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Touch is one of the primary senses, and the receptors for touch sense are spread
across the whole human body. Electrotactile displays provide tactile feedback to
generate different sensations (such as tickling, tingling, itching, and pressure) in
human-computer interfaces or man-machine interactions. These displays
encode tactile properties, such as shape and texture, facilitating immersive
experiences in virtual or remote environments. Their compact form factor and
low maintenance requirements render them versatile for myriad applications.
This paper is a comprehensive survey of the design and implementation of
electrotactile displays, elucidating their taxonomy, cross-modal integration
strategies, and psychophysical underpinnings. Emphasizing the crucial role of
psychophysics, it delineates how human perception informs the design and
utilization of electrotactile displays. Furthermore, this paper identifies prevalent
challenges in electrotactile displays and outlines future directions to advance
their development and deployment.
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1 Introduction

Electrotactile displays communicate information to users by stimulating nerve fibers
beneath the skin. These stimulations evoke a spectrum of tactile sensations, ranging from
tickling to acute pain, contingent upon various parameters such as voltage, current,
waveform, and electrode characteristics (Kaczmarek et al., 1991; Ostrom et al., 2000;
Szeto and Saunders, 1982; Butikofer and Lawrence, 1978; 1979). Compact in design,
electrotactile displays require only a current source and electrode pair for operation,
rendering them suitable for integration with other haptic devices. Notably, recent
advancements have led to the development of ultra-small electrodes, even printable as
tattoos on fingertips (Withana et al., 2018). Possessing high spatial resolutions, these
displays can achieve inter-actuator distances as minute as 3 mm or less, with electrodes
designed to be translucent and thin like tattoos (Tezuka et al., 2016). Moreover, they can be
configured as microelectrode arrays, ensuring stimulation remains below pain thresholds
(Tezuka et al., 2016). Electrotactile displays encounter bandwidth limitations despite their
potential, constraining their functional range (Dideriksen et al., 2022).

Another form of electrical stimulation, electrovibration, employs electrostatic forces to
modulate surface friction, enabling users to perceive surface properties through variations
in frictional forces (Bau et al., 2010; Vardar et al., 2017; Basdogan et al., 2020). While
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electrovibration offers promising applications, this paper specifically
focuses on electrocutaneous stimulations.

Electrical displays have been developed for many years. They
have the advantage of being compact and robust because they do not
use mechanical moving parts subjected to wear and tear. In addition,
they can be manufactured using batch fabrication such as micro-
fabrication and lithographic techniques (Ostrom et al., 2000; Benali-
Khoudja et al., 2004). They have low power consumption compared
to vibrotactile actuators. Shi et al. (Shi et al., 2021) have developed
shelf-powered electrotactile devices using Tribo-Electric Nano-
Generator (TENG). Nevertheless, there are no successful
commercial versions yet. One reason is the difficulty in
producing a comfortable and recognizable sensation for any
potential user (Kaczmarek et al., 1991).

Electrical displays, benefiting from their compactness and
mechanical robustness, are amenable to batch fabrication
techniques such as micro-fabrication and lithography (Ostrom
et al., 2000; Benali-Khoudja et al., 2004). Notably, efforts to
harness ambient energy sources, exemplified by the development
of shelf-powered electrotactile devices using Tribo-Electric Nano-
Generators, underscore their potential for sustainable applications
(Shi et al., 2021). However, challenges persist in achieving
comfortable and recognizable tactile sensations for diverse user
populations (Kaczmarek et al., 1991).

The human sense of touch, distributed across the body,
encompasses various mechanoreceptors within the epidermis and
dermis layers of the skin (Cauna, 1968; De Nunzio et al., 2018).
These receptors exhibit distinct characteristics, influencing their
response to tactile stimuli. Of particular interest is their capacity
to modulate firing rates of afferent nerve fibers, which forms the
basis for tactile perception (Kandel et al., 2000). This paper
investigates the electrical activation of these mechanoreceptors to
elicit tactile sensations.

Historically, the evolution of electrotactile displays traces back to
efforts to aid visually impaired individuals (Ickes, 1971; Bach-y Rita
et al., 1969; Collins and Bowen, 1971; Uttal, 1963). Pioneering studies
such as those by Solomonow et al. (1977) laid foundational insights into
the two-point threshold for electrotactile displays. Subsequent
developments, including tactile display units for fighter pilots and
novel tongue and forehead display units, propelled the field forward
(Zlotnik, 1988; Kajimoto et al., 2006).

Electrical displays are compact and lack mechanical parts, which
can wear out over time, ensuring long-term usability. However, the
electrodes must be designed for reuse across multiple sessions.
Additionally, these displays offer higher spatial resolution
compared to their mechanical counterparts, making them
particularly suitable for providing feedback to the fingertips and
other areas of the skin with high receptor density. Lin et al. (2024)
have developed TacTex using 512*512 electrodes for the
electrotactile displays with 2 mm space between them. They
developed multi layer textiles with yarn between conductive
layers to produce high-resolution haptic feedback.

A plethora of research has been dedicated to elucidating the
mechanisms, applications, and communication strategies of
electrotactile displays (Kaczmarek et al., 1991; Kourtesis et al.,
2021; Pamungkas and Caesarendra, 2018; Zhou et al., 2022a).
Kourtesis et al. (2021) have presented the applications of
electrotactile displays in contemporary fields. This paper aims to

consolidate this work, offering a taxonomy of electrotactile displays,
delineating their applications, and addressing contemporary
challenges. Furthermore, it explores the psychophysics and
illusions associated with electrotactile displays, enriching our
understanding.

2 Electrical stimulation mechanism
of skin

Electrotactile stimulation, primarily understood as the result of
an electric current passing through the skin, activates afferent nerve
fibers/endings, as widely acknowledged (Kaczmarek et al., 1991).
However, emerging research, as highlighted by Ostrom et al. (2000);
Tezuka et al. (2017), suggested that direct stimulation of
mechanoreceptors can be achieved, particularly with smaller
electrodes (1,mm2) or microelectrodes. For instance, Lin et al.
(2022) have developed a super-resolution electrotactile display
boasting an electrode density of 76 dots/cm2 and a temporal
resolution (refresh rate) of 4 kHz. Yem and Kajimoto (2016)
conducted comparative studies on the characteristics of both
stimulation mechanisms. They concluded that anodic stimulation
produced only vibratory sensations, whereas cathodic stimulation
produced both vibratory and pressure sensations.

Electrotactile displays hold promise for creating new sensory
substitution channels applicable across diverse domains.
Nonetheless, they face significant challenges, notably regarding
receptor fatigue. Prolonged exposure to electrical signals leads to
a gradual decrease in receptor sensitivity, necessitating adjustments
in signal power to maintain stimulation. This phenomenon has been
validated through impedance monitoring, revealing varying rates of
receptor fatigue across different skin regions (Rahimi et al., 2019).

