the German

version of the anthropomorphism subscale of the Godspeed
Questionnaire (Bartneck, 2023) (α � .89). Participants rated
NAO on five semantic differential scales (e.g., “unnatural-
natural,” “like a machine-like a human”).

Likability
Measured with the German version of the likability scale of the

Godspeed Questionnaire (Bartneck, 2023) (α � .87). Participants
rated their liking for NAO on a five-point Likert scale (1 = “dislike”
to 5 = “like”).

Personality
Personality were measured using the german ten-item version of

the Big Five Inventory (Remmstedt and John, 2007) (α � .83).
Participants rated both NAO’s and their own personalities on
five-point Likert scales (1 = “strongly disagree” to 5 =
“strongly agree”).
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Empathy
Empathy was assessed using the translated state empathy scale

by Shen (2010) (α � .92). This scale comprises three subscales
(affective, cognitive, and associative) with four items each,
measuring participants’ emotional, cognitive, and self-referential
understanding of NAO’s state. Again forward-backward translation.

Technophobia and technophilia
Technophobia (α = 0.95) and technophilia (α = 0.82) were

measured by a translated version of the questionnaires developed by
Martínez-Córcoles et al. (2017). The technophilia scale consists of
18 items (e.g., “I am excited for new equipment or technology.”). In
the technophobia scale 12 items are included (e.g., “I feel an
irrational fear of new equipment or technology.”) Both scales
consist of a five-point Likert scale ranging from one “strongly
disagree” to five “strongly agree”.

Procedure

Following an initial greeting and a brief explanation of the tasks,
the experiment commenced. NAO welcomed participants and
offered assistance during the quiz. Its initial color (red or blue)
was randomized. The first quiz consisted of 15 general knowledge
questions. Participants first read and answered each question
independently. They then read their answer aloud, allowing NAO
to respond. Participants could subsequently decide whether to
modify their initial answer. NAO’s behavior was manipulated

along two dimensions: dominance (humble vs dominance, see
Figure 1 for a visual representation) and error rate (above
average, human-like, below average). Both conditions were
randomly assigned to participants. The first question in each quiz
was the easiest, and the order of subsequent questions and answers
was randomized. Upon completing the first quiz, participants
received feedback on the number of correct answers achieved
with NAO’s assistance. They then completed questionnaires
assessing attribution of blame, perceived anthropomorphism,
likability, empathy, and robot personality. The order of these
questionnaires was randomized.

Following questionnaire completion, participants were
introduced to a second NAO with a different color (red or blue)
and personality display humble or dominant) compared to the first.
Only the error rate remained constant. Participants then completed
another set of 15 questions following the same procedure as the first
round. After receiving feedback on their performance, they repeated
the robot evaluation questionnaires. Finally, participants provided
demographic information and completed questionnaires assessing
technophobia and technophilia and personality factors. Participants
were debriefed after the experiment and informed about the
different experimental conditions, including the variations in the
robot’s error rate, language style, and the purpose of these
manipulations. The pre-programmed nature of the robot’s
behavior and the lack of genuine emotions or intentions were
emphasized to address any potential misunderstandings. As
compensation for their time, participants enrolled at the Institute
for Media Research could choose between two course credits, while

FIGURE 1
Gestures and Postures Emphasizing Personality Manipulation in the Nao Robot. (A) The humble condition, characterized by submissive posture and
open gestures, suggesting uncertainty and approachability. (B) The dominant condition, featuring assertive posture and closed gestures, conveying
confidence and control.
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others received 10 Euros. The complete questionnaire can be found
in the supplementary material.

Data aggregation and statistical analyses

For data aggregation and statistical analyses R version 4.3.2 (R
Core Team, 2024) were used. For data cleaning and aggregation
specifically the tidyverse (Wickham et al., 2019) meta package in
version 2.0.0 was utilized. Reliability was analysed with the help of
the Psych (Revelle, 2024) package in version 2.4.1. The multilevel
modeling was conducted with the help of the Lavaan (Rosseel, 2012)
package in version 0.6–17. For reporting and visual data
preparation, the Easystats (Lüdecke et al., 2022) meta package in
version 0.7.1 was used.

For all questionnaires, scores were calculated by summing item
responses and dividing by the total number of items (item mean) in
relation to the length of the scale. This generated scores ranging
from 0 to 1, facilitating comparison between scales of
varying lengths.

