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Cybersickness is still a prominent risk factor potentially affecting the usability of
virtual reality applications. Automated real-time detection of cybersickness
promises to support a better general understanding of the phenomena and to
avoid and counteract its occurrence. It could be used to facilitate application
optimization, that is, to systematically link potential causes (technical
development and conceptual design decisions) to cybersickness in closed-
loop user-centered development cycles. In addition, it could be used to
monitor, warn, and hence safeguard users against any onset of cybersickness
during a virtual reality exposure, especially in healthcare applications. This article
presents a novel real-time-capable cybersickness detection method by deep
learning of augmented physiological data. In contrast to related preliminary work,
we are exploring a unique combination of mid-immersion ground truth
elicitation, an unobtrusive wireless setup, and moderate training performance
requirements. We developed a proof-of-concept prototype to compare
(combinations of) convolutional neural networks, long short-term memory,
and support vector machines with respect to detection performance. We
demonstrate that the use of a conditional generative adversarial network-
based data augmentation technique increases detection performance
significantly and showcase the feasibility of real-time cybersickness detection
in a genuine application example. Finally, a comprehensive performance analysis
demonstrates that a four-layered bidirectional long short-termmemory network
with the developed data augmentation delivers superior performance (91.1% F1-
score) for real-time cybersickness detection. To encourage replicability and
reuse in future cybersickness studies, we released the code and the dataset as
publicly available.

KEYWORDS

virtual reality, cybersickness detection, deep learning, data augmentation, CGAN,
physiological signals, data processing, sensors

OPEN ACCESS

EDITED BY

Daniele Giunchi,
University College London, United Kingdom

REVIEWED BY

Diego Vilela Monteiro,
ESIEA University, France
Nitesh Bhatia,
Imperial College London, United Kingdom

*CORRESPONDENCE

Murat Yalcin,
murat.yalcin@uni-wuerzburg.de

RECEIVED 01 January 2024
ACCEPTED 15 April 2024
PUBLISHED 17 June 2024

CITATION

Yalcin M, Halbig A, Fischbach M and
Latoschik ME (2024), Automatic cybersickness
detection by deep learning of augmented
physiological data from off-the-shelf
consumer-grade sensors.
Front. Virtual Real. 5:1364207.
doi: 10.3389/frvir.2024.1364207

COPYRIGHT

© 2024 Yalcin, Halbig, Fischbach and Latoschik.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Virtual Reality frontiersin.org01

TYPE Original Research
PUBLISHED 17 June 2024
DOI 10.3389/frvir.2024.1364207

https://www.frontiersin.org/articles/10.3389/frvir.2024.1364207/full
https://www.frontiersin.org/articles/10.3389/frvir.2024.1364207/full
https://www.frontiersin.org/articles/10.3389/frvir.2024.1364207/full
https://www.frontiersin.org/articles/10.3389/frvir.2024.1364207/full
https://www.frontiersin.org/articles/10.3389/frvir.2024.1364207/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frvir.2024.1364207&domain=pdf&date_stamp=2024-06-17
mailto:murat.yalcin@uni-wuerzburg.de
mailto:murat.yalcin@uni-wuerzburg.de
https://doi.org/10.3389/frvir.2024.1364207
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org/journals/virtual-reality#editorial-board
https://www.frontiersin.org/journals/virtual-reality#editorial-board
https://doi.org/10.3389/frvir.2024.1364207


1 Introduction

Today, virtual reality (VR) is used in many different application
areas. VR has shown its potential for gaming (Pallavicini et al.,
2019), teaching and learning (Oberdörfer et al., 2017; Checa and
Bustillo, 2020), tourism and hospitality (Huang et al., 2016), and
marketing and advertising (Alcañiz et al., 2019; Loureiro et al.,
2019). The power and benefits of VR are particularly prominent in
the field of therapy. For example, VR can be used in psychology to
treat fear of heights (Abdullah and Shaikh, 2018; Bălan et al., 2020),
of spiders Hildebrandt et al. (2016); Miloff et al. (2016); Lindner et al.
(2020), of speaking in front of an audience (Barreda-Ángeles et al.,
2020; Glémarec et al., 2022), or of disorders of body perception by
leveraging personalized photorealistic avatars (Wolf et al., 2021;
2020). It is also used to treat neurological disorders, for example, gait
impairments as a result of Parkinson’s disease or strokes
(Hamzeheinejad et al., 2019; Kern et al., 2019), as well as in
orthopedics for the physical recovery after surgery (Gianola et al.,
2020; Bartl et al., 2022; Gazendam et al., 2022).

While the areas of application for the utilization of VR
technology constantly increase, immersive VR applications, in
particular, still face the risk of potentially inducing cybersickness
(CS). CS is a prominent risk factor potentially affecting the usability
of VR applications (Chang et al., 2020; Stauffert et al., 2020), which is
exceptionally critical for medical applications. Hence, to avoid and/
or counteract potential occurrences of CS, we first need reliable
methods to measure and detect CS. Measuring the occurrence and
severity of CS is often done with subjective self-reports (Kennedy
et al., 1993; Keshavarz and Hecht, 2011). Using such questionnaire
tools, however, has notable drawbacks. Most prominently, it
requires active user feedback, potentially inducing distraction and
additional workload or breaking the current immersion and flow.

Here, alternative approaches to measuring CS use physiological
and behavioral data, for example, using heart rate, skin conductance,
electroencephalography (EEG), or eye-tracking data (Nakagawa,
2015; Dennison et al., 2016; Garcia-Agundez et al., 2019; Kim
et al., 2019; Islam et al., 2020b; Tauscher et al., 2020). However,
many of the existing solutions need an extensive setup (Jeong et al.,
2018; Garcia-Agundez et al., 2019; Kim et al., 2019; Lee et al., 2019;
Tauscher et al., 2020). Such elaborated setups and expensive devices
render a widespread adaptation of objective CS detection unlikely
for many use-cases. With this work, we address these problems and
show how a CS detection that is based on a very simple setup can be
realized. In our approach, we use wearable of-the-shelf sensors and
the data provided by a standalone VR headset to achieve a reliable
detection of CS. We apply a deep-learning-based data augmentation
technique to achieve a significant improvement in CS detection even
for smaller and imbalanced datasets.