In exploring the effects of electrotactile stimuli, Imatz-
Ojanguren and Keller (2022) conducted studies using different
frequencies (5 Hz, 250 Hz, and 2 kHz), unveiling distinct sensory
perceptions. Specifically, a 5 Hz stimulus evoked a low-intensity
prickling sensation, while a 250 Hz stimulus elicited a relatively
uncomfortable tingling sensation. Importantly, no thermal or
noxious signals were observed during electrotactile stimulation.

2.1 Electrocutaneous stimulation

Electrocutaneous stimulation depends heavily on
mechanoreceptors beneath the skin. Figure 1 Shows the skin’s
cross-sectional diagram with four types of receptors: Meissner’s
corpuscles, Merkel cells, Ruffini endings, and Pacinian corpuscles.
Meissner’s corpuscles and Merkel cells, located closer to the skin
surface, are sensitive to light touch and texture, making them
essential for high-resolution tactile feedback. In contrast, Ruffini
endings and Pacinian corpuscles, situated deeper in the skin,
respond to sustained pressure and high-frequency vibrations,
respectively. The activation of these mechanoreceptors through
electrocutaneous stimulation can produce a range of sensations,
from light tingling to more pronounced pressure or vibration,
depending on the parameters of the electrical input such as
frequency, amplitude, and pulse width Kandel et al. (2000);
Kaczmarek et al. (1991).
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Electrocutaneous stimulation, a fundamental aspect of
electrotactile displays, harnesses electrical currents to evoke
sensory responses in the skin’s nerve fibers. While traditional
models suggest stimulation occurs via afferent nerve activation,
recent advancements, such as those by Biswas et al. (2014),
proposed a more nuanced understanding. Their nonlinear
mechano-transduction model, emphasizing physiological
interpretations, elucidates the role of Voltage Activated Ion
Channels (VAICs) in amplifying receptor potentials generated by
Stretch Activated Ion Channels (SAICs). Furthermore,
investigations by Madhan Kumar et al. (2021) integrated
vibrotactile and electrotactile stimuli to activate distinct
mechanoreceptors, culminating in Ranvier’s node excitation.

Vasudevan et al. (2020) developed a computational model
specifically targeting Pacinian Corpuscles (PCs) and their
response to electrical stimuli. Their model elucidated PC
threshold characteristics and spike rates by integrating the skin-
electrode interface with PC neurite dynamics and Ranvier node
activation. Notably, their simulation highlighted the high-pass
filtering nature of the overall model, demonstrating how electrical
stimuli traverse the electrode-skin interface to evoke neural
responses in PCs. This has been represented in a block diagram
in Figure 2.

Electrotactile sensations exhibit qualitative diversity, influenced
by various parameters, including voltage, current, electrode
characteristics, and skin properties (Kandel et al., 2000;
Kaczmarek et al., 1991). Studies, such as those by Alotaibi et al.
(2022) and Parsnejad et al. (2020), delved into optimizing
electrocutaneous pulses, exploring factors like pulse width,
amplitude, and frequency to modulate sensations for enhanced
user experience. Additionally, research by Araiza Illan et al.
(2019) and Chen and Shuai (2020) utilized computational
simulations to elucidate the intricate relationship between
electrode layouts, stimulation patterns, and resulting tactile

perceptions. Tanaka et al. (2023) presented a paper using
electrodes on the back of the hand and conducted current to
median/ulnar nerves, which caused tactile sensations to the
palmar side of the hand.

Electrotactile sensations can be stimulated in two ways: anodic
and cathodic stimulation. Anodic stimulation occurs when the
electrode at the stimulation point is connected to a high potential
(positive side of the power supply), while cathodic stimulation
occurs when it is connected to a lower potential (negative side of
the power supply).

2.2 Tri-color approach

Inspired by vision’s primary colors, the tri-color approach aims
to independently stimulate different mechanoreceptors to evoke
natural tactile sensations. Pioneered by Kajimoto et al. (2004a), this
approach presents pressure signals tailored to activate specific
mechanoreceptors, mimicking tactile primary colors. Through
this paradigm, researchers like Duente et al. (2023) have explored
electrotactile feedback applications, associating distinct frequencies
with unique tactile feelings. Their colorful electrotactile feedback on
wristwatch backs illustrates the potential to encode information
through varied frequency sensations (itching (28 Hz), tickling
(29 Hz), twitching (31 Hz), irritating (112 Hz), vibrating
(163 Hz), and prickling (177 Hz)).

2.3 Electrodes

In electrotactile displays, electrodes play a pivotal role,
functioning in pairs where one acts as the source (anode) and
the other as the sink (cathode). Kajimoto (2021) outlined the
essential requirements for such displays, emphasizing the

FIGURE 1
Mechanoreceptors beneath the skin.
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configuration for achieving anodic/cathodic stimulation.
Additionally, Tsai and Hsu (2019) introduced a novel
electrotactile display featuring a large area and multi-touch
capability, employing a touch panel with anodes surrounding
cathodes. Their innovative approach leveraged anode-cathode
dynamics to deliver differentiated signals effectively. Moreover,
Parsnejad et al. (2021) explored using a multi-electrode system to
prevent skin pore overload, demonstrating the independent action
of electrodes despite skin resistance. Henrich et al. (2024) used static
and dynamic contact sizes with the virtual objects by switching on
multiple electrodes in a pad of six electrodes. Jure et al. (2023b)
conducted studies to improve electrotactile communication during
high cognitive load using multi-pad electrodes (3*2). Teng et al.
(2024) added holes to the finger pad between the electrodes to
improve dexterity.

Further investigations by Isakovic et al. (2022) examined the
influence of reference electrode position and size on electrotactile
stimulation localization. Their findings highlighted the significance
of reference electrode characteristics in shaping perceived
sensations, underscoring the need for precise positioning for
optimal results. Additionally, Stephens-Fripp et al. (2020)
compared different electrode configurations, noting the
superiority of concentric electrodes in inducing natural tactile
perceptions. Despite similar just-noticeable differences (JND),
concentric electrodes exhibited enhanced stimulus localization
capabilities. Garenfeld et al. (2023a) conducted a comparative
analysis of electrode pads for fingertips, full fingers, and circular
and matrix shapes. Their studies suggested circular and matrix-type
electrodes exhibited similar accuracy, while fingertip electrodes
demonstrated higher accuracy due to higher receptor density.

2.4 Computational modeling

Understanding electrical stimulation necessitates sophisticated
computational modeling, often focusing on the electrode-skin
interface to elucidate skin impedance characteristics. Kaczmarek
and Webster (1989) meticulously analyzed the electrical properties
of stimulating electrodes, leveraging this knowledge to design
practical stimulator circuits. Their work elucidated the nonlinear
decrease in static skin-electrode resistance with increasing
stimulation current. It was supported by a mathematical model
offering insights into voltage-time responses under constant-current
pulse stimulation.