To assess personality similarity, the Mahalanobis distance (D2)
was computed based on the aggregated dimension scores from the
personality inventory. The Mahalanobis distance (D2) is a
multidimensional distance metric commonly used for outlier
detection (Del Giudice, 2017). Its ability to capture distances in
high-dimensional spaces made it suitable for this analysis, as the Big-
Five Inventory comprises five dimensions. In this study, the
similarity score (|ΔD2|) corresponds to the absolute difference in
the Mahalanobis distances between the self-rating of the five
personality dimensions and the rating for the respective robots.
Additionally, a persuasion rate was calculated to quantify the
influence of NAO’s responses on participants’ final answers. This
rate was defined as the proportion of questions where participants
changed their answer to match NAO’s response, excluding instances
where participants initially selected the same answer as NAO (where
no change was possible).

Results

Reliability analysis

Our analysis of reliability showed acceptable to good reliability
values for most questionnaires. The questionnaires by Martínez-
Córcoles et al. (2017) resulted in α = 0.72 for technophilia and α =
0.91 for technophobia. The likability subscale of the Godspeed
Questionnaire (Bartneck et al., 2009) hit alpha values of αQ1 =
0.82 and αQ2 = 0.82. Also, for the anthropomorphism subscale
(Bartneck et al., 2009) Cronbach’s alpha values were decent (αQ1 =
0.75) to excellent (αQ2 = 0.75). The results of the two items for
attribution of blame (Kim and Hinds, 2006) just missed the required
limits in both experimental blocks (αQ1 = 0.5; αQ2 = 0.6), but due to
the limited number of items and Cronachs’s alpha being understood
as the lowest possible reliability, the data is considered just
acceptable. The State Empathy Scale by Shen (2010) resulted in
excellent alpha values of αQ1 = 0.9 and αQ2 = 0.93. Lastly, the analysis
for the short version of the Big Five Inventory (Remmstedt and John,
2007) regarding the participant’s personality showed only acceptable

reliability values for Openmindness (αPCP = 0.68) and Extraversion
(αPCP = 0.77), with Conscientiousness (αPCP = 0.41), Agreeableness
(αPCP = 0.25), and Neuroticism (αPCP = 0.55) missing the required
limits. Since the orientation of the items in the Big-5 questionnaire
were changed to a personality other than one’s own, when recording
the perceived personality of the robots, the internal reliability of all
personality dimensions for the robots in both experimental blocks
were poor. It was therefore decided not to include the personality
dimensions in the modeling of the process structures of the
variables, but rather to use them only to calculate the similarity
value, since in this case it is not the actual characteristics of the items
that are important, but rather their relative proximity to one
another. For a full overview (including the subdimensions of the
State Empathy Scale), see Table 1.

Multilevel modeling of the hypotheses

For the main analysis, twomultilevel groupmodels were employed,
with the two group variables experimental error rate (below human
average vs human average vs above human average) and NAOs
personality via language cues (dominant vs humble). Since all three
hypotheses (H1 to H3) are based on the Error Rate Condition, all three
hypotheses were fitted in one model as each provides a different
parameter for the model. Then, for the two research questions,
another model based on the language cue condition was fitted.

Based on this, first the multilevel group model for the error rate
condition was formulated and its fit evaluated. Themodel is depicted
in Figure 2, with the first hypothesis, stating that higher levels of
anthropomorphism elicit stronger empathic reactions to a non-
human entity, incorporated via the regression path between the
exogeneous predictor anthropomorphism and the endogenous
variable empathy. The second Hypothesis, proposing that the
human average condition is the condition with the highest level
of anthropomorphism, leading to the highest level of sympathy, is
found as the group level and the regression paths from
anthropomorphism directly to sympathy. The last hypothesis
stating that higher amounts of anthropomorphism will lead to
higher amounts of blame for task related error, modeled as the
group level and the corresponding regression paths from the
Participants Error Rate to Attribution of Blame.