1.1 Contribution

We first conducted a data-collection process with 20 participants
who rode a VR rollercoaster while giving feedback about possible
onsets of CS using a controller. We collected several types of
physiological data using three different easy-to-use wearable
sensors. We analyzed and compared the resulting data with
different deep learning algorithms, aiming for automatic real-

time detection of CS. Specifically, we used standard and
bidirectional long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997; Schuster and Paliwal, 1997), a combination
of convolutional neural networks (CNN) and LSTM, and a support
vector machine (SVM) (Cortes and Vapnik, 1995) model for CS
detection. Comprehensive performance analysis showed the highest
accuracy for a four-layered bidirectional LSTM model, achieving
84.2% accuracy for our original dataset. To enhance detection
performance, we pioneered the application of conditional
generative adversarial networks (cGAN) to augment physiological
time-series data in CS detection. The results increased to 91.7%
accuracy and show that it is possible to detect the onset of CS with a
fairly simple, unobtrusive setup based on wearable devices without
the need for more complex electrode-based sensors and without a
large dataset. The detection quality is higher than that in the
previous works (Martin et al., 2020; Islam et al., 2021). However,
we also propose that a mere accuracy metric is insufficient to
evaluate a model’s robustness and feasibility. Accordingly, we
computed more detailed metrics that further confirmed the
excellent performance of our developed method for detecting CS.

2 Related work

2.1 Phenomenology, causes, theories, and
prevention of cybersickness

Cybersickness refers to symptoms accompanying VR
applications, ranging from headache, dizziness, eyestrain, and
blurred vision to nausea and vomiting (LaViola Jr, 2000; Sharples
et al., 2008). CS is closely related to simulator sickness as they share
many symptoms (Rebenitsch and Owen, 2016). However, Stanney
et al. (1997) argue that the tow conditions have different profiles.
While the sickness that occurs in simulators is mainly determined by
oculomotor symptoms, the main symptom of CS is disorientation.
Additionally, the symptoms of CS are approximately three times
more severe than those of simulator sickness (Stanney et al., 1997).

CS and simulator sickness share not only a set of symptoms but
also common origin theories because many of the theories that apply
to simulators could be transferred relatively easily to head-mounted
displays (HMDs) (see (Rebenitsch and Owen, 2016) for an
overview). The sensory mismatch theory suggests that people
experiencing VR receive input on different modalities that might
be incongruent or conflicting, for example, visual and vestibular
input (Oman, 1990). Because such incongruencies could have been
triggered by toxins in the evolutionary history of humans, CS and
simulator sickness could also be protective survival mechanisms of
the body, deployed in the wrong context (Treisman, 1977). Another
common theory references postural instability. It is similar to the
sensory conflict theory and suggests that sickness symptoms occur
in situations where humans do not have an effective strategy to
maintain postural stability (Riccio and Stoffregen, 1991). When a
person is using immersive technology, they may not receive the
usual sensory input that helps them maintain their balance and
posture (Chen Y.-C. et al., 2011). Possible triggers and causes for CS
are also very diverse.

On the content level, one of the biggest factors is the optical flow.
It is more likely for people to show sickness symptoms when they see
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moving visual content instead of static content (ChenW. et al., 2011;
Lubeck et al., 2015). As the movement becomes faster, the severity of
symptoms can increase (Chardonnet et al., 2015; Liu and Uang,
2012). Human factors such as age (Saredakis et al., 2020), gender
Freitag et al., 2016), or motion sickness susceptibility (Llorach et al.,
2014) can also play a role.

Moreover, some hardware-specific factors can increase the
probability of the occurrence of CS. Decisive factors include
tracking accuracy (Chang et al., 2016), motion-to-photon latency
(the time that elapses between the movement of a tracked object and
the graphical representation of the associated movement in the
virtual environment) (Stauffert et al., 2020), or latency jitter
(Stauffert et al., 2018). Too-high latency or too-inaccurate
tracking also causes a mismatch between input modalities.

Through continuous advances in hardware manufacturing and
tailored software solutions, for example, asynchronous timewarp
(Oculus) or asynchronous reprojection (Valve), modern HMDs
significantly reduce the risk for CS. Nevertheless, some symptoms
occur regularly and as intensely in contemporary applications
Caserman et al., 2021; Cobb et al., 1999). CS must be given
particular importance in healthcare applications. Supervisors
leading a therapy session, for example, have a special duty of
care toward the health of their patients. People working in the
healthcare sector who want to integrate VR into their work
routines need support in averting potential hazards to their
patients Halbig et al., 2022). One possible solution to assist
supervisors in protecting their clients from negative effects
would be to use a warning system that detects possible signs of
CS and warns the supervisor.

Over the years, different techniques that prevent CS were
developed and tested, for example, having a virtual nose as a rest
frame (Wienrich et al., 2018) or a dynamic restriction of the field of
view (Groth et al., 2021). Nevertheless, CS symptoms are still
widespread when it comes to the usage of HMDs, as it was
shown by a survey among gamers (Rangelova et al., 2020).

2.2 Cybersickness measurement
and detection

There are several options for measuring CS. The most widely
used technique is the self-report questionnaire (Davis et al., 2014;
Chang et al., 2016). Typical examples are the Simulator Sickness
Questionnaire (SSQ) (Kennedy et al., 1993) and the Fast Motion
Sickness Scale (FMS) (Keshavarz and Hecht, 2011). In addition to
the advantages, such as the easy implementation and simple
evaluation, these subjective methods also have drawbacks. For
example, they only allow a discrete evaluation of the user state.
In addition, longer self-reports usually take place after exposure to
the VR stimulus and are, therefore, based on the active
recapitulation of the experience by the user. Shorter mid-
immersion assessments avoid these problems and closely link
feedback to experience. However, they require active
participation, potentially inducing unwanted breaks (especially
immersion) and additional work load.

Alternative approaches to subjective self-reports measure CS
via (objective) physiological and behavioral data, for example,
using heart rate, skin conductance, electroencephalography

(EEG), or eye-tracking data (Nakagawa, 2015; Dennison et al.,
2016; Garcia-Agundez et al., 2019; Kim et al., 2019; Islam et al.,
2020b; Tauscher et al., 2020). The analysis of the physiological data
usually happens with the help of machine learning (ML), deep
learning, or similar techniques (Halbig and Latoschik, 2021; Yang
et al., 2022). These techniques can overcome many of the
drawbacks of subjective methods. They could be used in a
continuous online monitoring system that can warn the user or
a supervisor in case the user/client felt sick or could even apply
automatic counter-measures.