FIGURE 2
Block-Diagram of a PC model when subjected to electrotactile
signals, representing them at every level.

FIGURE 3
The stimulus is modeled as a Gaussian function (solid line) with
respect to space, with mean w indicating its location over the skin.
Relevant stimulus strength for individual PC is assumed as the
Gaussian function of space (dotted lines), indicating strength and
sensitivity variation over the receptive field. The Gaussian function’s
mean and variance represent the PCs’ location and receptive field,
respectively, below the skin. The difference in the mean of two
Gaussian functions represents the distance, d, between the PCs within
the cluster.
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Meanwhile, Araiza Illan et al. (2019) employed diverse modeling
approaches, initially towards transcutaneous electrical nerve
stimulation (TENS) but applicable to electrotactile stimulation.
Their electrical field and nerve response models delineated
current and electric field distributions during TENS, albeit with
simplifications to achieve computational tractability. Although
overlooking certain complexities, such as tissue
compartmentalization, these models provided valuable
approximations of real-world scenarios. Zhou et al. (2023)
conducted studies to establish a relation between parameter
intensity, pulse width, and subjective intensity.

Expanding on this, Yang et al. (2021); Yang and Jiang (2023)
delved into electrical stimulation’s effects on electromyography
(EMG) signals, employing a noise propagation model. Their
analysis, though simplifying the human body’s homogeneity and
assuming a circular skin-electrode interface, confirmed the biphasic
nature of electrical stimulation through finite element analysis.
Strong and Troxel (1970) proposed a model utilizing
electrotactile displays to replicate textures. Their innovative
approach capitalized on electrically induced variations in vertical
force, translating them into lateral forces to mimic tactile sensations
realistically.

3 Comparison with other
tactile displays

The perception parameters for electrotactile, vibrotactile, and
electrovibration technologies are compared in Table 1. Electrotactile
displays typically exhibit a perception threshold of 3.5 V, while
vibrotactile displays have a lower threshold of 0.01 m/s2, and
electrovibration displays fall in between with a threshold of
3.0 V. The just-noticeable difference (JND), representing the
smallest detectable change in stimulus intensity, is 16% for
electrotactile, 18% for vibrotactile, and 7.7% for electrovibration,
indicating finer discrimination capabilities for the latter. Sensory
resolution is moderate to high for both electrotactile and
electrovibration, while vibrotactile displays offer high resolution.

All three technologies’ response times range from 1 to
10 milliseconds, ensuring rapid tactile feedback. Sensations
produced vary, with electrotactile displays evoking tingling or
tapping sensations, vibrotactile displays generating vibratory
sensations, and electrovibration providing both vibratory and
textural sensations Kaczmarek et al. (1991); Dideriksen et al.
(2021); Pongrac (2008); Bau et al. (2010).

The stimuli used differ among the technologies, with
electrotactile displays employing electrical current, vibrotactile
displays utilizing mechanical vibration, and electrovibration
displays relying on the electrical current. Channels used for
sensory transmission also vary, with electrotactile displays
primarily activating cutaneous and myelinated fibers, vibrotactile
displays engaging Pacinian, Meissner, Ruffini, and Merkel receptors,
and electrovibration displays also targeting cutaneous and
myelinated fibers. Moreover, Steven’s Power Factor, a measure of
sensitivity to stimulus amplitude, is 1.51 for electrotactile, 0.93 for
vibrotactile, and 0.492 for electrovibration Lozano et al. (2009);
Chen et al. (2019), indicating higher sensitivity to lower stimulus
amplitudes initially for electrotactile displays. Lastly, the two-point
discrimination threshold (TPDT) ranges from 7.25 to 10 mm for
electrotactile displays and up to 45mm for vibrotactile displays, with
no specific data available for electrovibration Kaczmarek et al.
(1991). Overall, while each technology offers unique advantages
and sensations, considerations such as perception thresholds,
resolution, and response times should guide the selection of
tactile displays for specific applications.

3.1 Vibrotactile displays

Vibrotactile displays and electrotactile counterparts constitute
primary modalities for delivering tactile feedback in human-
computer interfaces, offering distinct advantages and limitations.
These tactile systems are highly favored for their simplicity and user-
friendliness, often integrated into clothing and wearable devices
(García-Valle et al., 2016; Wu et al., 2012). Unlike electrotactile
displays, which lack mechanical moving parts, vibrotactile displays

TABLE 1 Comparison of Perception Parameters for Electrotactile, Vibrotactile, and Electrovibration on the fingertip; Perception threshold is Absolute
perception threshold. [1] Kandel et al. (2000); Chen et al. (2019), [2] Dideriksen et al. (2021); Pongrac (2008), [3] Bau et al. (2010), [4] Kaczmarek et al. (1991),
[5] Biswas et al. (2014), [6] Lozano et al. (2009), [7] Johnson and Phillips (1981).

Parameter Electrotactile Vibrotactile Electrovibration

Perception Threshold [1,4] 3.5 V 0.01 m/s2 3.0 V

JND 16% [2] 18% [2] 7.7% [3]

Sensory Resolution Moderate to high High Moderate to high

Response Time (Latency) 1–10 ms [4] 10–50 ms [4] 1–10 ms [3]

Sensation Type Tingling, tapping Vibratory Vibratory, textural

Stimulus Electrical current Mechanical vibration Electrostatic forces

Channels [5] VAIC SAIC SAIC

Steven’s Power Factor [6] 1.51 0.93 0.492

TPDT [7] 7.25 mm 2.54 mm NA

Power Consumption [3,4] Minimum High High
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excel in delivering higher amplitudes and are less restricted by
voltage limitations (Geng et al., 2018). However, electrotactile
displays face challenges related to voltage requirements and
limited sensation variety, often inducing sensations like electrical
tingling (Kajimoto et al., 2004b).

Comparative studies between electrotactile and vibrotactile
displays offer valuable insights into their performance and user
experience. Stanke et al. (2020) reported that electrotactile
stimulation exhibited strong localization, while vibrotactile
feedback was perceived as more diffuse yet comfortable. Notably,
electrotactile stimuli were recognized faster, suggesting their
potential as alternatives to power-intensive vibrotactile actuators
in wearable devices. Similarly, Dideriksen et al. (2021) demonstrated
comparable performance between electrotactile and vibrotactile
stimuli in closed control loops and psychometric analyses. They
found that a 100 Hz electrotactile waveform elicited tactile
perceptions akin to a 200 Hz vibrotactile stimulus. Ushiyama and
Lopes (2023) presented a study where they added electrotactile
feedback on the foot to render information and argued its
superiority over vibrotactile feedback regarding feeling the terrain
and providing powerful tactile stimulation with higher spatial
resolution.