Robust Maximum Likelihood served as the model estimator for
the analysis, with bootstraped standard errors (1,000 Iterations),
based on a sample size of N = 78 data points with 3 Groups. The
quality of the error condition group model was assessed using
various goodness-of-fit indices, including the Model Test User
Model (MTUM) and the Model Test 0-Model (MTOT). To
evaluate the model’ fit compared to the empirical data, the chi-
square statistic (MTUM) was computed. The non-significant result
(χ2 (6) = 6.774, p = 0.342) indicate no substantial discrepancy
between the theoretic predictions and the observed data.
Additionally, the comparison between the proposed model and a
null model (where all dependent variables are predicted solely by the
intercept - MTOT) yielded a significant chi-square value (χ2 (27) =
102.13, p = < 0.001) suggesting a substantially better fit for the
proposed model. Furthermore, the Robust Comparative Fit Index
(RCFI), which compare the target model’s fit to that of the null
model, yielded a value of RCFI = 0.999, indicative of an excellent fit
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(Byrne, 1994). This suggests strong alignment between the
theoretical model and the observed data, implying that the model
accounts for a substantial portion of the variance and exhibits a high
degree of agreement with the empirical findings. The Robust Root
Mean Square Error of Approximation (RMSEA) was calculated as
RRMSEA = 0.019, quantifying the discrepancy between the
hypothesized model and the observed data (Awang, 2012).
Values below 0.05 indicate an excellent fit, while values below
0.08 suggest a good fit. Finally, the Standardized Root Mean
Square Residual (SRMR) was SRMR = 0.044. This value suggests

that the model’s predictions closely match the observed correlations
among variables, demonstrating its effectiveness in capturing the
underlying relationships and assessing the average deviation of
observed data from predicted values (Byrne, 1994). Due to all
criteria showing excellent fits, the overall model fit is excellent.

The subsequent analysis aimed to assess measurement
invariance across groups, specifically scalar invariance. Even
though invariance analysis typically seeks a high level of
invariance for accurate measurement, invariance is not
necessarily expected in pure measurement models (without a

TABLE 1 Table of full reliability analysis.