Many existing solutions for classifying CS based on
physiological and behavioral measures need an extensive
setup. For example, many setups are based on EEG, which often
requires the application and preparation of many (up to 128)
individual electrodes (Jeong et al., 2018; Garcia-Agundez et al.,
2019; Kim et al., 2019; Lee et al., 2019; Tauscher et al., 2020).
Even the examples without EEG data are often based on elaborate
setups with different single electrodes (Islam et al., 2020a). It is hard
to imagine that physical therapists, psychologists, or physicians
would be willing to integrate such setups in their daily working
routines. In contrast to EEG systems, the sensors used in this study
are easy to attach to a person’s body and non-disruptive to their
behavior in the VR environment.

Several prominent ML algorithms have been applied to the CS
detection task in the past (Yang et al., 2022), including the multilayer
perceptron (MLP), SVM, linear discriminant analysis (LDA), and
k-nearest neighbors (kNN) methods. However, these algorithms are
not tailored to interpret time-series data and did not lead to
satisfying results (Garcia-Agundez et al., 2019; Recenti et al.,
2021). In recent years, deep learning has shown great
performance for many classification and detection tasks.
However, a limited number of works used deep learning for CS
detection. Because deep learning models need very large amounts of
data to train the models, they cannot be implemented if only a
limited number of participants are available.

Some studies used wearable sensors and deep learning together.
Islam et al. (2020a) used changes in physiological signals (heart rate,
heart rate variability, galvanic skin response, and breathing rate) as
CS predictors. They used an LSTM deep learning model with
complicated electrode-based skin conductance and heart rate
sensors. The hands were not moving freely, and the subjective
feedback from SSQ was not consistently correlated with the
physiological output. One of the recent works from Islam et al.
(2021) used CNN + LSTM models and stereoscopic video data
combined with eye-tracking (ET) and movement data. They
achieved 52% accuracy using only video data, which is far from
practical to be used as a CS detector. The same study used a
physiological sensory setup with PPG EDA data and achieved
87% accuracy. Although they had an imbalanced dataset, they
did not attempt to augment and balance it to get better results.
Garcia-Agundez et al. (2019) proposed an electrode-based setup
with ECG, EOG (electrooculographic), skin conductance, and
respiratory data. They used SVM, kNN, and neural networks for
binary CS detection and acquired 82% accuracy. Another interesting
study Wang et al. (2023) used in-game characters’ movement and
users’ eye motion data during gameplay in VR games. They trained
an LSTM model to predict CS in real-time and acquired
83.4% accuracy.
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2.3 Data augmentation

Collecting a huge amount of data for studies is often time-
consuming, costly, and difficult. This becomes even harder if deep
learning algorithms are used for classification or detection tasks.
Because deep learning algorithms are data-hungry models, the size
of the data should increase drastically to enhance the generalization
capability of the models and to hinder overfitting issues. In some VR
scenarios, physiological events that correspond to specific stimuli
like CS, fear, or anxiety rarely occur, and this leads to imbalanced
and skewed datasets. Recently, machine-learning approaches have
been used for data augmentation, specifically for image classification
tasks where images can be rotated, flipped, cropped, sheared, etc.
(Shorten and Khoshgoftaar, 2019). However, unlike image data,
physiological signals have a complex structure and dynamics that
can be easily disrupted by transformations such as rotation
or warping.

Especially in the medical and healthcare domains, when
classifying time series physiological data, we often encounter
imbalanced, skewed datasets in the literature. Some data
augmentation techniques have already been proposed to tackle
this problem (Iwana and Uchida, 2020; Wen et al., 2021). For
example, Um et al. (2017) propose cropping, rotating, and
wrapping the sensory data as a solution for this problem, but it
also includes the risk of changing the respective data labels. In recent
years, it can be seen that deep learning methods have increasingly
been used for data augmentation on small and skewed datasets, and
GAN, especially, increases classification performance. Harada et al.
(2018) showed that using GAN to augment physiological data can
improve the performance of the data classifier on imbalanced
datasets. Specifically, conditioning GAN by target class labels
offers two key advantages: it enhances GAN performance and
facilitates the generation of samples belonging to a specific target
class. Ehrhart et al. (2022) leveraged a cGAN to detect moments of
stress. Nikolaidis et al. (2019) used cGAN for apnea detection tasks.

We address these limitations by using unobtrusive wearable
devices with mid-immersion ground truth elicitation and proven
deep learning models with the help of the cGAN data augmentation.
Furthermore, to promote replicability and facilitate future research
in cybersickness detection, we made our code and dataset publicly
available.1

3 System description

Our end-to-end system mainly consists of sensory devices,
virtual environment data acquisition, and data processing.

3.1 Sensory devices

We used three different devices to measure the participants’
physiological signals during their VR experience. Because wearable
sensors offer superior practicability with respect to cost, ease of use,

and portability, we selected a Polar H10 (Polar Electro Oy, Finland)
sensory device, which is an electrode-based chest strap, and an
Empatica E4 (Empatica Inc., United States) device, which is a
medical-grade wristband. Both of these devices transmit the data to
the computer via Bluetooth communication. The Pico Neo 2 Eye VR
headset (Pico Interactive, China) HMD, with a resolution of 3,840 ×
2,160 px per eye and a total field of view of 101° running at a refresh rate
of 75 Hz, was provided to participants. The eye movements were
captured by the HMD’s built-in eye tracker running at 90 Hz with a
0.5° accuracy. These sensors are easy to deploy and can, therefore, be
used in a wide variety of scenarios without requiring too much effort.
Figure 1 illustrates these sensory devices.

3.2 Virtual environment

The rollercoaster experience in VR is a well-known experiment
when investigating CS in VR due to abundant motion that can elicit
certain related symptoms of CS (Cebeci et al., 2019; Islam et al., 2020a).
We implemented such a virtual environment for our study by adapting
a rollercoaster that has many up-and-down bends, loopings, and sharp
turns. It was initially obtained from the Unity Asset Store (2023) as a
development environment. Then, we made adjustments to the
rollercoaster to have a slightly lower speed and acceleration in the
first 30 s. To get the exact time interval when a participant felt cybersick
during the rollercoaster ride, we added functionality to collect the
timestamps when the participant pressed the trigger button of the right
controller and while hold the trigger during the CS symptoms
continued. The system was implemented using Unity
2020.3.11f1 LTS (Unity Technologies, 2020). A screenshot of the
scenario and the participant with sensory devices is shown in Figure 1.