The spatial resolution of electrotactile displays surpasses that of
vibrotactile displays, as evidenced by studies on two-point
discrimination threshold (TPDT) for both modalities. Figure 4
illustrates the TPDT values, indicating a lower threshold for
electrotactile stimuli (Bobich et al., 2007; Solomonow et al., 1977)
compared to mechanical stimuli (Velázquez, 2010) across various
body parts, except the fingertip. Specifically, TPDT values range
from 7.25 mm to 10.5 mm for electrotactile stimuli, contrasting with
the 2.54 mm threshold observed for mechanical stimuli on the

fingertip, as detailed in Table 2. This disparity in TPDT is attributed
to the differing mechanisms of stimulation: electrical stimulation
targets nerve axons situated above mechanoreceptors, whereas
mechanical vibration directly activates mechanoreceptors
(Kajimoto et al., 2002). Typically, TPDT is determined by
positioning two concentric bipolar electrodes (with the inner disk
as the anode and the outer ring as the cathode) in proximity and
adjusting the distance until discrimination ceases.

3.2 Electrovibration

Electrovibration is a method to induce electrostatic frictions on
touch surfaces, enhancing the perception of surface properties,
particularly roughness. Despite its efficacy in rendering tactile
sensations, electrovibration exhibits a notable drawback
necessitating higher voltages (ranging from 100 V to 300 V) to
generate adequate electrostatic frictional forces aligned with the
desired surface texture (Basdogan et al., 2020; Bau et al., 2010). In a
study by Komurasaki et al. (2021), the integration of electrotactile
displays with electrovibration was explored to concurrently deliver
pressure and friction stimuli. Psychophysical investigations revealed
that combining stimuli modalities could induce perceptions of
larger shapes.

3.3 Mid-air haptics

Ultrasonic actuation is another approach to manipulating
surface properties in the air or on surfaces. This technique
employs a high-frequency vibrating plate, where finger sliding
reduces friction with increasing vibration amplitu Rakkolainen
et al. (2020). For instance, Carter et al. (2013) introduced
Ultrahaptics, utilizing focused ultrasonic actuation at different
points to generate haptic feedback directly on the bare hands of
users. Psychophysical assessments confirmed users’ ability to discern
multiple feedback points in mid-air, with training enabling
differentiation between stimulation frequencies. Beattie et al.
(2020) incorporated the mid-air haptics to generate virtual
textures for various VR/AR applications.

FIGURE 4
Two-point discrimination threshold for the different sites on the
body for vibrotactile and electrotactile displays.

TABLE 2 Two-point discrimination threshold (TPDT) in mm.

Body Cite Electrotactile Vibrotactile

Fingertip 7.25 2.54

Palm 7.73 12

Forearm 8.93 40

Upper arm 9.48 44

Shoulder 9.17 37

Chest 10.23 32

Back 9.79 42

Belly 9.78 36

Thigh 9.88 45
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3.4 Chemical haptics

Lu J. et al. (2021) introduced a novel haptic approach involving
the application of various chemicals to the skin to elicit distinct
haptic sensations. By administering safe doses of five
chemicals–cinnamaldehyde (stinging), capsaicin (warming),
sanshool (tingling), menthol (cooling), and lidocaine
(numbing) – lasting haptic sensations were achieved, contrasting
with the rapid response times of electrotactile and
vibrotactile displays.

3.5 Pneumatic displays

Pneumatic haptic displays, such as a low-cost haptic glove,
provide force and tactile feedback through a direct-control
pneumatic system. This glove utilizes two distinct mechanisms:
for force feedback, it employs a double-acting pneumatic cylinder
with two inlet ports controlled by solenoid DC valves via Pulse-
width Modulation (PWM). For tactile feedback, an air bladder is
actuated using a diaphragm pump controlled by a PWM-operated
solenoid valve Uddin et al. (2016). Talhan and Jeon (2017) used
Pneumatic haptics feedback in medical simulators in AR/VR.

3.6 Thermal displays

Sensation of hot/cold is desirable to present in several simulators
these days. ThermoVR was presented by Peiris et al. (2017) to
demonstrate the addition of thermal feedback alongwith visual
immersion in VR. They added Peltier elements in Oculus head-
mounted displays (HMDs) to render hot and cold sensations. Yem
et al. (2019) developed gloves integrating electrotactile displays
(utilizing a four by five electrode array), thermal displays
(comprising a Peltier and a heating element), and a high-fidelity
vibrotactile actuator, demonstrating the versatility of combined
tactile feedback systems. Gallo et al. (2012) integrated thermal

feedback in multimodal haptic displays. They developed a small
device to render temperature grids under their fingertips.

4 Taxonomy of electrotactile displays

This section aims to provide a comprehensive overview of
electrotactile displays and their applications, organizing them
based on various classification schemes in the literature. While
different classification approaches exist, this study adopts a
taxonomy based on feedback topology and sensory site,
recognizing other potential classifications such as superficial
versus micro-electrode types and anodic versus cathodic displays.
Taxonomy for electrotactile is represented in Figure 5.

4.1 Feedback control system

4.1.1 Open-loop electrotactile displays
Open-loop electrotactile displays stimulate mechanoreceptors

using voltage signals applied across pairs of flat electrodes
(Kaczmarek et al., 1991; Tezuka et al., 2016; 2017; Schmid and
Maier, 2021). These displays come in three main types: single-unit,
one-dimensional, and two-dimensional, each offering distinct
advantages. For instance, Parsnejad et al. (2019) demonstrated
multiple tactile stimuli using only one pair of electrodes,
highlighting the versatility of this approach. Notably,
advancements in thin and flexible electrode substrates have
enabled the development of wearable electrotactile displays
suitable for smartwatches and haptic gloves (Benali-Khoudja
et al., 2007).

4.1.2 Closed-loop electrotactile displays
Unlike open-loop systems, closed-loop electrotactile displays

incorporate feedback mechanisms to regulate stimulus intensity and
perception (Kajimoto et al., 2001; Kajimoto, 2011). Addressing
issues of perceptual variability and user discomfort, researchers

FIGURE 5
Taxonomy of electrotactile Displays.
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have explored methods such as force feedback and impedance
feedback to control stimulus parameters dynamically (Tachi
et al., 1985; Collins, 1970; Poletto and Van Doren, 2002;
Kaczmarek et al., 1992). Recent innovations, such as adaptive
feedback systems and myoelectric signal encoding, have further
enhanced the precision and usability of closed-loop electrotactile
displays (Akhtar et al., 2018; Rahimi and Shen, 2019; Dideriksen
et al., 2020; Nataletti et al., 2022; Valette et al., 2023). The study by
Garenfeld et al. (2023b) demonstrates the efficacy of closed-loop
control in enhancing the functionality and usability of myoelectric
prostheses. This approach enables more natural and intuitive
prosthetic use by offering users instantaneous feedback on the
prosthesis’s status, including its position, movement, and
interaction forces.