Questionnaire raw_alpha std.alpha G6 (smc) Mean sd

Technophilia 0.713 0.721 0.866 3.110 0.443

Technophobia 0.901 0.907 0.956 1.665 0.646

OpenmindnessPCP 0.633 0.681 0.516 3.436 0.926

ConscientiousnessPCP 0.360 0.410 0.258 2.372 0.801

ExtraversionPCP 0.764 0.769 0.624 3.128 0.965

AgreeablenessPCP 0.246 0.246 0.140 2.679 0.807

NeuroticismPCP 0.548 0.550 0.379 2.833 0.982

Q01_Sympathy 0.822 0.824 0.846 3.103 0.666

Q01_Anthropomorphism 0.750 0.753 0.755 2.159 0.626

Q01_AttributionOfBlame 0.481 0.503 0.336 2.500 1.136

Q01_StateEmpathy 0.889 0.898 0.936 2.139 0.744

Q01_AffectiveEmpathy 0.846 0.853 0.830 1.577 0.674

Q01_CognitiveEmpathy 0.689 0.690 0.655 2.564 0.899

Q01_AssociativeEmpathy 0.760 0.755 0.745 2.276 0.921

Q01_OpenmindnessNao 0.094 0.094 0.049 2.397 0.852

Q01_ConscientiousnessNao 0.093 0.094 0.049 3.667 0.691

Q01_ExtraversionNao 0.333 0.333 0.200 2.564 0.919

Q01_AgreeablenessNao 0.385 0.413 0.260 2.615 0.799

Q01_NeuroticismNao 0.084 0.084 0.044 2.397 0.727

Q02_Sympathy 0.893 0.897 0.906 3.333 0.905

Q02_Anthropomorphism 0.939 0.940 0.934 2.538 0.982

Q02_AttributionOfBlame 0.583 0.597 0.426 2.436 1.242

Q02_StateEmpathy 0.930 0.934 0.962 2.115 0.859

Q02_AffectiveEmpathy 0.877 0.880 0.907 1.763 0.885

Q02_CognitiveEmpathy 0.831 0.834 0.817 2.417 1.007

Q02_AssociativeEmpathy 0.873 0.877 0.872 2.167 0.977

Q02_OpenmindnessNao 0.362 0.362 0.221 2.410 0.993

Q02_ConscientiousnessNao 0.028 0.030 0.015 2.885 0.730

Q02_ExtraversionNao 0.359 0.359 0.219 2.974 0.952

Q02_AgreeablenessNao 0.208 0.208 0.116 2.141 0.843

Q02_NeuroticismNao 0.231 0.231 0.130 2.372 0.951
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latent structural model) (Millsap, 2007). Instead, potential group
differences in intercepts and slopes by comparing two models
were investigated. The first model, termed the “free model,”
allowed all parameters to be freely estimated and vary across
groups. The second model, termed the “constrained model”,
restricts intercepts and slopes to be the same across groups
based on the entire dataset. Therefore the restricted model
represents the null hypothesis (no difference in effect between
the groups), while model with free parameters represent the
alternative hypothesis. If the free and constrained models did
not differ significantly and the constrained model fit the data
well, the regression coefficients could be considered equivalent
across groups, suggesting no group-level differences and negating
the need for separate analyses.

The chi-square difference test revealed a significant difference
between the free and constrained model (Δ χ2 (20) = −30.261, p =
0.025), with a much lower χ2 for the unconstrained model, indicating a
better fit. These findings confirm the presence of group differences in the
regression paths. However, it is crucial to acknowledge that these
analyses only demonstrate general group differences, but not the
specific paths responsible for these differences. To address this,
subsequent analyses will involve testing specific hypotheses by
partially restricting relevant paths in the model. Significant differences
between the partially and fully constrained model will pinpoint which
specific regression paths vary across groups. One might propose using a
t-test to compare regression coefficient means between groups,
identifying potential differences. However, this approach has
limitations. A t-test primarily determines whether two single values
(e.g., means) differ significantly. While useful for confirming differences
between groups, it does not provide a comprehensive understanding of
how the effect of a predictor on a dependent variable varies across
groups. The t-Test only allows a statement like “The mean value of the
intercept differs between Group A and Group B.” In contrast, invariance

testing allows to examine the entire effect (including intercept, slope, and
covariance) of a predictor (X) on a dependent variable (Y) across
different groups. By restricting only relevant parameters (in this case,
specific regression paths and intercepts), partial invariance can be
assessed (Putnick, 2016), giving deeper insights into group differences.

The first hypothesis targets the proposed core and enduring
interaction between anthropomorphism and empathy and
postulates a significant effect of anthropomorphism on
empathy, thus enabling any empathic reaction toward a non-
human entity. The relevant path in the model is the path from
anthropomorphism to empathy. For a core connection between
two psychological processes, like the one that is proposed in the
introduction, there should a) be a general effect of
anthropomorphization on empathy, visible through significant
path coefficients for each group in the general model, and b) the
effect should be independent of the condition, meaning, although
that effect can differ in strength between groups, it should never
vanish. To proof for this, a model in which only the relevant path
is constrained (partially constrained model), is compared to the
free and fully constrained model, with the later one as
Nullhypothesis. If the hypothesis holds true, the first
comparison will yield a non-significant result, while the
second comparison will give significant results. Table 2 shows
the regression paths, separated by experimental condition. For
each group, anthropomorphism was a significant predictor for
empathy with a large positive effect, low: βEmp~Ant = 0.538, z =
3.211, p = 0.001; average: βEmp~Ant = 0.604, z = 4.957, p = 0.000;
high: βEmp~Ant = 0.703, z = 7.107, p = 0.000. In addition, the model
comparison (Table 3) shows a significant difference between the
partially and fully constrained model (Δ χ2 (20) = −30.261, p =
0.025). H1 is therefore considered to be confirmed.

The second hypothesis states, that for the error rate the
condition with a human average error rate of the robots should

FIGURE 2
Path model for error condition with standardized coefficients.
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show the highest levels of anthropomorphism and as a result the
highest level of sympathy. The regression path from
anthropomorphism to sympathy only shows a significant effect
for the human average condition, low: βSym~Ant = 0.356, z =
1.725, p = 0.084; average: βSym~Ant = 0.594, z = 3.052, p = 0.002;
high: βSym~Ant = 0.185, z = 0.724, p = 0.469. To test, if this difference
is indeed significant between the human average condition and the
other two groups, the path between anthropomorphism and
sympathy was partially constrained to the same intercept for the
below and above human average conditions, while allowing the

human-average condition to be free. Also the model comparison
shows a significant difference between the partially and fully
constrained model (Δ χ2 (−18) = −30.224, p = 0.025). H2 is
therefore also considered to be confirmed.