3.3 Study and data acquisition

We conducted an experiment to acquire physiological data for
the development of our CS detection approach. The experiments
were completed with 20 participants aged between 18 and 57 years.
Twelve participants were men, and eight were women. All
participants provided their written informed consent to
participate in this study. Before the study, the participants were
debriefed about the study’s purpose and noticeable effects of CS. In
addition, they were informed and agreed to continue the study if the
effects occurred during the study in terms of ethical considerations.
During the study, no serious effects were observed or reported by the
participants. At the start of the procedure, the participant filled out
the pre-SSQ questionnaire to assess the level of CS before the VR
exposure. Then, the participant put on the sensor devices and the
connections between the sensors and the measurement engine
(Viavr_Measurement_Engine, 2022) of the VIA-VR project
(Viavr_Project, 2019) were established. Data streaming started
simultaneously for every sensor. The participants started to have
the rollercoaster experience. Whenever they felt symptoms, they
reported CS occurrences by pressing the trigger button of the right
controller and holding it as long as the symptoms were noticeable.
Respective timesteps were stored in a *.CSV file, and all sensory data
were stored in *.JSON files at the end of the experiments. The
experiment and the data collection were stopped after one1 https://github.com/m1237/automatic-cybersickness-detection
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rollercoaster cycle that lasted 80 s. The participant filled out a post-
SSQ questionnaire to assess the level of CS after the experiment.

The recorded data types are summed-up in Table 1:
electrocardiography (ECG) and acceleration (ACC) data
collected using the Polar H10 chest strap;
photoplethysmography (PPG), ACC, electrodermal activity

(EDA), inter-beat interval (IBI) and peripheral body
temperature (TEMP) data collected using the Empatica
E4 wristband; and eye-tracking (ET) data collected using the
Pico Neo 2 Eye HMD. Table 1 shows the overview of the data
types, sampling rates, and number of features that we extracted
from the physiological data.

FIGURE 1
The overview of the CS detection setup. (A) Screenshot of the virtual roller coaster environment used to intentionally induce CS. (B) An equipped
participant (center) and the respective sensors used during the experiments in detail.
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3.4 Data processing and feature extraction

After raw data acquisition, the collected data were preprocessed
to apply deep learning algorithms. Instead of using only raw data, we
calculated pre-features as input to the models. First, the data were
normalized. Z-score normalization (Dz) was used for the ET (pupil
diameters and gaze directions) and ACC (x, y, and z-axes) data.
Here, for each data sample Di, the Z-score normalization can be
calculated with the mean of the training samples Du and the
standard deviation of the training samples Ds in Eq. 1:

Dz � Di −Du

Ds
(1)

The new data sample value Dz replaces the old sample i. This
standard technique guarantees that the model will learn more
smoothly on the data because it is standard and normally

distributed (Islam et al., 2020b). The normalization of the BVP,
EDA, IBI, TEMP, and ECG data was done using a min–max scaler
(Dminmax) as stated in Eq. 2 that sets the values in relation to their
max and min values, which can vary for each person. Here,Dmin and
Dmax refer to the minimum and maximum of the data samples per
person, respectively:

Dminmax � Di −Dmin

Dmax −Dmin
(2)

The features were extracted from the normalized data collected
by Empatica and H10 sensors by using a rolling moving average
(Drma) in Eq. 3. This technique smooths the data by taking the
average value over the last n samples instead of the raw signal. Given
a fixed sampling rate, n corresponds to a time window. According to
Courtney et al. (2010), an appropriate time for recognizing a change
in physiological signals is 3 s. Depending on the sampling rate, this

TABLE 1 The features extracted and preprocessed from the raw sensor data to train the cybersickness classifier.

Device type S. Rate (Hz) Data type Features

Eye tracker 90 Hz Pupil diameter (left, right eye) 2

90 Hz Gaze direction (left, right eye; x, y, z values) 6

Empatica 32 ACC (x, y, z values, rma, pc, max, min) 12

64 BVP (rma, pc, max, min) 4

4 EDA (rma, pc, max, min) 4

64 IBI (rma, pc, max, min) 4

4 TEMP (rma, pc, max, min) 4

Polar H10 200 Hz ACC (x, y, z values; rma, pc, max, min) 12

130 Hz ECG (rma, pc, max, min) 4

1 HR (rma, pc, max, min) 4

FIGURE 2
The architecture of the CNN + LSTM model with the respective input/output tensor shapes. (The red rectangle shows the whole CNN + LSTM
model, and the black-colored rectangle shows the LSTM model used by itself as LSTM and bidirectional-LSTM models).
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value defines the final choice for the parameter n. Hence, n = 3 ×
sampling rate.

Drma � 1
n
∑n
z�0

Dz (3)

For another feature class, the percentage of change (Dpc) was
calculated from the normalized values using Eq. 4. It indicates how

much the value has proportionally changed in the number of n
timesteps rather than computing a nominal difference:

Dpc � Dz −Dz−n
Dz−n

(4)

The last two features that were constructed from the normalized
data are the maximum (max) and the minimum (min) in the last n

FIGURE 3
The overall cGAN data augmentation model with physiological data.

FIGURE 4
Data sample (timestep) distribution per class for the original dataset (blue), after the first data augmentation (orange) and after the second data
augmentation (green).
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timesteps. As an additional data source, the heart rate data were
calculated from ECG data by using the algorithm in Christov (2004).
This technique detects the current beat by leveraging specified
thresholds and R-R interval analysis. The aforementioned four

features (rolling moving average (rma), percent of change (pc),
min, and max) were also calculated for the HR data.

Instead of utilizing HR data obtained from Empatica, we
deliberately derived it from ECG data collected by the Polar

FIGURE 5
Two pairs of synthetic ECG (red) and EDA (green) data samples whichwere created using cGANmodel for CS label. Here, time window for each data
is 15 s.
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H10 device due to its superior data quality. The Empatica wristband
may be susceptible to motion artifacts, potentially leading to
inaccuracies in heart rate readings compared to the Polar
H10 chest strap, which is situated on a less-mobile body part.
For instance, although Hadadi et al. (2022) gathered HR data
using Empatica, they excluded it from their analysis due to its
lower precision, reduced stability, and a notable increase in
standard deviation.

4 Deep learning models for detection

After the feature extraction steps, the processed data contains
56 features (see Table 1) from the three different sensor devices for
each sample to train the SVM and deep learning algorithms.

4.1 SVM

For the SVM model, we used a linear kernel and a class weight
ratio of 1:8. Here, the class weight ratio automatically compensates
for the data imbalance by increasing the weights of the
minority class.