4.2 Sensory substitution

Research into tactile-visual substitution systems has explored
the conversion of visual stimuli into tactile sensations, laying the
groundwork for sensory augmentation and assistive technologies
(Bach-y Rita, 2006; Phunruangsakao et al., 2023) to overcome the
sensory overload in the visual cortex. Studies by Collins (1970) have
demonstrated the feasibility of inferring visual characteristics from
tactile stimuli, underscoring the potential for cross-modal
information transfer. This energy conversion phenomenon, where
light energy is translated into mechanical or electrical energy, forms
the basis of tactile-visual substitution systems (Isaković et al., 2019).
Leveraging this principle, researchers have integrated electrotactile
feedback into myoelectric hand prostheses, offering users enhanced
sensory perception and control (Dong et al., 2021; Chai et al., 2022;
Han et al., 2023). Such advancements promise to improve prosthetic
devices’ functionality and usability, empowering users with more
intuitive and immersive sensory experiences. Oh et al. (2024)
presented a study to prove that localized electrotactile feedback
outperforms visual feedback in a Virtual-reality-based table
tennis game.

4.2.1 Tongue electrotactile displays
The tongue’s high sensitivity and mobility make it an ideal site

for electrotactile displays (Kaczmarek, 2011; Bach-y Rita et al.,
1998). Applications range from surgical guidance (Robineau
et al., 2007) to speech recovery (Kapali and Kumar, 2022),
leveraging the tongue’s tactile acuity and neural representation in
the somatosensory cortex. Recent research has also explored tongue
displays for motor learning (Jiang et al., 2022) and sensory
substitution (Rahimi et al., 2021), highlighting their potential for
diverse applications. Mukashev et al. (2023) used tongue
electrotactile displays to explore the interplay between tactile and
taste rendering on the tongue.

4.2.2 Forehead electrotactile displays
Forehead-based electrotactile displays offer a unique sensory

substitution and augmentation approach, leveraging the skin’s
sensitivity and accessibility (Kajimoto et al., 2006; Meijer, 1992).
These displays enable novel interaction modalities by converting
visual information into tactile sensations, as demonstrated in studies
on visual-to-acoustic conversion (Dobelle, 2000; Humayun et al.,

1996). Despite challenges in thermal sensation rendering (Saito
et al., 2021), forehead displays hold promise for applications in
assistive technology and immersive experiences.

4.2.3 Vestibular electrotactile displays
Electrotactile displays for vestibular feedback address balance

impairments by providing tactile cues about head movement
(Danilov et al., 2008; 2007; Vuillerme et al., 2008; Raghav Hari
Krishna et al., 2024). These displays, often worn on the tongue or
feet, facilitate postural control and spatial orientation, enhancing
user mobility and safety in various contexts.

4.2.4 Palm and forearm electrotactile displays
Electrotactile displays applied to the palm and forearm capitalize

on the skin’s high receptor density, enabling precise tactile feedback
(Abbass et al., 2022; Kawai et al., 2019; Lu X. et al., 2021). From
object recognition to prosthetic hand feedback, these displays offer
versatile applications in robotics, rehabilitation, and human-
computer interaction (Nakayama et al., 2022; Ushiyama et al.,
2022; Ward and Pamungkas, 2018).

In conclusion, the taxonomy of electrotactile displays
encompasses diverse feedback control systems and sensory
substitution applications, each offering unique benefits and
challenges. By exploring various classification approaches,
researchers can better understand the capabilities and limitations
of electrotactile technology, paving the way for innovative solutions
in tactile communication and interaction.

5 Cross-modality of
electrotactile displays

5.1 Cross-modality with vibrotactile displays

Electrotactile displays and electro-vibration have been combined
with vibrotactile displays to explore their synergistic effects. One
notable approach is Hy-VE (Hybrid Vibro-Electro) introduced by
D’Alonzo et al. (2013), which integrates a mechanical actuator with
electrodes for electrotactile stimulation. This hybrid setup aims to
enhance users’ ability to discern different tactile patterns effectively.
Another application of combining electrotactile and vibrotactile
stimuli is evident in “Impacto,” as demonstrated by Lopes et al.
(2015). Here, a solenoid provides mechanical stimulation to
simulate impacts, while electrical muscle stimulation intensifies
the sensation. This setup has been employed in various gaming
scenarios, such as boxing and football.

Researchers have explored selective stimulation of
mechanoreceptors using combined modalities. For instance, Yem
et al. (2016) utilized electrotactile stimulation for steady pressure
and low-frequency vibration, while vibrotactile stimulation was
employed for skin stretch and high-frequency vibrations.
Additionally, Kuroki et al. (2007) investigated the combined use
of electrotactile and vibrotactile stimulation, highlighting two main
benefits: individually reduced thresholds and diminished electrical
sensation, thus mitigating the fear factor. Furthermore, Mizuhara
et al. (2019) presented a combined approach to provide intense
stimulation, leveraging the advantages of each modality while
mitigating their drawbacks.
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Moreover, efforts have been made to optimize safety parameters
for electrotactile displays through combined stimulation techniques.
Ray et al. (2021) employed a combination of electrotactile and
vibrotactile stimuli at subthreshold levels to reduce thresholds
and enhance safety. Figure 6 illustrates a threshold-varying curve
with frequency, demonstrating the efficacy of such combined
approaches.

5.2 Cross-modality with electrovibration

The fusion of electrotactile stimulation with electrovibration has
garnered attention for its potential to reduce higher voltage
requirements and enhance texture rendering. In a study by

Krishnasamy Balasubramanian et al. (2023), electrodes were
affixed to the index finger, leaving a tip free for scrolling on a
screen where textures were rendered using electrostatic forces,
requiring voltages as high as 300 V. By employing background
subthreshold electrotactile stimulus, the threshold for
electrovibration was effectively reduced by up to 12.46% as
shown in Figure 7.

Further investigations by Krishnasamy Balasubramanian et al.
(2023) involved the combination of vibrotactile displays with
electrovibration, resulting in a notable reduction of 25% in the
electrovibration threshold. This suggests promising results for
optimizing the tactile rendering experience while minimizing
power consumption and ensuring user safety. Such cross-modal
approaches hold the potential for enhancing tactile feedback in

FIGURE 6
Average threshold curve (normalized) for electrotactile stimulus and the reduced threshold when skin temperature is raised by seven.

FIGURE 7
Average threshold curve (normalized) for electrovibration and the reduced thresholdwhen background electrotactile stimulus is presented together
on subthreshold.
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various applications, ranging from touchscreen devices to immersive
virtual environments. Exploring the synergies between electrotactile
stimulation and electrovibration could also lead to innovative
solutions for enhancing user experiences in haptic interactions.