The third hypothesis states, that higher levels of
anthropomorphism will lead to higher levels of blame towards
the robot for task-related errors. The Analysis revealed a
significant effect of Participants task-related errors on Attribution
of Blame for the low error rate condition, low: βAoB~Err = −0.571,
z = −2.723, p = 0.006; average: βAoB~Err = 0.126, z = 0.523, p = 0.601;

TABLE 2 Table of regression paths for the error condition model.

95% CI

Predictor DV Path values SE z p LL UL Sig

Group: high (sd above) ErrorRateVPpostN AttributionOfBlame 0.145 0.203 0.715 0.475 −0.253 0.544

Sympathy AttributionOfBlame −0.226 0.237 −0.954 0.340 −0.691 0.239

Anthropomorphism AttributionOfBlame 0.010 0.274 0.038 0.970 −0.528 0.548

Empathy Sympathy 0.309 0.250 1.237 0.216 −0.181 0.799

Anthropomorphism Sympathy 0.185 0.256 0.724 0.469 −0.316 0.686

ErrorRateVPpostN Sympathy 0.174 0.219 0.796 0.426 −0.255 0.603

Anthropomorphism Empathy 0.703 0.099 7.107 0.000 0.509 0.897 ***

Group: human average ErrorRateVPpostN AttributionOfBlame 0.126 0.241 0.523 0.601 −0.347 0.599

Sympathy AttributionOfBlame −0.180 0.290 −0.620 0.535 −0.748 0.389

Anthropomorphism AttributionOfBlame 0.001 0.333 0.004 0.997 −0.651 0.653

Empathy Sympathy 0.076 0.219 0.349 0.727 −0.352 0.505

Anthropomorphism Sympathy 0.594 0.195 3.052 0.002 0.213 0.975 **

ErrorRateVPpostN Sympathy 0.126 0.154 0.816 0.414 −0.176 0.428

Anthropomorphism Empathy 0.604 0.122 4.957 0.000 0.365 0.843 ***

Group: low (sd below) ErrorRateVPpostN AttributionOfBlame −0.571 0.210 −2.723 0.006 −0.981 −0.160 **

Sympathy AttributionOfBlame −0.740 0.213 −3.481 0.000 −1.157 −0.323 ***

Anthropomorphism AttributionOfBlame 0.472 0.196 2.407 0.016 0.088 0.855 *

Empathy Sympathy 0.294 0.220 1.336 0.182 −0.137 0.724

Anthropomorphism Sympathy 0.356 0.206 1.725 0.084 −0.048 0.761

ErrorRateVPpostN Sympathy −0.352 0.162 −2.178 0.029 −0.668 −0.035 *

Anthropomorphism Empathy 0.538 0.168 3.211 0.001 0.210 0.867 **

TABLE 3 Table of model comparison between free, partially and fully constrained models for the error rate condition.

Df AIC Chisq Chisq diff RMSEA Df diff p

Unconstrained 6 −284.655 6.774

Partially Constrained (H1) 6 −284.655 6.774 0.000 0.000 0

Partially Constrained (H2) 8 −288.618 6.811 0.037 0.000 2 0.982 ns

Partially Constrained (H3) 9 −290.618 6.811 0.000 0.000 1 0.991 ns

Full Constrained 26 −294.394 37.035 30.224 0.173 17 0.025 *

Signif. codes: *** 0.001 ** 0.01 * 0.05.
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high: βAoB~Err = 0.145, z = 0.715, p = 0.475. The partially constrained
model for the regression path shows a significant better fit, than the
fully constrained model (H3: Δ χ2 (−17) = −30.224, p = 0.025),
indicating significant differences between the groups. However,
these differences only partially correspond to the assumptions
made in H3. While there is a negative effect on the attribution of
blame for the low error rate group, the condition with the lowest
level of anthropomorphization, no difference in the positive effects
of the human average as well as the high error rate group could be
found. Therefore, H3 cannot be fully confirmed.