4.2 LSTM

To implement the LSTMmodel, we used the LSTM architecture
described in Islam et al. (2020b). The model consists of four layers:
an LSTM layer, a dropout layer, and two dense layers. The input for
the LSTM layer is a tensor of shape (batch size, timesteps, and
features). The LSTM module produces a tensor of shape (batch size
and LSTM hidden size) as output, which contains the final hidden
states of the input sequence after the last timesteps. After applying
dropout, this output tensor is fed into the two dense layers, which
both reduce the feature dimension. A ReLU activation function
(Nair and Hinton, 2010) was used for the first dense layer, and no
activation function was used for the second dense layer.

In addition to the four-layered LSTM network, we also used a
bidirectional LSTM network (Schuster and Paliwal, 1997) with the
same LSTM architecture for the detection task. Standard LSTM

networks have restrictions as future input information cannot be
reached from the current state. In contrast, bidirectional LSTM
networks do not require input data to be in the same dimension.
Moreover, their future input information can be reached from the
current state. The main idea of bidirectional LSTM is to connect two
hidden layers of opposite directions to the same output. By this
structure, the output layer can access information from past and
future states and interpret them better. The model can be seen
in Figure 2.

4.3 CNN + LSTM

To improve the classification performance, we also deployed
from-scratch CNN + LSTM architecture to acquire the spatial
features and time-invariant patterns. Figure 2 shows a visual
representation of the CNN + LSTM model architecture. This
model consists of seven layers: two 1D convolution layers
(Conv1D), and a pooling layer, followed by the four layers that
were also present in the LSTM model (an LSTM layer, a dropout
layer, and two dense layers). The input tensor for the first Conv1D
layer is of shape (batch size, timestep, and features). Then, two 1D
convolutions are applied. For both Conv1D layers, the number of
filters is equal to the input size for the LSTM layer. The kernel size is
4, and ReLU is applied as an activation function. After the Conv1D
layers, max pooling is used in the pooling layer, with a pool size of
2 and a stride of 2. After the max pooling function, the output tensor
is of shape (batch size, reduced timesteps, and LSTM input size) and
can be used as an input for the LSTM layer. The following LSTM and
dense layers are set up in a similar way to the LSTMmodel described
previously.

4.4 Hyperparameter optimization and
model training

After preprocessing and merging, the dataset was divided into a
training set and a testing set in a ratio of approximately 0.80/0.20,
resulting in the training set containing data from 16 participants and
the testing set containing data from the other four participants. We
consciously selected different persons for the testing set to

FIGURE 6
The final workflow scheme of the model for real-time CS detection.
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investigate the generalization capability of each model on never-seen
participants. Afterward, we randomly divided the training set into
10-fold subsets and separated one set as a validation set to check the
optimization performance of the training model. This technique is
known as k-fold cross-validation in the literature (Hastie et al.,
2001), and it minimizes the bias effect of one validation set. 10-fold
cross-validation then iterates through the folds and uses one of the
10 folds as the validation set while using all remaining folds as the
training set at each iteration. This process is repeated until every fold
has been used as a validation set.

We investigated the best hyperparameters by deploying the grid-
search technique throughout the implementation of all methods.We

specified the deep learning model dependent variables are hidden
layer size, dense layer size, timesteps, dropout, and learning rate.

4.5 Merging data

To merge the data from different sensors that have different
sampling rates, we specified a different variable as a hyperparameter
called sensor buffer with 0.1 s and 0.5 s time windows to have a mean
value for each buffer size of data from different sensors. As a result,
each data source is prepared as input for the models without
depending on sampling rates.

FIGURE 7
The measurement engine (viavr_measurement_engine) used in the study for data collection and real-time CS detection. (A) The GUI of the
measurement engine shows the three connected sensors (Empatica, Polar H10, and Engine, which is the Unity application). (B) The GUI of the
measurement engine shows the CS classifier and the detection result.
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Additionally, we used a timespan of 0 s, 1 s, and 2 s around a CS
occurrence as a CS buffer. The aim is to include the before and after
effects of physiological responses that participants felt. We combined
these parameters with the hyperparameters of the learning algorithm and
did a grid search to determine the best hyperparameters for training the
data. During the SVM training, the binary cross-entropy (BCE) (Good,
1952) loss is calculated. After that, predictions and loss calculations are
repeated using the testing set. The LSTM and CNN + LSTMmodels are
trained with a 256 batch size for 30 epochs on the training set. For LSTM
and CNN + LSTM training, the training loss is calculated using binary
cross-entropy in each batch. We used Adam (Kingma and Ba, 2014) as
the optimization algorithm, with a learning rate of 0.001 or 0.005,
respectively. Every five epochs, the model’s current performance is
evaluated on the validation set by calculating the validation loss. Each
model was trained on a machine with an Intel Core i7 9700K CPU and
32 GB ofmemorywithNVIDIARTX 2070 SuperGPU.Allmodels were
trained by using the PyTorch 1.10 deep learning library.

5 Data augmentation using cGAN

To tackle the problems of small and imbalanced datasets, we
deployed cGAN (Mirza and Osindero, 2014) to augment the original
dataset. cGAN is the conditionally extended version of the GAN
model (Goodfellow et al., 2014).

A GAN model architecture consists of two networks. One
network generates candidate data (generator), and the other
evaluates them (discriminator). Typically, the generative network
learns to map from a latent space (sampled from Gaussian
distribution) to a particular data distribution of interest, in our
case, physiological data, while the discriminative network
discriminates between instances from the true data distribution
and candidates produced by the generator. The objective of the
generator G) is to fool the discriminator D) such that it classifies
generated data as real. Through the training, the generator learns to

produce realistic-looking synthetic data. Consequently, the
generated data distribution converges to the real data
distribution. The generator Gθg is a directed latent variable model
that deterministically generates samples x from latent space z.
Because discriminator D) wants to classify real or fake samples,
V (D, G) is considered an objective function as an aspect of the
classification problem. The general form of the objective function
can be written as Eq. 5 follows:

minθgmaxθdV D,G( ) � Ex~pdata logDθd x( ) + Ez~p z( ) log 1 −Dθd Gθg z( )( )( )[ ]
(5)

Here, the main difference between the cGAN and the two player
minimax game objective function of the GAN is that cGAN includes
labels as auxiliary information indicated as y. Hence, the objective
function can be written as Eq. (6)

minθgmaxθdV D, G( ) � Ex~pdata logDθd x|y( ) + Ez~p z( ) log 1 −Dθd Gθg z|y( )( )( )[ ]
(6)

During the training process, Eq. (6) often results in mode
collapse, which means that many samples out of the latent space
map to the same generated sample. This results in a dataset with less
diversity. To counteract this problem, the diversity term was
introduced by Yang et al. (2019) to simply regularize and
penalize the generator for producing the same samples. The
diversity term is defined as Eq. 7

max
θd

f G( ) � Ez1 ,z1

‖G z1, y( ) − G z2, y( )
‖z1 − z2‖[ ] (7)

The logic in this approach is if two samples are different, but the
generated sequences are the same, the term is 0. This results in the
following new objective function in Eq. 8

min
θg

max
θd

f D,G( ) − λf G( ) (8)

where λ is a hyperparameter that describes the importance of the
term in Eq. (8), and ‖ denotes a norm.