5.3 Cross-modality with thermal displays

Integrating electrotactile stimulation with thermal displays has
opened new avenues for enhancing tactile perception thresholds
under varying conditions. In a study conducted by Ray and
Manivannan (2022), researchers investigated perception thresholds
for electrotactile stimulation under different thermal conditions.
They effectively raised the skin temperature by employing an
infrared (IR) lamp focused on the forearm, where electrode pads
were attached for electrotactile stimulation. A temperature increase
of 7rcC resulted in a notable reduction of 13%–17% in the electrotactile
perception threshold as shown in Figure 8.

6 Psychophysics in
electrotactile displays

Psychophysics is an essential aspect to consider in tactile systems
since stimulation parameters are modified based on perception.
Therefore, psychophysical methods are employed for threshold
detection and expressing the feelings evoked by electrical stimuli.
The amplitude and frequency discrimination thresholds are called
just-noticeable differences (JND), representing the smallest
detectable differences between two stimuli (Leek, 2001).
Detection and discrimination thresholds together form
fundamental measures describing the dynamic range and
processing capabilities of electrovibration sensations (Levitt, 1971).

Zhou et al. (2022b) conducted psychophysical studies to
measure various parameters for electrotactile displays, including
JND, sensitivity index (SI), parameter-intensity properties (PIP),
and thresholds for detection and pain. Their study employed three
methods based on the modified staircase method, bisection, and
parametric-random algorithms, concluding that the bisection
method is more robust and improves efficiency in JND
measurement. Additionally, Jure et al. (2023a) investigated
cognitive load during multitasking using electrotactile feedback
and validated through experiments that stimuli duration has no
significant effects.

6.1 Threshold detection and psychophysics

Ray et al. (2021) investigated the threshold characteristics of
electrotactile displays across a wide frequency range from 20 Hz to
640 Hz. Their findings revealed a tuning curve showing the
threshold variation, with higher thresholds observed at lower
frequencies, decreasing to a minimum at 160 Hz before rising
again at higher frequencies. They proposed a method to reduce
thresholds using background stimulation of subthreshold
vibrotactile stimulus, resulting in a three%–5% reduction in
threshold. Moreover, Chen et al. (2019) examined the threshold
for electrotactile stimulation under moving contact conditions
compared to steady thresholds. Their psychophysical studies
indicated lower thresholds for the moving contact condition than
for the steady condition, with thresholds for women found to be
lower than for men across all age groups.

Kajimoto et al. (2004a) utilized psychophysical methods to
discriminate between two frequencies for electrical stimuli,
revealing that the minimum discriminable frequency is typically
20% of the frequency. Additionally, D’Alonzo et al. (2017) employed

FIGURE 8
Average threshold curve (normalized) for electrotactile stimulus and the reduced threshold when background vibrotactile stimulus is presented
together on subthreshold.
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psychophysical methods, specifically the staircase method, to
measure thresholds for electrical stimulation. Jelinek and
McIntyre (2010) discovered a log-log relationship between
electric pulse frequency and perceived magnitude of sensation up
to a pulse frequency of 120 Hz, with the relationship persisting
across the entire frequency range. This finding contrasts with
previous studies by Sachs et al. (1980), possibly due to
differences in stimulation patterns and pulse amplitude levels.

6.2 Just noticeable differences in
electrotactile displays

Just noticeable difference (JND) is a critical psychophysical
parameter used to determine the minimum difference in two
stimuli perceptible by subjects (Gescheider, 2013). Recent
research by Dideriksen et al. (2021) investigated the JND for
electrotactile and vibrotactile displays, revealing JND values of
16% for electrotactile displays and 18% for vibrotactile displays
for frequencies and varying values for amplitude of vibrations. This
study concluded that JND values are similar for electrotactile and
vibrotactile displays, while surface haptics using electrovibration
demonstrated lower JND (Pongrac, 2008). The JND for
electrovibration is 7.7% (Bau et al., 2010). In conclusion, JND for
electrotactile and vibrotactile is similar but lower for surface haptics
using electrovibration.

6.3 Two-point discrimination threshold

The two-point discrimination threshold (TPDT) is a
fundamental measure of human skin spatial resolution,
representing the minimum distance between two sites that can be
perceived differently. Actuators should be positioned according to
the TPDT for enhanced discrimination of neighboring stimuli
(Johnson and Phillips, 1981). TPDT values for both electrotactile
and vibrotactile stimulation are depicted in Figure 5; Table 2, with
electrotactile actuators generally exhibiting lower TPDT compared
to vibrotactile ones, enabling the creation of more densely
packed displays.

The tongue, characterized by its higher receptive density, boasts
the lowest TPDT among body parts (Maeyama and Plattig, 1989).
For instance, TPDT measurements at the tip of the tongue range
from 1.650 ± 0.433 mm to 2.650 ± 0.856 mm and 1.675 ± 0.269 mm,
measured on the anterior margin of each side of the tongue. These
measurements were obtained using two silver-silver chloride
electrodes and square pulses of 0.35 m duration, a rate of 10 Hz,
and a voltage between 3.5 V and 7.0 V, with an average of 4.09 V (tip
diameter, 0.4 mm). While TPDT varies with frequency changes, the
frequency at which the lowest TPDT occurs for an individual
remains consistent, typically falling between 30 and 65 Hz.

6.4 Steven’s power factor

Stevens’ Power Law (S � kIa) characterizes the relationship
between stimulus and its response, with S representing stimulus
perception, I representing physical stimulus intensity, ”K″ as an

arbitrary constant, and ”a” as the power exponent. According to
Lozano et al. (2009), the exponent value a for electrotactile displays
at the tongue was found to be 1.51 on average across subjects.

In contrast, Stevens et al. (1958) reported a power factor of
3.5 for electric shock, higher than that observed for electrotactile
stimulus by Lozano et al. (2009), indicating differences in perceived
intensity changes between the two stimuli. This highlights the
distinction between electrotactile stimulation, primarily
cutaneous, and electric shock, which penetrates deeper tissues
and produces adverse effects.

6.5 Electrotactile masking

Tactile masking, where multiple stimuli of the same or different
modalities overlap in time or space, is a well-known phenomenon
(Tang and Beebe, 2003). Choi et al. (2016) observed tactile masking
in electrotactile displays with two-channel stimuli, mitigating the
effect through intermittent channel stimulation. Reduced masking
was noted with intermittent stimulation due to residual stimulus
effects. Additionally, Szeto et al. (1996) used tactile masking to
correlate subjects’ information processing speed for tactile signals
with intelligence levels.

6.6 Stochastic resonance

Stochastic resonance (SR) involves adding random noise to a
subthreshold stimulus to make it suprathreshold, extensively used in
tactile signals to achieve suprathreshold sensations (Collins et al.,
1996). Huang et al. (2017, 2020) combined electrotactile stimulation
with acoustic signals to enhance speech recognition thresholds,
achieving a 2.2 dB improvement over acoustic signals alone.