Multilevel modeling of the
research questions

To address the open research questions (RQ1 and RQ2), a path
model for the language cue condition was developed (Figure 3).
RQ1 investigates how specific language cues influence the persuasive
impact and perceived anthropomorphism of robots. RQ2 aims to
elucidate how different personality factors modulate the perceived
personality of the robot and shape interactions with these task-
helping agents. The model builds upon the previously established
structure used for the first model, focusing on the expected
relationships between anthropomorphism, empathy, and
sympathy. Initially, perceived similarity was included as a
variable based on the notion that an empathic response towards
an interaction partner is necessary to establish a mental model of
their personality. As highlighted in the introduction,
anthropomorphic cues are crucial for triggering
anthropomorphization during interactions with non-human
entities. Only then does an empathic response become possible.
Consequently, similarity is modeled as a variable predicted by

empathy and anthropomorphism, reflecting its dependence on
this preceding processes. In addition, we modelled similarity as
another predictor for sympathy as well as the persuasive impact. To
investigate personality factors it was originally planned to include
the Big-5 personality traits in the model. Due to the poor reliability
of the questionnaire in this study, it was decided to not incorporate
the 5 dimensions into the model. Only the covariates technophilia
and technophobia were included as personality traits. While
technophilia and technophobia describe behavioral, affective and
attitudinal responses to modern technology in general,
anthropomorphism is a more basal process not necessarily
related to technology. Therefore anthropomorphism, technophilia
and technophobia were modelled as exogenous variables, originally
predicting similarity, sympathy and persuasion. In addition the
dependent variable persuasion is likely to be predicted by
similarity, anthropomorphism, sympathy and empathy.

Again Robust Maximum Likelihood served as the model estimator
with 1,000 bootstrap iterations for the analysis, this time based on a
sample size of N = 78 data points with 2 Groups. The quality of the
language cue condition group model was assessed using the same
goodness-of-fit indices as before. TheMTUM showed a non-significant
result (χ2 (12) = 14.533, p = 0.268), again indicating no substantial
discrepancy between the theoretic predictions and the observed data.
Additionally, the comparison between the proposed model and a null
model (where all dependent variables are predicted solely by the
intercept - MTOT) yielded a significant chi-square value (χ2 (36) =
117.639, p = < 0.001) suggesting a substantially better fit for the
proposed model. The RCFI (RCFI = 0.984), RRMSEA = 0.046, and
SRMR (0.058) all show excellent fit values. The overall model fit is
therefore again excellent.

The testing for group invariance see Table 4 revealed no
significant difference between the free and constrained model

FIGURE 3
Path model for language condition with standardized coefficients.
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(Δ χ2 (16) = −16.666, p = 0.408). Consequently, RQ1 could be
answered: in this study no effects for different language cues on the
interaction with the robot could be found.

To answer RQ2, as a follow up, path coefficients for the second
model without group separation were calculated. Results can be seen in
Table 5. The variables anthropomorphism, empathy and sympathy
show the same pattern as in the first model, further cementing the
hypothesis, that anthropomorphism enables an empathic response to a
non-human entity. However, anthropomorphism (βSim~Ant = −0.220,
z = −1.795, p = 0.073) and empathy (βSim~Emp = 0.081, z = 0.668, p =
0.504) did not emerge as significant predictors of similarity, but
technophobia did (βSim~TPho = 0.295, z = 2.142, p = 0.032), with
higher levels of technophobia leading to the perception of greater
similarity. Similarity was only found to be a significant predictor for
persuasion with a small negative effect (βPer~Sim = −0.208, z = −2.471,
p = 0.013), stating that the greater the perceived similarity to the robot’s
personality, the lower its persuasive influence. In addition to similarity,
anthropomorphism (βPer~Ant =−0.422, z =−3.478, p= 0.001), empathy
(βPer~Emp = 0.482, z = 4.322, p = 0.000) and technophilia
(βPer~TPhi = −0.325, z = −3.377, p = 0.001) also emerged as
significant predictors of the robot’s persuasive influence with
medium to large effects. While greater empathic responses to the
robot lead to greater persuasiveness, higher levels
of anthropomorphism and technophilia appear to reduce
this influence.

Discussion

This study investigated the interplay between
anthropomorphization and empathy during Human-EDT Interaction.
We theorized that anthropomorphization serves as a foundational
mechanism for empathy, enabling humans to respond empathically
to non-human entities by allowing us to use various properties of the
observed object as anthropomorphic cues. Prior research predominantly
treated anthropomorphization as an outcome variable. In contrast, this
study positioned it as the initial predictor within a path model.

Our findings reveal a complex relationship between these
variables. H1, positing that higher anthropomorphism leads to
stronger empathy, was supported. The path analyses consistently
showed a positive relationship between perceived
anthropomorphism and empathy across all error rate conditions.
This suggests that anthropomorphic cues, regardless of the robot’s
performance, can trigger empathic responses in users.