5.1 The cGAN architecture

5.1.1 Generator
The generator takes latent space and class labels as input. Sixteen

hidden units per layer of stacked LSTM are used to generate the

TABLE 2 The variables and their values that were used in the grid search to optimize the models’ hyperparameters and best-performing values for the
respective model type.

H.Params Values SVM LSTM Bid-LSTM LSTM + CNN

Timesteps 30, 50 30 30 30 50

CS buffer (seconds) 0, 1, 2 1.0 1.0 1.0 1.0

Sensor buffer (seconds) 0.1, 0.5 0.5 0.5 0.5 0.1

LSTM hidden 32, 64 - 64 64 64

Dense hidden 8, 16 - 8 8 16

Learning rate 0.001, 0.005 - 0.005 0.005 0.001

Dropout 0.5, 0.7 - 0.5 0.5 0.7

TABLE 3 Results of the CTST evaluation method using CNN + LSTM and
bidirectional LSTM models.

Accuracy

Method CNN + LSTM Bid-LSTM

CTST (cGAN) 0.604 0.573
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physiological signals. The mapping from the random space is
performed via a dense layer using a Leaky ReLU (Xu et al., 2015)
activation function. Then, the LSTM layer group was applied. The
output was fed through a linear activation. The final output of the
generator has the shape of the matrix, which is batch size times time
window. Here, the time window for created data is 15 s. After
training, we can apply random Gaussian noise N (0, 1) and
labels to create the physiological data.

5.1.2 Discriminator
In our architecture, the temporal convolutional layers are used

to extract features from the time series signal. The convolutional
layer for the discriminator is chosen because in our experiments,
we saw that the fully convolutional network (FCN) discriminator

outperformed the recurrent discriminator. This indicates that the
convolutional network, especially the FCN, provides the generator
with better gradients during training. Therefore, 1D filters were
applied to capture the changes in the signal according to the
different classes of physiological signals. The filters per layer are
32, 64, and 32, and the kernel size per layer was set to 8, 5, and 3,
respectively. After the three convolutional blocks, the resulting
feature maps are followed by a pooling layer and a sigmoid
activation function, which outputs a scalar value in the range
of 0 to 1 for the sequence, indicating whether it is real or fake. For
the optimization process, the Adam optimizer (Kingma and Ba,
2014), with a learning rate of 0.0002 and a beta value of 0.5
(Christopoulos et al., 2019), was used and trained for
1,650 epochs. A batch size of 32 was used to ensure stable

TABLE 4 First table shows the detection evaluation results (accuracy, precision, recall, and F1-score) for the best-performingmodels in eachmodel type on
the original, first augmented, and second augmented training sets (with 10-fold cross-validation). The second table shows the detection evaluation results
for the testing set. The model name and the numbers in bold indicate the highest value of the experimental results.

10-Fold cross-validation

Model type Original dataset First data augmentation Second data augmentation

acc Pr Rec F1 acc Pr Rec F1 acc Pr Rec F1

(Naive Model) 0.133 0.133 1 0.235 0.5 0.5 1 0.667 0.5 0.5 1 0.667

SVM 0.66 0.310 0.911 0.463 0.843 0.675 0.883 0.766 0.874 0.752 0.902 0.820

CNN + LSTM 0.88 0.575 0.919 0.707 0.88 0.915 0.919 0.917 0.905 0.889 0.920 0.905

LSTM 0.86 0.555 0.871 0.678 0.912 0.914 0.882 0.898 0.925 0.932 0.906 0.919

Bid-LSTM 0.87 0.568 0.882 0.691 0.919 0.921 0.909 0.915 0.939 0.945 0.912 0.928

Testing Set

Model Type acc pr rec F1 acc pr rec F1 acc pr rec F1

(Naive Model) 0.156 0.156 1 0.27 0.156 0.156 1 0.27 0.156 0.156 1 0.27

SVM 0.652 0.207 0.660 0.316 0.825 0.650 0.854 0.738 0.857 0.869 0.841 0.855

CNN + LSTM 0.773 0.361 0.641 0.465 0.871 0.892 0.911 0.901 0.893 0.902 0.881 0.891

LSTM 0.836 0.421 0.673 0.473 0.901 0.886 0.921 0.903 0.910 0.929 0.889 0.908

Bid-LSTM 0.842 0.452 0.742 0.471 0.907 0.913 0.902 0.908 0.917 0.936 0.885 0.911

FIGURE 8
The confusion matrices which show the test results of the second augmented dataset. The matrices belong to the SVM, CNN + LSTM, LSTM, and
bidirectional LSTM models, respectively.
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training. Figure 3 depicts the overall cGAN algorithm with
physiological data.

5.2 cGAN implementation

The original dataset that we collected during experiments is
quite skewed and unbalanced. The data samples consist of
2539 CS labeled and 388 not-CS labeled timesteps (with a
0.5 s CS buffer). Because we have already split the dataset
into testing and training sets, only the training set was used
for the data augmentation process. After training our cGAN, we
created 2,151 synthetic CS timesteps data as the first data
augmentation and made the data equally distributed. In the
second data augmentation, we wanted to investigate the result
with the equally enriched synthetic data for both classes. After
this process, we augmented the data, which includes

6,384 timesteps for each class. The data distribution per class
can be seen in Figure 4 for the original dataset and the first and
second augmented datasets.

5.2.1 Evaluation of the cGAN model
Synthetic data samples produced by the cGAN model are of good

quality if real data and synthetic data are indistinguishable from each other.
To measure the similarity, we used the classifier two-sample test (CTST)
proposed by Lopez-Paz and Oquab (2017). In this approach, a binary
classifier is trained to distinguish data samples belonging to the synthetic
dataset from the real (original) dataset. For the training set, we randomly
selected 214 synthetic and real timesteps data samples for CS and
528 synthetic and real timesteps data samples for non-CS sequences.
For the training set, we randomly selected 87 synthetic and real timesteps
data elements for CS and 161 synthetic and real timesteps data samples for
non-CS sequences.We trained ourCNN+LSTMandbidirectional LSTM
model with the best hyperparameters (see Section 5.1). As can be observed

FIGURE 9
A comparison of the pre- and post-SSQ difference results of two participants who have min and max scores and the average differences of all
participants per question.