6.7 Spatial and temporal summation

Spatial summation of two electrotactile stimuli at subthreshold
has been studied to reduce individual stimulus thresholds (Ray and
Manivannan, 2021). They measured the threshold characteristics of
the individual and combined stimulus. Different subthreshold
combinations were tested in psychophysical studies to measure
threshold reduction. They used 90%–50% subthreshold stimulus
and reported a threshold reduction of up to 58% in the second
stimulus. Gescheider et al. (2002, 2004) characterized spatial and
temporal summation using four channels in the sensory pathways,
noting that only Pacinian channels exhibited such summation due to
the neural integration capabilities of the Pacinian corpuscle (PC).

6.8 Electrotactile illusions

Illusions represent perceptual phenomena characterized by a
disjunction between the stimulus and its perception. In literature,
various perceptual illusions have been documented, encompassing
domains such as material texture (Lederman, 1978), shape-weight
(Kahrimanovic et al., 2010), geometrical, temperature-weight
(Stevens and Green, 1978; Stevens and Hooper, 1982), thermal
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spatio-temporal (Jones and Ho, 2008), rubber hand (Botvinick and
Cohen, 1998), and more. However, only a limited number of
illusions involve electrical stimulation. Patel et al. (2019) have
proposed a classification of haptic illusions.

6.8.1 Cutaneous rabbit effect
The Cutaneous Rabbit Effect (CRE) and similar tactile illusions

underscore the brain’s role in interpreting mechanical stimuli
beyond their factual representation (Eimer et al., 2005; Flach and
Haggard, 2006; Blankenburg et al., 2006). In an experiment by
(Warren et al., 2010), the CRE was examined on the fingertip using
electrical stimulation, revealing its association with the
mislocalization of stimuli sensation.

6.8.2 llusions of surface changes
Influencing other senses while touching a surface can create an

illusion of texture. For instance, applying electrotactile stimulation
on the fingertip while displaying an image of sandpaper can induce
the sensation of touching sandpaper (Wolf and Bäder, 2015).
Electrotactile stimulation offers the potential for generating
various tactile illusions like this.

6.8.3 Tactile apparent motion
The sensation of movement is experienced when sequential

electrotactile or mechanical stimuli are applied to the skin.
Observers typically perceive this as a single stimulus moving
across the skin, known as the Phi phenomenon or Beta
movement. Altering the time gap between the stimuli produces
different sensations, with Lederman and Jones (2011) noting that
this delay can vary from 25 to 400 milliseconds.

6.8.4 Saltation using electrotactile stimulation
Saltation, a widely researched sensory illusion phenomenon,

occurs when a sequence of short pulses (stimulus) is administered to
the skin at two or more nearby locations, resulting in the perception
of a single stimulus traversing the skin (Geldard and Sherrick, 1972).
Lederman and Jones (2011) found that electrocutaneous stimulus
yields superior results to mechanical stimulus in the perception
of saltation.

7 Challenges in electrotactile displays

Research on electrotactile displays dates back to the 1960s;
however, their application has been limited due to various
challenges. These challenges encompass both design-related issues
and perceptual obstacles. One significant impediment to the
widespread adoption of electrotactile displays is the risk of
inducing pain and itching as the intensity increases. To address
this issue, Hamazaki et al. (2022) utilized an anesthetic agent
(lidocaine) applied to the skin to broaden the range of
electrotactile stimulation by raising the pain threshold.
Additionally, Mazzotta et al. (2021) conducted a review focusing
on electrotactile displays integrated with conformable materials. In
our current work, we have comprehensively categorized and
outlined these challenges in Figure 9.

7.1 Challenges in Design

7.1.1 Safety
The critical safety consideration in electrotactile operation

revolves around current rather than voltage. It’s essential to note
that no charge passes through the skin, and the induced current
flowing through the user’s hand is minimal. The current supplied to
the electrotactile display panel is limited to 0.5 mA, a level
considered safe for humans (Webster, 2009). Electrotactile
displays enhance postural balance in scenarios of muscle fatigue,
particularly in neurological conditions where user safety is
paramount (Lee et al., 2021). Addressing safety concerns, Wang
et al. (Wang et al., 2018) developed a comfortable electrotactile pad
designed for touchscreen use, operating at lower voltages, and
dubbed the device as E-Pad.

7.1.2 Changing skin impedance
Many electrotactile displays employ surface electrodes for

stimulating nerve fibers, which remain in constant contact with
the skin, subjecting them to varying conditions. Factors such as
sweat and skin motion can lead to fluctuations in stimulation
thresholds. The correlation between sweat and changes in skin
impedance is not well-defined. Additionally, skin movement can
alter tactile sensations, posing a significant challenge in the design of
electrotactile displays (Kajimoto, 2011).

7.1.3 Maintaining the contact
Maintaining consistent contact between electrotactile displays

and the skin presents a formidable challenge, particularly when users
are mobile, such as during activities like climbing, running, or
navigation (Kaczmarek et al., 1991). One potential solution to
this challenge involves using electrode pads that adhere directly
to the skin (Teng et al., 2024). However, this approach may
introduce additional considerations related to skin irritation,
adhesive durability, and user comfort, necessitating further
exploration and refinement in design and implementation
strategies. Additionally, advancements in wearable technology
and materials science may offer innovative solutions to enhance
the reliability and effectiveness of skin-contact interfaces for
electrotactile displays.

7.1.4 Controlling range
Designing electrotactile displays presents another challenge

concerning their operational range, particularly in outdoor
applications where wireless communication is essential. While
Bluetooth wireless devices are commonly employed for such
purposes, their limited range can constrain the usability of
electrotactile displays (Jones et al., 2006). Extending the range of
wireless communication systems, perhaps through advancements in
Bluetooth technology or alternative wireless protocols, is crucial for
expanding the potential applications of electrotactile displays in
outdoor environments. Additionally, exploring the integration of
other wireless communication technologies, such as Wi-Fi or
cellular connectivity, could offer alternative solutions to
overcome range limitations and enhance the versatility of
electrotactile display systems.
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7.2 Challenges in perception

7.2.1 Sensory overload
The human brain adeptly processes information from multiple

sensory modalities to comprehend and navigate the surrounding
environment. However, relying solely on a single sensory modality
for conveying information can overwhelm it, given humans’ finite
capacity for receiving, retaining in working memory, and cognitively
processing environmental stimuli. Overloading a particular
modality, such as relying solely on auditory or tactile signals
from assistive devices, can lead to diminished perception over
time (Jure et al., 2023b). To address this limitation, incorporating
multiple sensory modalities, such as visual, auditory, and tactile
cues, into assistive devices can enhance information dissemination
and user comprehension. Furthermore, leveraging multi-modal
interfaces can distribute cognitive load more effectively across
sensory channels, improving overall user experience and
accessibility.