H2, which predicted increased likability with human-like error
rates, received partial support. While the human-like error rate
condition did elicit higher anthropomorphism than the low error
rate condition, the difference in likeability was not statistically
significant. This nuances the current literature (Gideoni et al.,
2022) suggesting that while human-like error rates increase
perceived humanness, they do not necessarily translate into
greater likeability. This may be due to users evaluating a

TABLE 4 Table of model comparison between free and fully constrained models for the language cue condition.

Df AIC Chisq Chisq diff RMSEA Df diff p

Unconstrained (RQ) 12 −198.356 14.533

Full Constrained (RQ) 28 −213.691 31.199 16.666 0.033 16 0.408 ns

Signif. codes: *** 0.001 ** 0.01 * 0.05.

TABLE 5 Table of regression paths for the language cue condition model.

95% CI

Predictor DV Path values SE z p LL UL Sig

Direct Variables Sympathy Persuasion −0.057 0.113 −0.505 0.614 −0.279 0.165

Similarity Persuasion −0.208 0.084 −2.471 0.013 −0.374 −0.043 *

Technophilia Persuasion −0.325 0.096 −3.377 0.001 −0.514 −0.136 ***

Empathy Persuasion 0.482 0.111 4.322 0.000 0.263 0.700 ***

Anthropomorphism Persuasion −0.422 0.121 −3.478 0.001 −0.659 −0.184 ***

Anthropomorphism Sympathy 0.313 0.131 2.390 0.017 0.056 0.570 *

Empathy Sympathy 0.255 0.130 1.953 0.051 −0.001 0.511

Similarity Sympathy −0.086 0.105 −0.813 0.416 −0.292 0.121

Empathy Similarity 0.081 0.121 0.668 0.504 −0.156 0.317

Anthropomorphism Similarity −0.220 0.123 −1.795 0.073 −0.460 0.020

Technophobia Similarity 0.295 0.138 2.142 0.032 0.025 0.565 *

Anthropomorphism Empathy 0.617 0.076 8.163 0.000 0.469 0.765 ***
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pedagogical agent primarily based on its ability to facilitate learning.
If errors, even human-like ones, hinder this facilitation, then
likeability may not increase. This highlights the importance of
context in HRI: the same cues may have different effects
depending on the specific task and the user’s goals.

Our findings align with the research by Riek et al. (2009),
demonstrating that even subtle cues of human-likeness in robots can
trigger empathic responses. However, unlike their study on real-time
mimicry, our focus on error rates as an anthropomorphic cue revealed a
different dynamic.While errors did increase perceived humanness, they
also decreased likability, suggesting a complex interplay between
empathy, perceived competence, and social acceptance.

The results for H3, regarding blame attribution, were also mixed.
While the low error rate condition did result in less blame attributed
to the robot, there was no significant difference in blame between the
human-like and high error rate conditions. This suggests a threshold
effect: Below a certain level of error, the robot is perceived as less
responsible, potentially due to users attributing failures to external
factors or programming limitations. However, beyond this
threshold, even high error rates that exceed human performance
do not proportionally increase blame.

This aligns with the reasoning presented by Waytz et al. (2014).
Future research is warranted to definitively elucidate this effect.
Additional experimental conditions (including “no errors” and
“only errors”) and a wider range of error rates are recommended
to achieve clearer differentiation in blame attribution patterns.

RQ1, exploring the influence of language style, did not yield the
expected significant results. Despite the significant differences in
perceived personality based on language cues found in our pretest,
the main experiment showed no effect of language style on
anthropomorphism, likability, or persuasion. This may be due to
limited cues in each condition, or the scripted, non-adaptive nature
of NAO’s communication. The predictability of the robot’s responses
might have reduced the persuasive impact of language style (Aly and
Tapus, 2013), as participants may have perceived the robot as less
human-like and therefore less capable of genuine empathy. It’s also
important to consider that NAO’s communication, unlike more
advanced large language models (LLMs), lacks the dynamism and
flexibility of human speech, potentially limiting the influence of
subtle language manipulations. Furthermore, future research may
consider different levels of anthropomorphism based on human
likeness in physical appearance, displayed behaviour, and type of
interaction, as suggested in (Fink, 2012). The limited social
expression shown by NAO during the interaction, together with
differences in participants’ interpretation of these cues, warrants
further investigation. Similarly, following Epley (2018), it is possible
that certain aspects of NAO triggered animism or personification rather
than anthropomorphism, thus causing empathy to emerge without
perceived human likeness. Future research should explore the
complex interplay between anthropomorphism, empathy, and
persuasion in more detail, potentially considering mediating factors
such as trust, perceived credibility, or reactance to robotic influence, as
explored by Pelau et al., (2021).