TABLE 5 Cybersickness detection accuracy results from the literature and comparison with our result.

Work Setup Physio. Data Methods Best Acc. (%)

Hadadi et al. (2022) HMD, Empatica EDA,TEMP,BVP,ACC SVM + TDA 71

Garcia-Agundez et al. (2019) HMD, Electrode-based ECG, EOG, EDA, RESP SVM, KNN, NN 82

Islam et al. (2021) HMD, Electrode-based Video, Eye-Track., Head-Track LSTM + CNN 87

Pane et al. (2018) EEG Setup EEG SVM, CNN 88.9

Kim et al. (2019) EEG Setup Video, EEG CNN-RNN 90.4

Our work HMD, Polar H10, Empatica ECG, ACC, EDA, BVP, TEMP Bid-LSTM, CNN 91.7
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in Table 3 the accuracy result is close to the chance level. Figure 5 depicts
two synthetic ECG and EDA data samples for the CS label.

5.3 Real-time CS detection

5.3.1 Data Capture
To start data streaming, all sensors must establish a connection

to the measurement engine (viavr_measurement_engine). Here,
socket programming (Socket, 2022) was used for the Empatica
connection, and the Bleak library (Bleak, 2022) was used for the
Polar H10 connection. The Pico Neo 2 includes a built-in eye tracker
(Tobii Ocumen AB, 2021) that can collect raw eye-tracking data
(binocular gaze, pupil size, and blink status) using the advanced API.
The measurement engine starts recording the data when the
“Streaming On” button is clicked. We implemented the data
streaming via the threading method. The streaming of each data
source is independent of each other and could be started or stopped
separately. In the case of a connection breakdown related to the
sensors, the engine log screen informs the user about the current
state. To prevent the data drifting, we used the same data acquisition
architecture for the real-time classification. Additionally, the sensor
buffer was used to prevent a lack of data in the streaming. The sensor
buffer gets the mean of the data for a specified period of time, and
then one value for each data element can be calculated. Hence, we
prevent potential missing data and system performance decrease.

5.3.2 Real-time data processing
After finding the best model for the detection task, we also

implemented the whole procedure as a real-time CS detection
system. All sensory devices are connected to the measurement
engine, which was written in Python. Data are feed-forwarded to
the four-layered bidirectional LSTM model. Each feed-forward data
processing time is around 60 m. In every 5 s period of time, the
measurement engine produces detection results by using already
trained model parameters. Because the sensor buffer is 0.5 s for the
best model, depending on the output of the last layer’s sigmoid
function, the engine produces 10 different results in 5 s. If the mean
value of the results is higher than 0.5, the engine detects CS;
otherwise, it detects not CS. This period of time can easily be
selected to be higher or lower because we selected 5 s as an
example. Figure 6 shows the overview of the real-time detection
system. Figure 7 shows the real-time Python GUI implementation of
the measurement engine. The result of the classification is shown
using the labels “high” and “low” on the GUI.

The system is ready to use in real-time VR applications. It
demonstrates an average latency of 60 ms between classifying the
data and providing feedback to the user, ensuring a seamless and
responsive experience. The prototype achieves a high accuracy (91.7%
with the testing set), indicating a high level of accuracy in detecting CS
symptoms. Although we used a Pico Neo 2 in our study, any VR
headset that included eye-tracking could be used in future studies.

6 Results

To find the best hyperparameters for the respective model type,
we conducted a grid search covering 584 different model

configurations with 10-fold cross-validation, resulting in
5,840 total model trainings. The best hyperparameters that led to
the best classification results are shown in Table 2.

After the training, we assessed each model’s performance based
on the performance metrics accuracy, precision, recall, and F1-score
on the testing set, and we also calculated these metrics for the
validation set (10-fold cross-validation) to get a better insight into
the model’s learning behavior. We also calculated a naive classifier to
compare the results of the given classifier model with a baseline (for
example, accuracy is the random occurrence of the CS label in this
case). In addition to these metrics, the confusion matrix was also
calculated to assess the ratio between true/false positives/negatives
for a second augmented dataset.

All performance metrics are based on the true and false results
and their real values. They are called true negative (TN), true
positive (P), false negative (FN), and false positive (FP). TP is an
outcome where the model correctly predicts the positive class (in our
case, CS), while TN is an outcome where the model correctly
predicts the negative class (in our case, not CS). FP is an
outcome where the model incorrectly predicts the positive class,
and FN is an outcome where the model incorrectly predicts the
negative class. We can formulate these metrics as Eqs. 9–12, follows:

Accuracy � TP + TN
TP + TN + FP + FN

(9)

Precision � TP

TP + FP
(10)

Recall � TP

TP + FN
(11)

f1 � 2 ×
Precision × Recall

Precision + Recall
(12)

The results of the best-performing models are shown in Table 4 on
the original, first, and second augmented training datasets. All model
types achieved higher F1-scores on the training datasets with 10-fold
cross-validation than on the testing set. To tackle the imbalanced dataset
problem and increase the classifier performance, we augmented the
dataset with the previously explained methods (see Section 5.2). After
data augmentation and training with the new dataset, the results for all
models increased significantly. The confusion matrices of the second
data augmentation test results can be seen in Figure 8. We acquired the
best result with a four-layered bidirectional LSTM model with 91.7%
accuracy and a 91.1% F1-score. We also evaluated the cGAN
performance using the CTST (see Section 5.2) method. As we can
see in Table 3, after testing, accuracy is close to the chance level, which
means that our cGAN model created synthetic data that are almost
similar to real data.

Because SSQ results cannot provide actual data labels during the
experiments, we only used the SSQ results for validation. Each
participant answered 16 different questions with four options
standing for 1–4 score scales as pre- and post-SSQ: “None,”
“Rather not applicable,” “Rather applicable,” or “Often or a lot.”
We calculated the SSQ scores for each participant and evaluated the
SSQ results. We showed the average difference of pre- and post-SSQ
scores per question in Figure 9. In SSQ results, the participant scores
for questions 1 (general discomfort), 3 (headache), 5 (difficulty
focusing), 6 (salivation increase), 7 (sweating), and 8 (nausea) were
slightly higher than other questions. The average score of the
difference of all the symptoms was 1.1, which indicates that the
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participants felt a bit worse after the experiment than before. This
validates that the experiment resulted in a cybersick feeling for most
participants, although it might be rather small. Hence, it justifies the
correlation with physiological data.