7.2.2 Pain
The application of electrical stimuli can evoke fear in users, with

studies suggesting that women may experience more pain than men
when exposed to repeated predictable or unpredictable electrical
stimulation (Meulders et al., 2012). This gender discrepancy
underscores the importance of considering individual differences
and sensitivities when designing and implementing electrical
stimulation-based applications. Understanding and mitigating
potential aversive responses, particularly among specific
demographic groups, is crucial for ensuring the safety and
efficacy of such technologies. Further research into the
underlying mechanisms driving these gender differences could
inform the development of more inclusive and user-friendly
electrical stimulation applications.

7.2.3 Long learning or training time
Acquiring proficiency in the language of visual-tactile

communication presents a multifaceted challenge. Users must

memorize the diverse tactile sensations and their corresponding
meanings, necessitating considerable time and effort to achieve
mastery (Burger et al., 2017). Learning involves recognizing
tactile cues and understanding their contextual significance in the
real world. Consequently, extensive training periods allow users to
internalize these associations effectively. Further research into
optimized training methodologies and user-centered design
approaches could expedite the learning curve and enhance user
adoption of visual-tactile interfaces.

7.2.4 Resolution
When designing tactile displays, resolution emerges as a

critical consideration, encompassing both spatial and temporal
aspects. Spatial resolution determines the density at which
electrodes can be arranged, with the two-point discrimination
threshold (TPDT) serving as a key determinant. Notably, TPDT
tends to be lower for electrical stimulation than mechanical
stimulation, facilitating higher spatial resolution as shown in
Figure 5). On the other hand, temporal resolution governs the
speed at which a changing stimulus can be perceived. Studies by
Loomis and Lederman (1986) indicate that a minimum time gap
of 4 milliseconds is necessary to discern between two distinct
stimuli. These resolution metrics are pivotal in optimizing the
effectiveness and perceptual fidelity of electrotactile displays
(Johnson and Phillips, 1981). Further research aimed at
refining both spatial and temporal resolution parameters could
lead to significant advancements in tactile display technology.

8 Guidelines for Design of
electrotactile displays

Electrotactile displays, despite their benefits of compactness and
high spatial resolution, face several challenges that need addressing
to ensure reliability and user safety. This section outlines practical
techniques to tackle these issues, providing details on use scenarios,
cost, and implementation complexity.

FIGURE 9
Taxonomy of challenges in electrotactile displays.
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Electrotactile stimulation, extensively studied since the
1960s, has led to the development of various display designs
utilizing diverse electrode configurations, from surface to
microelectrodes in both single and multiple arrangements,
targeting body sites such as the fingertip and tongue.
However, the reliance on conductive gel for many electrodes
remains a significant drawback, making them single-use and
inconvenient. Future designs should focus on developing gel-
free and reusable electrodes to enhance user experience and
sustainability. Exploring materials and technologies that allow
for reusable, gel-free electrodes, such as conductive polymers or
nanomaterials, could provide potential solutions. These
innovations would be particularly beneficial for applications
requiring frequent use, such as virtual reality (VR) training
systems or rehabilitation devices. Although the initial
development might be costly, long-term use would reduce
recurring costs, presenting a medium level of implementation
complexity due to the material research and testing involved.

A significant challenge with electrotactile displays is the risk
of skin burns and irritation with prolonged use, as skin
impedance changes over time, making previously comfortable
current levels potentially harmful. Ensuring user safety is
paramount. Ray et al. (2021); Ray and Manivannan (2022,
2021) have proposed a method to address this concern by
employing background stimulation of a different modality,
maintained at subthreshold levels, to reduce the threshold for
electrotactile displays. For instance, electrotactile-vibrotactile
combination (ETVT) setups utilized a 90% subthreshold
vibrotactile stimulus to effectively reduce the threshold for
electrotactile stimulation by 3%–5%. Additionally, they
explored spatial summation of two electrotactile stimuli at
subthreshold to decrease the threshold for electrotactile
stimulus. Leveraging such subthreshold techniques and
integrating other tactile modalities could pave the way for
safer and more comfortable electrotactile displays.

Traditionally, user studies have validated electrotactile
devices, but there is a growing need for objective measurement
methods to fully understand the effects of the stimulus. Objective
measurements can provide comprehensive insights, particularly
in precision-demanding environments. The integration of
electroencephalography (EEG) and electromyography (EMG) can
be employed to measure the effects of electrotactile stimuli
objectively (Liu et al., 2022). For example, sensory training
scenarios can incorporate electrotactile Brain-Computer Interface
(BCI) systems, utilizing somatosensory event-related potentials
(ERPs) as neural correlates of attention processes Novičić and
Savić (2023); Savic et al. (2023). These advancements highlight
the importance of integrating objective measurement techniques
into the design and evaluation of electrotactile displays to ensure
their efficacy and safety in diverse applications. Such integration is
critical for medical applications, sensory training, and research
environments where precision is essential, though it comes with
high costs and complexity due to the requirement for advanced
equipment and expertise in neurophysiological measurements.

Advancing the design of electrotactile displays involves
addressing key challenges such as electrode reusability, user
safety, and the integration of objective measurement techniques.
By focusing on practical solutions and considering use scenarios,

cost, and implementation complexity, future electrotactile displays
can become more effective, safe, and user-friendly.

9 Future directions

Tactile feedback is crucial in various everyday devices, including
smartphones, smartwatches, tablets, and car displays. While
vibrotactile displays dominate these devices due to their lower
cost and ease of implementation, recent studies have highlighted
the potential of integrating electrotactile feedback for enhanced
tactile experiences.

Incorporating electrotactile feedback into handheld touchscreen
devices opens new avenues for providing surface properties and
textures. For instance, Kajimoto et al. developed Skeletouch, a
transparent interface capable of delivering electrotactile feedback
on mobile devices (Kajimoto, 2012). This technology can
revolutionize surface haptics by enabling the modification of
entire surfaces, offering users a richer tactile experience. Unlike
electrovibration, which requires high voltage, electrotactile feedback
consumes lower power and may pose fewer safety risks. It is suitable
for widespread use in smartphones, tablets, smartwatches,
automotive display systems, and vending machines.

The wearable haptic device market is rapidly expanding,
encompassing products like haptic gloves, whole-body suits
withtactile feedback, and haptic vests. While vibrotactile feedback
is prevalent in these devices, some utilize electrical muscle
stimulation. Incorporating electrotactile stimulation into these
wearables can leverage the advantages of electrotactile feedback
over vibrotactile methods, potentially enhancing user experiences
and interaction possibilities.

Moreover, the integration of electrotactile feedback holds
promise in immersive virtual reality (VR) environments. By
modulating electrotactile stimuli intensity based on the user’s
interaction with virtual surfaces, researchers aim to improve
tactile rendering methods and provide more realistic sensations
during mid-air interactions in VR (Vizcay et al., 2023). This
approach signifies a paradigm shift in how users perceive and
interact with virtual environments, paving the way for more
immersive and engaging VR experiences.
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