Finally, regarding RQ2, perceived similarity to the robot’s
personality did not significantly predict likeability or willingness to
use the robot. Technophobia, however, showed a positive relationship
with perceived similarity, suggesting that individualsmore apprehensive
about technology might overestimate their similarity to a robot.

Interestingly, empathy was the only positive predictor of persuasion,
while anthropomorphism and technophilia negatively predicted it. This
apparent contradiction between increased empathy and reduced
persuasion with higher anthropomorphism is intriguing. It may
reflect a trade-off: While increased anthropomorphism and empathy
towards the robot can increase trust and liking in general, theymay also
increase users’ sensitivity to potential manipulation or persuasion
attempts. In other words, people may feel more empathy for a
human-like robot but simultaneously become warier of being
persuaded by it. This further highlights the dynamic and context-
dependent nature of human-robot interaction and raises the question of
whether or not a reduction in trust towards highly human-like robots
may be related to the uncanny valley effect.

An unexpected challenge arose during the examination of how
various personality factors influenced outcomes: selected questionnaires
for measuring personality traits (the Big-5 inventory) exhibited
unexpectedly low reliability, rendering the collected data unsuitable
for analysis. This is notable, as the Big-5 instruments are generally well-
validated tools with extensive norming data. The reason for the poor
reliability within this study remains unexplained but underscores
potential challenges when applying even well-established instruments
to novel research contexts.

Besides that, the study has several more limitations. First, the
sample size (N = 39) is small, impacting the generalizability and
statistical power of the findings. While the observed trends are
informative, a larger and more diverse sample is needed to draw
firm conclusions. A power analysis, using semPower (Moshagen and
Bader, 2024) (AGFI = 0.97, α � .05, df � 27, P � 6) for the main
experimental manipulation (error rate) achieves a power of only
approximately 69% (β − 1 � .69), thus increasing the probability of
a Type II error. The statistical power for the second experimental
condition (language cues) achieved an even lower statistical power of
52%, AGFI = 0.97, α � .05, df � 36, P � 6). Second, the reliance on
pre-programmed language cues may not fully capture the dynamic
nature of human-robot interaction. Future studies incorporating
adaptive language models, like Large Language Models (LLMs),
could offer more nuanced insights into how language affects
perception and interaction. Third, focusing solely on the NAO robot
limits the generalizability of findings to other robot designs and
embodiments. Exploring human interaction with robots of varying
forms and functionalities is essential for a broader understanding of
anthropomorphism and empathy in HRI. Fourth, the study was
conducted in a controlled laboratory setting, which may not fully
reflect the complexities of real-world interactions. Further research
inmore naturalistic environments could offer greater ecological validity.
Future research should also investigate the long-term effects of
interacting with robots that make errors. This study focused on a
single interaction session, and the dynamics of empathy and
anthropomorphism may evolve over time. Finally, future studies can
explore the potential benefits of using robots with human-like features
in more social or emotional situations would be valuable. The relatively
simple appearance and behavior of the NAO robot used in this study
may have limited the range of empathic responses observed.

These insights into the implicit processes that shape human-
robot interaction have significant implications for designing
effective embodied pedagogical agents, especially within
immersive XR learning environments. Our findings suggest that
by carefully balancing a robot’s error rate and language style, it may
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be possible to optimize its perceived humanness, foster empathy,
and create a more engaging and productive learning experience.
Future research should explore how these dynamics translate to
virtual agents in XR, where the cues that trigger anthropomorphism
and empathy may differ. Additionally, the role of individual
differences in learning preferences and technological affinity
should be investigated to personalize agent design and optimize
learning outcomes for diverse student populations. To optimize
human-robot interaction, particularly in child-centered learning
environments, future research should prioritize a deeper
understanding of these underlying processes. Developers should
be cognizant that the mere technical functionality of an EDT, while
essential, is insufficient for success in a social context.
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