7 Discussion

We have demonstrated that the utilization of unobtrusive
wearable devices in a simple setup, combined with appropriate
deep learning algorithms and a supportive data augmentation
technique, yields excellent results in detecting CS. Our proposed
approach involves the use of a bidirectional LSTM model in
conjunction with conditional GAN data augmentation, achieving
an accuracy of 91.7% and an F1-score of 91.1%. This outperforms
previous works employing similar physiological sensory setups,
including more complex ones such as EEG.

A comparison with recent literature is presented in Table 5 Hadadi
et al. (2022) incorporated physiological data from an Empatica
wristband and topological point cloud data from HMD. This
combination was not sufficient to capture CS responses properly,
using their (TDA + SVM) model. Garcia-Agundez et al. (2019)
additionally used game parameters with electrode-based data using
machine learning models (SVM, KNN, and NN) but could not reach
satisfying classification performance. (Pane et al. (2018) and Kim et al.
(2019) used EEG setups for their studies. However, EEG setups are not
easy to deploy for studies because they have complex, error-prone, and
time-consuming features. Although some studies worked onCS severity
classification (Islam et al., 2021), the F1-scores of these works are not as
high as the accuracy results because they also have imbalanced datasets.
Furthermore, none of these works attempted:

• to implement data augmentation to overcome lower
generalization capability issues for imbalanced datasets.

• to implement a real-time mid-immersion ground truth
elicitation method.

In our work, we mainly pioneered to address these issues, hence
improving the detection performance.

Upon evaluating the test results, we observed that the four-layered
bidirectional LSTMmodel outperformed the CNN + LSTM and SVM
models and slightly outperformed the standard LSTM model.
Incorporating hidden layers in opposite directions, enabling access
to past and future states, played a significant role in capturing
sequential data patterns through the bidirectional LSTM. Notably,
the recall scores for all models surpassed the precision scores in the
original dataset, mainly due to the class imbalance issue. While the
models correctly classified a substantial quantity of CS labels, they
exhibited a high number of FPs, indicating a compromise in the
quality of the classification. Additionally, both the training and testing
sets on the original dataset showed a higher number of FPs than FNs.

One significant finding that we wish to emphasize is that our
models with data augmentation exhibit remarkable generalization
capability on a testing set comprising participants who differ from
those used in the training set. Unlike previous research in the
literature (see Table 5), our models effectively generalize their
learning to new participants. With data augmentation, precision
scores increased significantly by decreasing FPs, which is strong

proof that the models gained enhanced detection capabilities for CS
labels. Additionally, we successfully implemented a real-time CS
detection system using our best model, which is a four-layered
bidirectional LSTM. This system can be readily deployed in various
VR scenarios, including medical and therapy applications.

During our experiments, we found that instructing participants
to press the controller button when experiencing the rollercoaster
simulation provided reliable ground truth data. However, this
procedure resulted in an imbalanced dataset, as there were fewer
instances of participants experiencing CS during the rollercoaster
scenario than instances when they did not experience CS. This was
particularly the case during the first 40 s of the experiment because it
took time to elicit the CS effects. To capture the before and after
effects on participants, we deployed a CS buffer as a hyperparameter
during the optimization process. By labeling the data one second
before and after CS occurrences, we observed an improvement in the
classification performance. This can be attributed to the time
required for participants to make decisions, such as pressing and
releasing the button, and the continuation of physiological responses
during the label transition phase. This hyperparameter also
increased the number of CS-labeled data by approximately 5%.

Our data augmentation technique generates synthetic data that
closely align with the data distribution of the original dataset. We
evaluated the similarity between the synthetic and real data, and our
results indicate that the bidirectional LSTMmodel achieves classification
performance close to the chance level with 57.3% accuracy (see Table 3),
which is evidence of an indistinguishable synthetic dataset.Moreover, we
successfully addressed the issue of data imbalance through the
implementation of the cGAN data augmentation model. Following
the first round of data augmentation, the dataset achieved equal
distribution per class, and the testing results revealed significant
improvements not only in accuracy but also in other evaluation
metrics. The recall and precision scores approached each other,
indicating robust and accurate detection of both classes by the
models. Performance evaluation of the second augmented
dataset also indicated similar results across different metrics. Notably,
precision and F1 scores surpassed those obtained from the original
dataset, signifying improved accuracy in classifying instances of CS.

7.1 Limitations

We showed that the augmented physiological data can increase
classifier performance significantly. However, the cGAN model is
difficult to train in a stable way. We tried to overcome this problem
with a diversity term. This could also improve the generalization
capability of the learning models. In addition, the choice of the
virtual scenario highly influences the responses from the
participants. Even though many past experiments, for example, by
Islam et al. (2020a) or Nalivaiko et al. (2015), chose to expose
participants to a rollercoaster ride in VR, it might have influenced
the resulting data negatively. A person might feel sick or nauseous
during the experiment, not due to CS, but because a rollercoaster ride
might have made them feel exactly the same way in real life. Because
these borders are hard to define, another choice of virtual scenario
might be an improvement. The rollercoaster ride might not be the
perfect virtual scenario, but it can efficiently provoke CS symptoms. On
the other hand, the measurement engine that we will provide can be
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used for data collection as well as a real-time detection system with the
same sensory device setup.Hence, the system can be used by researchers
in validation studies.

We used a relatively small data set in our study and enhanced the
result with data augmentation to acquire generalization capability.
However, more data can be collected in the future to acquire more
robust results in different studies. A wider range of experimental
scenarios would provide more variability and enable better model
training and validation. Larger datasets that can be collected from a
more extensive and diverse user population can help improve the
model’s performance by reducing bias and overfitting and help
ensure that the model is robust across different contexts.

8 Conclusion

In this work, we used a VR environment that includes a
rollercoaster to elicit cybersickness and used a simple setup with
sensory devices to collect physiological responses. We deployed three
different deep learning models and one classical machine learning
model to detect CS. In addition, we realized a completely real-time
system using our best model. We demonstrated that a four-layered
bidirectional LSTM with data augmentation gives superior results
(91.7% accuracy; 91.1% F1-score), and this combination is the best
solution for sensor-based CS detection in real-time applications,
particularly for wearable devices. Furthermore, we showed that
small, skewed, and imbalanced datasets can be augmented with
our pioneered cGAN approach to increase the classifier
performance significantly. In future works, we plan to investigate
different VR scenarios for cybersickness elicitation and state-of-the-
art models to enable multi-level CS classification.
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